feat(docker-images): add vLLM-based Nanonets-OCR2-3B image, Qwen3-VL Ollama image and refactor build/docs/tests to use new runtime/layout
This commit is contained in:
34
Dockerfile_nanonets_vllm_gpu_VRAM10GB
Normal file
34
Dockerfile_nanonets_vllm_gpu_VRAM10GB
Normal file
@@ -0,0 +1,34 @@
|
||||
# Nanonets-OCR2-3B Vision Language Model
|
||||
# Based on Qwen2.5-VL-3B, fine-tuned for document OCR (Oct 2025 release)
|
||||
# Improvements over OCR-s: better semantic tagging, LaTeX equations, flowcharts
|
||||
# ~12-16GB VRAM with 30K context, outputs structured markdown with semantic tags
|
||||
#
|
||||
# Build: docker build -f Dockerfile_nanonets_vllm_gpu_VRAM10GB -t nanonets-ocr .
|
||||
# Run: docker run --gpus all -p 8000:8000 -v ht-huggingface-cache:/root/.cache/huggingface nanonets-ocr
|
||||
|
||||
FROM vllm/vllm-openai:latest
|
||||
|
||||
LABEL maintainer="Task Venture Capital GmbH <hello@task.vc>"
|
||||
LABEL description="Nanonets-OCR2-3B - Document OCR optimized Vision Language Model"
|
||||
LABEL org.opencontainers.image.source="https://code.foss.global/host.today/ht-docker-ai"
|
||||
|
||||
# Environment configuration
|
||||
ENV MODEL_NAME="nanonets/Nanonets-OCR2-3B"
|
||||
ENV HOST="0.0.0.0"
|
||||
ENV PORT="8000"
|
||||
ENV MAX_MODEL_LEN="30000"
|
||||
ENV GPU_MEMORY_UTILIZATION="0.9"
|
||||
|
||||
# Expose OpenAI-compatible API port
|
||||
EXPOSE 8000
|
||||
|
||||
# Health check - vLLM exposes /health endpoint
|
||||
HEALTHCHECK --interval=30s --timeout=10s --start-period=120s --retries=5 \
|
||||
CMD curl -f http://localhost:8000/health || exit 1
|
||||
|
||||
# Start vLLM server with Nanonets-OCR2-3B model
|
||||
CMD ["--model", "nanonets/Nanonets-OCR2-3B", \
|
||||
"--trust-remote-code", \
|
||||
"--max-model-len", "30000", \
|
||||
"--host", "0.0.0.0", \
|
||||
"--port", "8000"]
|
||||
Reference in New Issue
Block a user