This commit is contained in:
2026-01-16 16:21:44 +00:00
parent 3c5cf578a5
commit 15ac1fcf67
13 changed files with 873 additions and 805 deletions

View File

@@ -77,56 +77,73 @@ HEALTHCHECK --interval=30s --timeout=10s --start-period=60s --retries=3 \
CPU variant has longer `start-period` (120s) due to slower startup.
## PaddleOCR
## PaddleOCR-VL (Recommended)
### Overview
PaddleOCR is a standalone OCR service using PaddlePaddle's PP-OCRv4 model. It provides:
PaddleOCR-VL is a 0.9B parameter Vision-Language Model specifically optimized for document parsing. It replaces the older PP-Structure approach with native VLM understanding.
- Text detection and recognition
- Multi-language support
- FastAPI REST API
- GPU and CPU variants
**Key advantages over PP-Structure:**
- Native table understanding (no HTML parsing needed)
- 109 language support
- Better handling of complex multi-row tables
- Structured Markdown/JSON output
### Docker Images
| Tag | Description |
|-----|-------------|
| `paddleocr` | GPU variant (default) |
| `paddleocr-gpu` | GPU variant (alias) |
| `paddleocr-cpu` | CPU-only variant |
| `paddleocr-vl` | GPU variant using vLLM (recommended) |
| `paddleocr-vl-cpu` | CPU variant using transformers |
### API Endpoints
### API Endpoints (OpenAI-compatible)
| Endpoint | Method | Description |
|----------|--------|-------------|
| `/health` | GET | Health check with model info |
| `/ocr` | POST | OCR with base64 image (JSON body) |
| `/ocr/upload` | POST | OCR with file upload (multipart form) |
| `/v1/models` | GET | List available models |
| `/v1/chat/completions` | POST | OpenAI-compatible chat completions |
| `/ocr` | POST | Legacy OCR endpoint |
### Request/Response Format
**POST /ocr (JSON)**
**POST /v1/chat/completions (OpenAI-compatible)**
```json
{
"image": "<base64-encoded-image>",
"language": "en" // optional
"model": "paddleocr-vl",
"messages": [
{
"role": "user",
"content": [
{"type": "image_url", "image_url": {"url": "data:image/png;base64,..."}},
{"type": "text", "text": "Table Recognition:"}
]
}
],
"temperature": 0.0,
"max_tokens": 8192
}
```
**POST /ocr/upload (multipart)**
- `img`: image file
- `language`: optional language code
**Task Prompts:**
- `"OCR:"` - Text recognition
- `"Table Recognition:"` - Table extraction (returns markdown)
- `"Formula Recognition:"` - Formula extraction
- `"Chart Recognition:"` - Chart extraction
**Response**
```json
{
"success": true,
"results": [
"id": "chatcmpl-...",
"object": "chat.completion",
"choices": [
{
"text": "Invoice #12345",
"confidence": 0.98,
"box": [[x1,y1], [x2,y2], [x3,y3], [x4,y4]]
"index": 0,
"message": {
"role": "assistant",
"content": "| Date | Description | Amount |\n|---|---|---|\n| 2021-06-01 | GITLAB INC | -119.96 |"
},
"finish_reason": "stop"
}
]
}
@@ -136,19 +153,16 @@ PaddleOCR is a standalone OCR service using PaddlePaddle's PP-OCRv4 model. It pr
| Variable | Default | Description |
|----------|---------|-------------|
| `OCR_LANGUAGE` | `en` | Default language for OCR |
| `SERVER_PORT` | `5000` | Server port |
| `SERVER_HOST` | `0.0.0.0` | Server host |
| `CUDA_VISIBLE_DEVICES` | (auto) | Set to `-1` for CPU-only |
| `MODEL_NAME` | `PaddlePaddle/PaddleOCR-VL` | Model to load |
| `HOST` | `0.0.0.0` | Server host |
| `PORT` | `8000` | Server port |
| `MAX_BATCHED_TOKENS` | `16384` | vLLM max batch tokens |
| `GPU_MEMORY_UTILIZATION` | `0.9` | GPU memory usage (0-1) |
### Performance
- **GPU**: ~1-3 seconds per page
- **CPU**: ~10-30 seconds per page
### Supported Languages
Common language codes: `en` (English), `ch` (Chinese), `de` (German), `fr` (French), `es` (Spanish), `ja` (Japanese), `ko` (Korean)
- **GPU (vLLM)**: ~2-5 seconds per page
- **CPU**: ~30-60 seconds per page
---
@@ -193,6 +207,43 @@ npmci docker build
npmci docker push code.foss.global
```
## Multi-Pass Extraction Strategy
The bank statement extraction uses a dual-VLM consensus approach:
### Architecture: Dual-VLM Consensus
| VLM | Model | Purpose |
|-----|-------|---------|
| **MiniCPM-V 4.5** | 8B params | Primary visual extraction |
| **PaddleOCR-VL** | 0.9B params | Table-specialized extraction |
### Extraction Strategy
1. **Pass 1**: MiniCPM-V visual extraction (images → JSON)
2. **Pass 2**: PaddleOCR-VL table recognition (images → markdown → JSON)
3. **Consensus**: If Pass 1 == Pass 2 → Done (fast path)
4. **Pass 3+**: MiniCPM-V visual if no consensus
### Why Dual-VLM Works
- **Different architectures**: Two independent models cross-check each other
- **Specialized strengths**: PaddleOCR-VL optimized for tables, MiniCPM-V for general vision
- **No structure loss**: Both VLMs see the original images directly
- **Fast consensus**: Most documents complete in 2 passes when VLMs agree
### Comparison vs Old PP-Structure Approach
| Approach | Bank Statement Result | Issue |
|----------|----------------------|-------|
| MiniCPM-V Visual | 28 transactions ✓ | - |
| PP-Structure HTML + Visual | 13 transactions ✗ | HTML merged rows incorrectly |
| PaddleOCR-VL Table | 28 transactions ✓ | Native table understanding |
**Key insight**: PP-Structure's HTML output loses structure for complex tables. PaddleOCR-VL's native VLM approach maintains table integrity.
---
## Related Resources
- [Ollama Documentation](https://ollama.ai/docs)