feat(docker-images): add vLLM-based Nanonets-OCR2-3B image, Qwen3-VL Ollama image and refactor build/docs/tests to use new runtime/layout

This commit is contained in:
2026-01-19 21:05:51 +00:00
parent b58bcabc76
commit 08728ada4d
14 changed files with 1492 additions and 1126 deletions

View File

@@ -32,10 +32,10 @@ export const IMAGES = {
healthTimeout: 120000,
} as IImageConfig,
// Nanonets-OCR-s - Document OCR optimized VLM (Qwen2.5-VL-3B fine-tuned)
// Nanonets-OCR2-3B - Document OCR optimized VLM (Qwen2.5-VL-3B fine-tuned, Oct 2025)
nanonetsOcr: {
name: 'nanonets-ocr',
dockerfile: 'Dockerfile_nanonets_ocr',
dockerfile: 'Dockerfile_nanonets_vllm_gpu_VRAM10GB',
buildContext: '.',
containerName: 'nanonets-test',
ports: ['8000:8000'],
@@ -340,12 +340,12 @@ export async function ensureQwen3Vl(): Promise<boolean> {
}
/**
* Ensure Nanonets-OCR-s service is running (via vLLM)
* Document OCR optimized VLM based on Qwen2.5-VL-3B
* Ensure Nanonets-OCR2-3B service is running (via vLLM)
* Document OCR optimized VLM based on Qwen2.5-VL-3B (Oct 2025 release)
*/
export async function ensureNanonetsOcr(): Promise<boolean> {
if (!isGpuAvailable()) {
console.log('[Docker] WARNING: Nanonets-OCR-s requires GPU, but none detected');
console.log('[Docker] WARNING: Nanonets-OCR2-3B requires GPU, but none detected');
}
return ensureService(IMAGES.nanonetsOcr);
}

View File

@@ -1,7 +1,7 @@
/**
* Bank statement extraction using Nanonets-OCR-s + GPT-OSS 20B (sequential two-stage pipeline)
* Bank statement extraction using Nanonets-OCR2-3B + GPT-OSS 20B (sequential two-stage pipeline)
*
* Stage 1: Nanonets-OCR-s converts ALL document pages to markdown (stop after completion)
* Stage 1: Nanonets-OCR2-3B converts ALL document pages to markdown (stop after completion)
* Stage 2: GPT-OSS 20B extracts structured JSON from saved markdown (after Nanonets stops)
*
* This approach avoids GPU contention by running services sequentially.
@@ -14,7 +14,7 @@ import * as os from 'os';
import { ensureNanonetsOcr, ensureMiniCpm, removeContainer, isContainerRunning } from './helpers/docker.js';
const NANONETS_URL = 'http://localhost:8000/v1';
const NANONETS_MODEL = 'nanonets/Nanonets-OCR-s';
const NANONETS_MODEL = 'nanonets/Nanonets-OCR2-3B';
const OLLAMA_URL = 'http://localhost:11434';
const EXTRACTION_MODEL = 'gpt-oss:20b';
@@ -69,28 +69,11 @@ function estimateVisualTokens(width: number, height: number): number {
}
/**
* Batch images to fit within context window
* Process images one page at a time for reliability
*/
function batchImages(images: IImageData[]): IImageData[][] {
const batches: IImageData[][] = [];
let currentBatch: IImageData[] = [];
let currentTokens = 0;
for (const img of images) {
const imgTokens = estimateVisualTokens(img.width, img.height);
if (currentTokens + imgTokens > MAX_VISUAL_TOKENS && currentBatch.length > 0) {
batches.push(currentBatch);
currentBatch = [img];
currentTokens = imgTokens;
} else {
currentBatch.push(img);
currentTokens += imgTokens;
}
}
if (currentBatch.length > 0) batches.push(currentBatch);
return batches;
// One page per batch for reliable processing
return images.map(img => [img]);
}
/**
@@ -171,6 +154,7 @@ async function convertBatchToMarkdown(batch: IImageData[]): Promise<string> {
max_tokens: 4096 * batch.length, // Scale output tokens with batch size
temperature: 0.0,
}),
signal: AbortSignal.timeout(600000), // 10 minute timeout for OCR
});
const elapsed = ((Date.now() - startTime) / 1000).toFixed(1);

View File

@@ -0,0 +1,436 @@
/**
* Invoice extraction tuning - uses pre-generated markdown files
*
* Skips OCR stage, only runs GPT-OSS extraction on existing .debug.md files.
* Use this to quickly iterate on extraction prompts and logic.
*
* Run with: tstest test/test.invoices.extraction.ts --verbose
*/
import { tap, expect } from '@git.zone/tstest/tapbundle';
import * as fs from 'fs';
import * as path from 'path';
import { ensureMiniCpm } from './helpers/docker.js';
const OLLAMA_URL = 'http://localhost:11434';
const EXTRACTION_MODEL = 'gpt-oss:20b';
// Test these specific invoices (must have .debug.md files)
const TEST_INVOICES = [
'consensus_2021-09',
'hetzner_2022-04',
'qonto_2021-08',
'qonto_2021-09',
];
interface IInvoice {
invoice_number: string;
invoice_date: string;
vendor_name: string;
currency: string;
net_amount: number;
vat_amount: number;
total_amount: number;
}
interface ITestCase {
name: string;
markdownPath: string;
jsonPath: string;
}
// JSON extraction prompt for GPT-OSS 20B (sent AFTER the invoice text is provided)
const JSON_EXTRACTION_PROMPT = `Extract key fields from the invoice. Return ONLY valid JSON.
WHERE TO FIND DATA:
- invoice_number, invoice_date, vendor_name: Look in the HEADER section at the TOP of PAGE 1 (near "Invoice no.", "Invoice date:", "Rechnungsnummer")
- net_amount, vat_amount, total_amount: Look in the SUMMARY section at the BOTTOM (look for "Total", "Amount due", "Gesamtbetrag")
RULES:
1. invoice_number: Extract ONLY the value (e.g., "R0015632540"), NOT the label "Invoice no."
2. invoice_date: Convert to YYYY-MM-DD format (e.g., "14/04/2022" → "2022-04-14")
3. vendor_name: The company issuing the invoice
4. currency: EUR, USD, or GBP
5. net_amount: Total before tax
6. vat_amount: Tax amount
7. total_amount: Final total with tax
JSON only:
{"invoice_number":"X","invoice_date":"YYYY-MM-DD","vendor_name":"X","currency":"EUR","net_amount":0,"vat_amount":0,"total_amount":0}`;
/**
* Ensure GPT-OSS 20B model is available
*/
async function ensureExtractionModel(): Promise<boolean> {
try {
const response = await fetch(`${OLLAMA_URL}/api/tags`);
if (response.ok) {
const data = await response.json();
const models = data.models || [];
if (models.some((m: { name: string }) => m.name === EXTRACTION_MODEL)) {
console.log(` [Ollama] Model available: ${EXTRACTION_MODEL}`);
return true;
}
}
} catch {
return false;
}
console.log(` [Ollama] Pulling ${EXTRACTION_MODEL}...`);
const pullResponse = await fetch(`${OLLAMA_URL}/api/pull`, {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({ name: EXTRACTION_MODEL, stream: false }),
});
return pullResponse.ok;
}
/**
* Parse amount from string (handles European format)
*/
function parseAmount(s: string | number | undefined): number {
if (s === undefined || s === null) return 0;
if (typeof s === 'number') return s;
const match = s.match(/([\d.,]+)/);
if (!match) return 0;
const numStr = match[1];
const normalized = numStr.includes(',') && numStr.indexOf(',') > numStr.lastIndexOf('.')
? numStr.replace(/\./g, '').replace(',', '.')
: numStr.replace(/,/g, '');
return parseFloat(normalized) || 0;
}
/**
* Extract invoice number - minimal normalization
*/
function extractInvoiceNumber(s: string | undefined): string {
if (!s) return '';
return s.replace(/\*\*/g, '').replace(/`/g, '').trim();
}
/**
* Extract date (YYYY-MM-DD) from response
*/
function extractDate(s: string | undefined): string {
if (!s) return '';
let clean = s.replace(/\*\*/g, '').replace(/`/g, '').trim();
const isoMatch = clean.match(/(\d{4}-\d{2}-\d{2})/);
if (isoMatch) return isoMatch[1];
const dmyMatch = clean.match(/(\d{1,2})[\/.](\d{1,2})[\/.](\d{4})/);
if (dmyMatch) {
return `${dmyMatch[3]}-${dmyMatch[2].padStart(2, '0')}-${dmyMatch[1].padStart(2, '0')}`;
}
return clean.replace(/[^\d-]/g, '').trim();
}
/**
* Extract currency
*/
function extractCurrency(s: string | undefined): string {
if (!s) return 'EUR';
const upper = s.toUpperCase();
if (upper.includes('EUR') || upper.includes('€')) return 'EUR';
if (upper.includes('USD') || upper.includes('$')) return 'USD';
if (upper.includes('GBP') || upper.includes('£')) return 'GBP';
return 'EUR';
}
/**
* Extract JSON from response
*/
function extractJsonFromResponse(response: string): Record<string, unknown> | null {
let cleanResponse = response.replace(/<think>[\s\S]*?<\/think>/g, '').trim();
const codeBlockMatch = cleanResponse.match(/```(?:json)?\s*([\s\S]*?)```/);
const jsonStr = codeBlockMatch ? codeBlockMatch[1].trim() : cleanResponse;
try {
return JSON.parse(jsonStr);
} catch {
const jsonMatch = jsonStr.match(/\{[\s\S]*\}/);
if (jsonMatch) {
try {
return JSON.parse(jsonMatch[0]);
} catch {
return null;
}
}
return null;
}
}
/**
* Parse JSON response into IInvoice
*/
function parseJsonToInvoice(response: string): IInvoice | null {
const parsed = extractJsonFromResponse(response);
if (!parsed) return null;
return {
invoice_number: extractInvoiceNumber(String(parsed.invoice_number || '')),
invoice_date: extractDate(String(parsed.invoice_date || '')),
vendor_name: String(parsed.vendor_name || '').replace(/\*\*/g, '').replace(/`/g, '').trim(),
currency: extractCurrency(String(parsed.currency || '')),
net_amount: parseAmount(parsed.net_amount as string | number),
vat_amount: parseAmount(parsed.vat_amount as string | number),
total_amount: parseAmount(parsed.total_amount as string | number),
};
}
/**
* Extract invoice from markdown using GPT-OSS 20B (streaming)
*/
async function extractInvoiceFromMarkdown(markdown: string, queryId: string): Promise<IInvoice | null> {
const startTime = Date.now();
console.log(` [${queryId}] Invoice: ${markdown.length} chars, Prompt: ${JSON_EXTRACTION_PROMPT.length} chars`);
const response = await fetch(`${OLLAMA_URL}/api/chat`, {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({
model: EXTRACTION_MODEL,
messages: [
{ role: 'user', content: 'Hi there, how are you?' },
{ role: 'assistant', content: 'Good, how can I help you today?' },
{ role: 'user', content: `Here is an invoice document:\n\n${markdown}` },
{ role: 'assistant', content: 'I have read the invoice document you provided. I can see all the text content. What would you like me to do with it?' },
{ role: 'user', content: JSON_EXTRACTION_PROMPT },
],
stream: true,
}),
signal: AbortSignal.timeout(120000), // 2 min timeout
});
if (!response.ok) {
const elapsed = ((Date.now() - startTime) / 1000).toFixed(1);
console.log(` [${queryId}] ERROR: ${response.status} (${elapsed}s)`);
throw new Error(`Ollama API error: ${response.status}`);
}
// Stream the response
let content = '';
let thinkingContent = '';
let thinkingStarted = false;
let outputStarted = false;
const reader = response.body!.getReader();
const decoder = new TextDecoder();
try {
while (true) {
const { done, value } = await reader.read();
if (done) break;
const chunk = decoder.decode(value, { stream: true });
for (const line of chunk.split('\n').filter(l => l.trim())) {
try {
const json = JSON.parse(line);
const thinking = json.message?.thinking || '';
if (thinking) {
if (!thinkingStarted) {
process.stdout.write(` [${queryId}] THINKING: `);
thinkingStarted = true;
}
process.stdout.write(thinking);
thinkingContent += thinking;
}
const token = json.message?.content || '';
if (token) {
if (!outputStarted) {
if (thinkingStarted) process.stdout.write('\n');
process.stdout.write(` [${queryId}] OUTPUT: `);
outputStarted = true;
}
process.stdout.write(token);
content += token;
}
} catch {
// Ignore parse errors for partial chunks
}
}
}
} finally {
if (thinkingStarted || outputStarted) process.stdout.write('\n');
}
const elapsed = ((Date.now() - startTime) / 1000).toFixed(1);
console.log(` [${queryId}] Done: ${thinkingContent.length} thinking, ${content.length} output (${elapsed}s)`);
return parseJsonToInvoice(content);
}
/**
* Normalize date to YYYY-MM-DD
*/
function normalizeDate(dateStr: string | null): string {
if (!dateStr) return '';
if (/^\d{4}-\d{2}-\d{2}$/.test(dateStr)) return dateStr;
const monthMap: Record<string, string> = {
JAN: '01', FEB: '02', MAR: '03', APR: '04', MAY: '05', JUN: '06',
JUL: '07', AUG: '08', SEP: '09', OCT: '10', NOV: '11', DEC: '12',
};
let match = dateStr.match(/^(\d{1,2})-([A-Z]{3})-(\d{4})$/i);
if (match) {
return `${match[3]}-${monthMap[match[2].toUpperCase()] || '01'}-${match[1].padStart(2, '0')}`;
}
match = dateStr.match(/^(\d{1,2})[\/.](\d{1,2})[\/.](\d{4})$/);
if (match) {
return `${match[3]}-${match[2].padStart(2, '0')}-${match[1].padStart(2, '0')}`;
}
return dateStr;
}
/**
* Normalize invoice number for comparison (remove spaces, lowercase)
*/
function normalizeInvoiceNumber(s: string): string {
return s.replace(/\s+/g, '').toLowerCase();
}
/**
* Compare extracted invoice against expected
*/
function compareInvoice(
extracted: IInvoice,
expected: IInvoice
): { match: boolean; errors: string[] } {
const errors: string[] = [];
// Invoice number - normalize spaces for comparison
const extNum = normalizeInvoiceNumber(extracted.invoice_number || '');
const expNum = normalizeInvoiceNumber(expected.invoice_number || '');
if (extNum !== expNum) {
errors.push(`invoice_number: expected "${expected.invoice_number}", got "${extracted.invoice_number}"`);
}
if (normalizeDate(extracted.invoice_date) !== normalizeDate(expected.invoice_date)) {
errors.push(`invoice_date: expected "${expected.invoice_date}", got "${extracted.invoice_date}"`);
}
if (Math.abs(extracted.total_amount - expected.total_amount) > 0.02) {
errors.push(`total_amount: expected ${expected.total_amount}, got ${extracted.total_amount}`);
}
if (extracted.currency?.toUpperCase() !== expected.currency?.toUpperCase()) {
errors.push(`currency: expected "${expected.currency}", got "${extracted.currency}"`);
}
return { match: errors.length === 0, errors };
}
/**
* Find test cases with existing debug markdown
*/
function findTestCases(): ITestCase[] {
const invoicesDir = path.join(process.cwd(), '.nogit/invoices');
if (!fs.existsSync(invoicesDir)) return [];
const testCases: ITestCase[] = [];
for (const invoiceName of TEST_INVOICES) {
const markdownPath = path.join(invoicesDir, `${invoiceName}.debug.md`);
const jsonPath = path.join(invoicesDir, `${invoiceName}.json`);
if (fs.existsSync(markdownPath) && fs.existsSync(jsonPath)) {
testCases.push({
name: invoiceName,
markdownPath,
jsonPath,
});
} else {
if (!fs.existsSync(markdownPath)) {
console.warn(`Warning: Missing markdown: ${markdownPath}`);
}
if (!fs.existsSync(jsonPath)) {
console.warn(`Warning: Missing JSON: ${jsonPath}`);
}
}
}
return testCases;
}
// ============ TESTS ============
const testCases = findTestCases();
console.log(`\n========================================`);
console.log(` EXTRACTION TUNING TEST`);
console.log(` (Skips OCR, uses existing .debug.md)`);
console.log(`========================================`);
console.log(` Testing ${testCases.length} invoices:`);
for (const tc of testCases) {
console.log(` - ${tc.name}`);
}
console.log(`========================================\n`);
tap.test('Setup Ollama + GPT-OSS 20B', async () => {
const ollamaOk = await ensureMiniCpm();
expect(ollamaOk).toBeTrue();
const extractionOk = await ensureExtractionModel();
expect(extractionOk).toBeTrue();
});
let passedCount = 0;
let failedCount = 0;
for (const tc of testCases) {
tap.test(`Extract ${tc.name}`, async () => {
const expected: IInvoice = JSON.parse(fs.readFileSync(tc.jsonPath, 'utf-8'));
const markdown = fs.readFileSync(tc.markdownPath, 'utf-8');
console.log(`\n ========================================`);
console.log(` === ${tc.name} ===`);
console.log(` ========================================`);
console.log(` EXPECTED: ${expected.invoice_number} | ${expected.invoice_date} | ${expected.total_amount} ${expected.currency}`);
console.log(` Markdown: ${markdown.length} chars`);
const startTime = Date.now();
const extracted = await extractInvoiceFromMarkdown(markdown, tc.name);
if (!extracted) {
failedCount++;
console.log(`\n Result: ✗ FAILED TO PARSE (${((Date.now() - startTime) / 1000).toFixed(1)}s)`);
return;
}
const elapsedMs = Date.now() - startTime;
console.log(` EXTRACTED: ${extracted.invoice_number} | ${extracted.invoice_date} | ${extracted.total_amount} ${extracted.currency}`);
const result = compareInvoice(extracted, expected);
if (result.match) {
passedCount++;
console.log(`\n Result: ✓ MATCH (${(elapsedMs / 1000).toFixed(1)}s)`);
} else {
failedCount++;
console.log(`\n Result: ✗ MISMATCH (${(elapsedMs / 1000).toFixed(1)}s)`);
console.log(` ERRORS:`);
result.errors.forEach(e => console.log(` - ${e}`));
}
});
}
tap.test('Summary', async () => {
const totalInvoices = testCases.length;
const accuracy = totalInvoices > 0 ? (passedCount / totalInvoices) * 100 : 0;
console.log(`\n========================================`);
console.log(` Extraction Tuning Summary`);
console.log(`========================================`);
console.log(` Model: ${EXTRACTION_MODEL}`);
console.log(` Passed: ${passedCount}/${totalInvoices}`);
console.log(` Failed: ${failedCount}/${totalInvoices}`);
console.log(` Accuracy: ${accuracy.toFixed(1)}%`);
console.log(`========================================\n`);
});
export default tap.start();

View File

@@ -0,0 +1,695 @@
/**
* Focused test for failed invoice extractions
*
* Tests only the 4 invoices that failed in the main test:
* - consensus_2021-09: invoice_number "2021/1384" → "20211384" (slash stripped)
* - hetzner_2022-04: model hallucinated after 281s thinking
* - qonto_2021-08: invoice_number "08-21-INVOICE-410870" → "4108705" (prefix stripped)
* - qonto_2021-09: invoice_number "09-21-INVOICE-4303642" → "4303642" (prefix stripped)
*
* Run with: tstest test/test.invoices.failed.ts --verbose
*/
import { tap, expect } from '@git.zone/tstest/tapbundle';
import * as fs from 'fs';
import * as path from 'path';
import { execSync } from 'child_process';
import * as os from 'os';
import { ensureNanonetsOcr, ensureMiniCpm, isContainerRunning } from './helpers/docker.js';
const NANONETS_URL = 'http://localhost:8000/v1';
const NANONETS_MODEL = 'nanonets/Nanonets-OCR2-3B';
const OLLAMA_URL = 'http://localhost:11434';
const EXTRACTION_MODEL = 'gpt-oss:20b';
// Temp directory for storing markdown between stages
const TEMP_MD_DIR = path.join(os.tmpdir(), 'nanonets-invoices-failed-debug');
// Only test these specific invoices that failed
const FAILED_INVOICES = [
'consensus_2021-09',
'hetzner_2022-04',
'qonto_2021-08',
'qonto_2021-09',
];
interface IInvoice {
invoice_number: string;
invoice_date: string;
vendor_name: string;
currency: string;
net_amount: number;
vat_amount: number;
total_amount: number;
}
interface IImageData {
base64: string;
width: number;
height: number;
pageNum: number;
}
interface ITestCase {
name: string;
pdfPath: string;
jsonPath: string;
markdownPath?: string;
}
// Nanonets-specific prompt for document OCR to markdown
const NANONETS_OCR_PROMPT = `Extract the text from the above document as if you were reading it naturally.
Return the tables in html format.
Return the equations in LaTeX representation.
If there is an image in the document and image caption is not present, add a small description inside <img></img> tag.
Watermarks should be wrapped in brackets. Ex: <watermark>OFFICIAL COPY</watermark>.
Page numbers should be wrapped in brackets. Ex: <page_number>14</page_number>.`;
// JSON extraction prompt for GPT-OSS 20B
const JSON_EXTRACTION_PROMPT = `You are an invoice data extractor. Below is an invoice document converted to text/markdown. Extract the key invoice fields as JSON.
IMPORTANT RULES:
1. invoice_number: The unique invoice/document number (NOT VAT ID, NOT customer ID). PRESERVE ALL CHARACTERS including slashes, dashes, and prefixes.
2. invoice_date: Format as YYYY-MM-DD
3. vendor_name: The company that issued the invoice
4. currency: EUR, USD, or GBP
5. net_amount: Amount before tax
6. vat_amount: Tax/VAT amount
7. total_amount: Final total (gross amount)
Return ONLY this JSON format, no explanation:
{
"invoice_number": "INV-2024-001",
"invoice_date": "2024-01-15",
"vendor_name": "Company Name",
"currency": "EUR",
"net_amount": 100.00,
"vat_amount": 19.00,
"total_amount": 119.00
}
INVOICE TEXT:
`;
const PATCH_SIZE = 14;
/**
* Estimate visual tokens for an image based on dimensions
*/
function estimateVisualTokens(width: number, height: number): number {
return Math.ceil((width * height) / (PATCH_SIZE * PATCH_SIZE));
}
/**
* Process images one page at a time for reliability
*/
function batchImages(images: IImageData[]): IImageData[][] {
return images.map(img => [img]);
}
/**
* Convert PDF to JPEG images using ImageMagick with dimension tracking
*/
function convertPdfToImages(pdfPath: string): IImageData[] {
const tempDir = fs.mkdtempSync(path.join(os.tmpdir(), 'pdf-convert-'));
const outputPattern = path.join(tempDir, 'page-%d.jpg');
try {
execSync(
`convert -density 150 -quality 90 "${pdfPath}" -background white -alpha remove "${outputPattern}"`,
{ stdio: 'pipe' }
);
const files = fs.readdirSync(tempDir).filter((f: string) => f.endsWith('.jpg')).sort();
const images: IImageData[] = [];
for (let i = 0; i < files.length; i++) {
const file = files[i];
const imagePath = path.join(tempDir, file);
const imageData = fs.readFileSync(imagePath);
const dimensions = execSync(`identify -format "%w %h" "${imagePath}"`, { encoding: 'utf-8' }).trim();
const [width, height] = dimensions.split(' ').map(Number);
images.push({
base64: imageData.toString('base64'),
width,
height,
pageNum: i + 1,
});
}
return images;
} finally {
fs.rmSync(tempDir, { recursive: true, force: true });
}
}
/**
* Convert a batch of pages to markdown using Nanonets-OCR-s
*/
async function convertBatchToMarkdown(batch: IImageData[]): Promise<string> {
const startTime = Date.now();
const pageNums = batch.map(img => img.pageNum).join(', ');
const content: Array<{ type: string; image_url?: { url: string }; text?: string }> = [];
for (const img of batch) {
content.push({
type: 'image_url',
image_url: { url: `data:image/jpeg;base64,${img.base64}` },
});
}
const promptText = batch.length > 1
? `${NANONETS_OCR_PROMPT}\n\nPlease clearly separate each page's content with "--- PAGE N ---" markers, where N is the page number starting from ${batch[0].pageNum}.`
: NANONETS_OCR_PROMPT;
content.push({ type: 'text', text: promptText });
const response = await fetch(`${NANONETS_URL}/chat/completions`, {
method: 'POST',
headers: {
'Content-Type': 'application/json',
'Authorization': 'Bearer dummy',
},
body: JSON.stringify({
model: NANONETS_MODEL,
messages: [{
role: 'user',
content,
}],
max_tokens: 4096 * batch.length,
temperature: 0.0,
}),
signal: AbortSignal.timeout(600000),
});
const elapsed = ((Date.now() - startTime) / 1000).toFixed(1);
if (!response.ok) {
const errorText = await response.text();
throw new Error(`Nanonets API error: ${response.status} - ${errorText}`);
}
const data = await response.json();
let responseContent = (data.choices?.[0]?.message?.content || '').trim();
if (batch.length === 1 && !responseContent.includes('--- PAGE')) {
responseContent = `--- PAGE ${batch[0].pageNum} ---\n${responseContent}`;
}
console.log(` Pages [${pageNums}]: ${responseContent.length} chars (${elapsed}s)`);
return responseContent;
}
/**
* Convert all pages of a document to markdown using smart batching
*/
async function convertDocumentToMarkdown(images: IImageData[], docName: string): Promise<string> {
const batches = batchImages(images);
console.log(` [${docName}] Processing ${images.length} page(s) in ${batches.length} batch(es)...`);
const markdownParts: string[] = [];
for (let i = 0; i < batches.length; i++) {
const batch = batches[i];
const batchTokens = batch.reduce((sum, img) => sum + estimateVisualTokens(img.width, img.height), 0);
console.log(` Batch ${i + 1}: ${batch.length} page(s), ~${batchTokens} tokens`);
const markdown = await convertBatchToMarkdown(batch);
markdownParts.push(markdown);
}
const fullMarkdown = markdownParts.join('\n\n');
console.log(` [${docName}] Complete: ${fullMarkdown.length} chars total`);
return fullMarkdown;
}
/**
* Stop Nanonets container
*/
function stopNanonets(): void {
console.log(' [Docker] Stopping Nanonets container...');
try {
execSync('docker stop nanonets-test 2>/dev/null || true', { stdio: 'pipe' });
execSync('sleep 5', { stdio: 'pipe' });
console.log(' [Docker] Nanonets stopped');
} catch {
console.log(' [Docker] Nanonets was not running');
}
}
/**
* Ensure GPT-OSS 20B model is available
*/
async function ensureExtractionModel(): Promise<boolean> {
try {
const response = await fetch(`${OLLAMA_URL}/api/tags`);
if (response.ok) {
const data = await response.json();
const models = data.models || [];
if (models.some((m: { name: string }) => m.name === EXTRACTION_MODEL)) {
console.log(` [Ollama] Model available: ${EXTRACTION_MODEL}`);
return true;
}
}
} catch {
return false;
}
console.log(` [Ollama] Pulling ${EXTRACTION_MODEL}...`);
const pullResponse = await fetch(`${OLLAMA_URL}/api/pull`, {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({ name: EXTRACTION_MODEL, stream: false }),
});
return pullResponse.ok;
}
/**
* Parse amount from string (handles European format)
*/
function parseAmount(s: string | number | undefined): number {
if (s === undefined || s === null) return 0;
if (typeof s === 'number') return s;
const match = s.match(/([\d.,]+)/);
if (!match) return 0;
const numStr = match[1];
const normalized = numStr.includes(',') && numStr.indexOf(',') > numStr.lastIndexOf('.')
? numStr.replace(/\./g, '').replace(',', '.')
: numStr.replace(/,/g, '');
return parseFloat(normalized) || 0;
}
/**
* Extract invoice number - MINIMAL normalization for debugging
*/
function extractInvoiceNumber(s: string | undefined): string {
if (!s) return '';
// Only remove markdown formatting, preserve everything else
return s.replace(/\*\*/g, '').replace(/`/g, '').trim();
}
/**
* Extract date (YYYY-MM-DD) from response
*/
function extractDate(s: string | undefined): string {
if (!s) return '';
let clean = s.replace(/\*\*/g, '').replace(/`/g, '').trim();
const isoMatch = clean.match(/(\d{4}-\d{2}-\d{2})/);
if (isoMatch) return isoMatch[1];
const dmyMatch = clean.match(/(\d{1,2})[\/.](\d{1,2})[\/.](\d{4})/);
if (dmyMatch) {
return `${dmyMatch[3]}-${dmyMatch[2].padStart(2, '0')}-${dmyMatch[1].padStart(2, '0')}`;
}
return clean.replace(/[^\d-]/g, '').trim();
}
/**
* Extract currency
*/
function extractCurrency(s: string | undefined): string {
if (!s) return 'EUR';
const upper = s.toUpperCase();
if (upper.includes('EUR') || upper.includes('€')) return 'EUR';
if (upper.includes('USD') || upper.includes('$')) return 'USD';
if (upper.includes('GBP') || upper.includes('£')) return 'GBP';
return 'EUR';
}
/**
* Extract JSON from response
*/
function extractJsonFromResponse(response: string): Record<string, unknown> | null {
let cleanResponse = response.replace(/<think>[\s\S]*?<\/think>/g, '').trim();
const codeBlockMatch = cleanResponse.match(/```(?:json)?\s*([\s\S]*?)```/);
const jsonStr = codeBlockMatch ? codeBlockMatch[1].trim() : cleanResponse;
try {
return JSON.parse(jsonStr);
} catch {
const jsonMatch = jsonStr.match(/\{[\s\S]*\}/);
if (jsonMatch) {
try {
return JSON.parse(jsonMatch[0]);
} catch {
return null;
}
}
return null;
}
}
/**
* Parse JSON response into IInvoice
*/
function parseJsonToInvoice(response: string): IInvoice | null {
const parsed = extractJsonFromResponse(response);
if (!parsed) return null;
return {
invoice_number: extractInvoiceNumber(String(parsed.invoice_number || '')),
invoice_date: extractDate(String(parsed.invoice_date || '')),
vendor_name: String(parsed.vendor_name || '').replace(/\*\*/g, '').replace(/`/g, '').trim(),
currency: extractCurrency(String(parsed.currency || '')),
net_amount: parseAmount(parsed.net_amount as string | number),
vat_amount: parseAmount(parsed.vat_amount as string | number),
total_amount: parseAmount(parsed.total_amount as string | number),
};
}
/**
* Extract invoice from markdown using GPT-OSS 20B (streaming)
*/
async function extractInvoiceFromMarkdown(markdown: string, queryId: string): Promise<IInvoice | null> {
const startTime = Date.now();
const fullPrompt = JSON_EXTRACTION_PROMPT + markdown;
// Log exact prompt
console.log(`\n [${queryId}] ===== PROMPT =====`);
console.log(fullPrompt);
console.log(` [${queryId}] ===== END PROMPT (${fullPrompt.length} chars) =====\n`);
const response = await fetch(`${OLLAMA_URL}/api/chat`, {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({
model: EXTRACTION_MODEL,
messages: [
{ role: 'user', content: 'Hi there, how are you?' },
{ role: 'assistant', content: 'Good, how can I help you today?' },
{ role: 'user', content: fullPrompt },
],
stream: true,
}),
signal: AbortSignal.timeout(600000),
});
if (!response.ok) {
const elapsed = ((Date.now() - startTime) / 1000).toFixed(1);
console.log(` [${queryId}] ERROR: ${response.status} (${elapsed}s)`);
throw new Error(`Ollama API error: ${response.status}`);
}
// Stream the response
let content = '';
let thinkingContent = '';
let thinkingStarted = false;
let outputStarted = false;
const reader = response.body!.getReader();
const decoder = new TextDecoder();
try {
while (true) {
const { done, value } = await reader.read();
if (done) break;
const chunk = decoder.decode(value, { stream: true });
for (const line of chunk.split('\n').filter(l => l.trim())) {
try {
const json = JSON.parse(line);
const thinking = json.message?.thinking || '';
if (thinking) {
if (!thinkingStarted) {
process.stdout.write(` [${queryId}] THINKING: `);
thinkingStarted = true;
}
process.stdout.write(thinking);
thinkingContent += thinking;
}
const token = json.message?.content || '';
if (token) {
if (!outputStarted) {
if (thinkingStarted) process.stdout.write('\n');
process.stdout.write(` [${queryId}] OUTPUT: `);
outputStarted = true;
}
process.stdout.write(token);
content += token;
}
} catch {
// Ignore parse errors for partial chunks
}
}
}
} finally {
if (thinkingStarted || outputStarted) process.stdout.write('\n');
}
const elapsed = ((Date.now() - startTime) / 1000).toFixed(1);
console.log(` [${queryId}] Done: ${thinkingContent.length} thinking chars, ${content.length} output chars (${elapsed}s)`);
// Log raw response for debugging
console.log(` [${queryId}] RAW RESPONSE: ${content}`);
return parseJsonToInvoice(content);
}
/**
* Extract invoice (single pass)
*/
async function extractInvoice(markdown: string, docName: string): Promise<IInvoice> {
console.log(` [${docName}] Extracting...`);
const invoice = await extractInvoiceFromMarkdown(markdown, docName);
if (!invoice) {
return {
invoice_number: '',
invoice_date: '',
vendor_name: '',
currency: 'EUR',
net_amount: 0,
vat_amount: 0,
total_amount: 0,
};
}
console.log(` [${docName}] Extracted: ${JSON.stringify(invoice, null, 2)}`);
return invoice;
}
/**
* Normalize date to YYYY-MM-DD
*/
function normalizeDate(dateStr: string | null): string {
if (!dateStr) return '';
if (/^\d{4}-\d{2}-\d{2}$/.test(dateStr)) return dateStr;
const monthMap: Record<string, string> = {
JAN: '01', FEB: '02', MAR: '03', APR: '04', MAY: '05', JUN: '06',
JUL: '07', AUG: '08', SEP: '09', OCT: '10', NOV: '11', DEC: '12',
};
let match = dateStr.match(/^(\d{1,2})-([A-Z]{3})-(\d{4})$/i);
if (match) {
return `${match[3]}-${monthMap[match[2].toUpperCase()] || '01'}-${match[1].padStart(2, '0')}`;
}
match = dateStr.match(/^(\d{1,2})[\/.](\d{1,2})[\/.](\d{4})$/);
if (match) {
return `${match[3]}-${match[2].padStart(2, '0')}-${match[1].padStart(2, '0')}`;
}
return dateStr;
}
/**
* Compare extracted invoice against expected - detailed output
*/
function compareInvoice(
extracted: IInvoice,
expected: IInvoice
): { match: boolean; errors: string[] } {
const errors: string[] = [];
// Invoice number comparison - exact match after whitespace normalization
const extNum = extracted.invoice_number?.trim() || '';
const expNum = expected.invoice_number?.trim() || '';
if (extNum.toLowerCase() !== expNum.toLowerCase()) {
errors.push(`invoice_number: expected "${expected.invoice_number}", got "${extracted.invoice_number}"`);
}
if (normalizeDate(extracted.invoice_date) !== normalizeDate(expected.invoice_date)) {
errors.push(`invoice_date: expected "${expected.invoice_date}", got "${extracted.invoice_date}"`);
}
if (Math.abs(extracted.total_amount - expected.total_amount) > 0.02) {
errors.push(`total_amount: expected ${expected.total_amount}, got ${extracted.total_amount}`);
}
if (extracted.currency?.toUpperCase() !== expected.currency?.toUpperCase()) {
errors.push(`currency: expected "${expected.currency}", got "${extracted.currency}"`);
}
return { match: errors.length === 0, errors };
}
/**
* Find test cases for failed invoices only
*/
function findTestCases(): ITestCase[] {
const testDir = path.join(process.cwd(), '.nogit/invoices');
if (!fs.existsSync(testDir)) return [];
const files = fs.readdirSync(testDir);
const testCases: ITestCase[] = [];
for (const invoiceName of FAILED_INVOICES) {
const pdfFile = `${invoiceName}.pdf`;
const jsonFile = `${invoiceName}.json`;
if (files.includes(pdfFile) && files.includes(jsonFile)) {
testCases.push({
name: invoiceName,
pdfPath: path.join(testDir, pdfFile),
jsonPath: path.join(testDir, jsonFile),
});
} else {
console.warn(`Warning: Missing files for ${invoiceName}`);
}
}
return testCases;
}
// ============ TESTS ============
const testCases = findTestCases();
console.log(`\n========================================`);
console.log(` FAILED INVOICES DEBUG TEST`);
console.log(`========================================`);
console.log(` Testing ${testCases.length} failed invoices:`);
for (const tc of testCases) {
console.log(` - ${tc.name}`);
}
console.log(`========================================\n`);
// Ensure temp directory exists
if (!fs.existsSync(TEMP_MD_DIR)) {
fs.mkdirSync(TEMP_MD_DIR, { recursive: true });
}
// -------- STAGE 1: OCR with Nanonets --------
tap.test('Stage 1: Setup Nanonets', async () => {
console.log('\n========== STAGE 1: Nanonets OCR ==========\n');
const ok = await ensureNanonetsOcr();
expect(ok).toBeTrue();
});
tap.test('Stage 1: Convert failed invoices to markdown', async () => {
console.log('\n Converting failed invoice PDFs to markdown with Nanonets-OCR-s...\n');
for (const tc of testCases) {
console.log(`\n === ${tc.name} ===`);
const images = convertPdfToImages(tc.pdfPath);
console.log(` Pages: ${images.length}`);
const markdown = await convertDocumentToMarkdown(images, tc.name);
const mdPath = path.join(TEMP_MD_DIR, `${tc.name}.md`);
fs.writeFileSync(mdPath, markdown);
tc.markdownPath = mdPath;
console.log(` Saved: ${mdPath}`);
// Also save to .nogit for inspection
const debugMdPath = path.join(process.cwd(), '.nogit/invoices', `${tc.name}.debug.md`);
fs.writeFileSync(debugMdPath, markdown);
console.log(` Debug copy: ${debugMdPath}`);
}
console.log('\n Stage 1 complete: All failed invoices converted to markdown\n');
});
tap.test('Stage 1: Stop Nanonets', async () => {
stopNanonets();
await new Promise(resolve => setTimeout(resolve, 3000));
expect(isContainerRunning('nanonets-test')).toBeFalse();
});
// -------- STAGE 2: Extraction with GPT-OSS 20B --------
tap.test('Stage 2: Setup Ollama + GPT-OSS 20B', async () => {
console.log('\n========== STAGE 2: GPT-OSS 20B Extraction ==========\n');
const ollamaOk = await ensureMiniCpm();
expect(ollamaOk).toBeTrue();
const extractionOk = await ensureExtractionModel();
expect(extractionOk).toBeTrue();
});
let passedCount = 0;
let failedCount = 0;
for (const tc of testCases) {
tap.test(`Stage 2: Extract ${tc.name}`, async () => {
const expected: IInvoice = JSON.parse(fs.readFileSync(tc.jsonPath, 'utf-8'));
console.log(`\n ========================================`);
console.log(` === ${tc.name} ===`);
console.log(` ========================================`);
console.log(` EXPECTED:`);
console.log(` invoice_number: "${expected.invoice_number}"`);
console.log(` invoice_date: "${expected.invoice_date}"`);
console.log(` vendor_name: "${expected.vendor_name}"`);
console.log(` total_amount: ${expected.total_amount} ${expected.currency}`);
const startTime = Date.now();
const mdPath = path.join(TEMP_MD_DIR, `${tc.name}.md`);
if (!fs.existsSync(mdPath)) {
throw new Error(`Markdown not found: ${mdPath}. Run Stage 1 first.`);
}
const markdown = fs.readFileSync(mdPath, 'utf-8');
console.log(` Markdown: ${markdown.length} chars`);
const extracted = await extractInvoice(markdown, tc.name);
const elapsedMs = Date.now() - startTime;
console.log(`\n EXTRACTED:`);
console.log(` invoice_number: "${extracted.invoice_number}"`);
console.log(` invoice_date: "${extracted.invoice_date}"`);
console.log(` vendor_name: "${extracted.vendor_name}"`);
console.log(` total_amount: ${extracted.total_amount} ${extracted.currency}`);
const result = compareInvoice(extracted, expected);
if (result.match) {
passedCount++;
console.log(`\n Result: ✓ MATCH (${(elapsedMs / 1000).toFixed(1)}s)`);
} else {
failedCount++;
console.log(`\n Result: ✗ MISMATCH (${(elapsedMs / 1000).toFixed(1)}s)`);
console.log(` ERRORS:`);
result.errors.forEach(e => console.log(` - ${e}`));
}
// Don't fail the test - we're debugging
// expect(result.match).toBeTrue();
});
}
tap.test('Summary', async () => {
const totalInvoices = testCases.length;
const accuracy = totalInvoices > 0 ? (passedCount / totalInvoices) * 100 : 0;
console.log(`\n========================================`);
console.log(` Failed Invoices Debug Summary`);
console.log(`========================================`);
console.log(` Passed: ${passedCount}/${totalInvoices}`);
console.log(` Failed: ${failedCount}/${totalInvoices}`);
console.log(` Accuracy: ${accuracy.toFixed(1)}%`);
console.log(`========================================`);
console.log(` Markdown files saved to: ${TEMP_MD_DIR}`);
console.log(` Debug copies in: .nogit/invoices/*.debug.md`);
console.log(`========================================\n`);
// Don't cleanup temp files for debugging
console.log(` Keeping temp files for debugging.\n`);
});
export default tap.start();

View File

@@ -1,7 +1,7 @@
/**
* Invoice extraction using Nanonets-OCR-s + GPT-OSS 20B (sequential two-stage pipeline)
* Invoice extraction using Nanonets-OCR2-3B + GPT-OSS 20B (sequential two-stage pipeline)
*
* Stage 1: Nanonets-OCR-s converts ALL document pages to markdown (stop after completion)
* Stage 1: Nanonets-OCR2-3B converts ALL document pages to markdown (stop after completion)
* Stage 2: GPT-OSS 20B extracts structured JSON from saved markdown (after Nanonets stops)
*
* This approach avoids GPU contention by running services sequentially.
@@ -14,7 +14,7 @@ import * as os from 'os';
import { ensureNanonetsOcr, ensureMiniCpm, isContainerRunning } from './helpers/docker.js';
const NANONETS_URL = 'http://localhost:8000/v1';
const NANONETS_MODEL = 'nanonets/Nanonets-OCR-s';
const NANONETS_MODEL = 'nanonets/Nanonets-OCR2-3B';
const OLLAMA_URL = 'http://localhost:11434';
const EXTRACTION_MODEL = 'gpt-oss:20b';
@@ -92,28 +92,11 @@ function estimateVisualTokens(width: number, height: number): number {
}
/**
* Batch images to fit within context window
* Process images one page at a time for reliability
*/
function batchImages(images: IImageData[]): IImageData[][] {
const batches: IImageData[][] = [];
let currentBatch: IImageData[] = [];
let currentTokens = 0;
for (const img of images) {
const imgTokens = estimateVisualTokens(img.width, img.height);
if (currentTokens + imgTokens > MAX_VISUAL_TOKENS && currentBatch.length > 0) {
batches.push(currentBatch);
currentBatch = [img];
currentTokens = imgTokens;
} else {
currentBatch.push(img);
currentTokens += imgTokens;
}
}
if (currentBatch.length > 0) batches.push(currentBatch);
return batches;
// One page per batch for reliable processing
return images.map(img => [img]);
}
/**
@@ -194,6 +177,7 @@ async function convertBatchToMarkdown(batch: IImageData[]): Promise<string> {
max_tokens: 4096 * batch.length, // Scale output tokens with batch size
temperature: 0.0,
}),
signal: AbortSignal.timeout(600000), // 10 minute timeout for OCR
});
const elapsed = ((Date.now() - startTime) / 1000).toFixed(1);