This commit is contained in:
2026-01-16 16:21:44 +00:00
parent 3c5cf578a5
commit 15ac1fcf67
13 changed files with 873 additions and 805 deletions

View File

@@ -4,12 +4,16 @@ import * as path from 'path';
import { execSync } from 'child_process';
import * as os from 'os';
// Service URLs
const OLLAMA_URL = 'http://localhost:11434';
const MODEL = 'openbmb/minicpm-v4.5:q8_0';
const PADDLEOCR_URL = 'http://localhost:5000';
const PADDLEOCR_VL_URL = 'http://localhost:8000';
// Prompt for visual extraction (with images)
const VISUAL_EXTRACT_PROMPT = `/nothink
// Models
const MINICPM_MODEL = 'openbmb/minicpm-v4.5:q8_0';
const PADDLEOCR_VL_MODEL = 'paddleocr-vl';
// Prompt for MiniCPM-V visual extraction
const MINICPM_EXTRACT_PROMPT = `/nothink
You are a bank statement parser. Extract EVERY transaction from the table.
Read the Amount column carefully:
@@ -21,9 +25,12 @@ For each row output: {"date":"YYYY-MM-DD","counterparty":"NAME","amount":-21.47}
Do not skip any rows. Return ONLY the JSON array, no explanation.`;
// Prompt for OCR-only extraction (no images)
const OCR_EXTRACT_PROMPT = `/nothink
You are a bank statement parser. Extract EVERY transaction from the OCR text below.
// Prompt for PaddleOCR-VL table extraction
const PADDLEOCR_VL_TABLE_PROMPT = `Table Recognition:`;
// Post-processing prompt to convert PaddleOCR-VL output to JSON
const PADDLEOCR_VL_CONVERT_PROMPT = `/nothink
Convert the following bank statement table data to JSON.
Read the Amount values carefully:
- "- 21,47 €" means DEBIT, output as: -21.47
@@ -32,48 +39,12 @@ Read the Amount values carefully:
For each transaction output: {"date":"YYYY-MM-DD","counterparty":"NAME","amount":-21.47}
Do not skip any transactions. Return ONLY the JSON array, no explanation.`;
Return ONLY the JSON array, no explanation.
/**
* Build prompt for OCR-only extraction (no images)
*/
function buildOcrOnlyPrompt(ocrText: string): string {
// Limit OCR text to prevent context overflow
const maxOcrLength = 12000;
const truncatedOcr = ocrText.length > maxOcrLength
? ocrText.substring(0, maxOcrLength) + '\n... (truncated)'
: ocrText;
return `${OCR_EXTRACT_PROMPT}
OCR text from bank statement:
Table data:
---
${truncatedOcr}
{TABLE_DATA}
---`;
}
/**
* Extract OCR text from an image using PaddleOCR
*/
async function extractOcrText(imageBase64: string): Promise<string> {
try {
const response = await fetch(`${PADDLEOCR_URL}/ocr`, {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({ image: imageBase64 }),
});
if (!response.ok) return '';
const data = await response.json();
if (data.success && data.results) {
return data.results.map((r: { text: string }) => r.text).join('\n');
}
} catch {
// PaddleOCR unavailable
}
return '';
}
interface ITransaction {
date: string;
@@ -94,7 +65,7 @@ function convertPdfToImages(pdfPath: string): string[] {
{ stdio: 'pipe' }
);
const files = fs.readdirSync(tempDir).filter((f) => f.endsWith('.png')).sort();
const files = fs.readdirSync(tempDir).filter((f: string) => f.endsWith('.png')).sort();
const images: string[] = [];
for (const file of files) {
@@ -110,12 +81,12 @@ function convertPdfToImages(pdfPath: string): string[] {
}
/**
* Visual extraction pass (with images)
* Extract using MiniCPM-V via Ollama
*/
async function extractVisual(images: string[], passLabel: string): Promise<ITransaction[]> {
async function extractWithMiniCPM(images: string[], passLabel: string): Promise<ITransaction[]> {
const payload = {
model: MODEL,
prompt: VISUAL_EXTRACT_PROMPT,
model: MINICPM_MODEL,
prompt: MINICPM_EXTRACT_PROMPT,
images,
stream: true,
options: {
@@ -124,31 +95,6 @@ async function extractVisual(images: string[], passLabel: string): Promise<ITran
},
};
return doExtraction(payload, passLabel);
}
/**
* OCR-only extraction pass (no images, just text)
*/
async function extractFromOcr(ocrText: string, passLabel: string): Promise<ITransaction[]> {
const payload = {
model: MODEL,
prompt: buildOcrOnlyPrompt(ocrText),
stream: true,
options: {
num_predict: 16384,
temperature: 0.1,
},
};
return doExtraction(payload, passLabel);
}
/**
* Common extraction logic
*/
async function doExtraction(payload: object, passLabel: string): Promise<ITransaction[]> {
const response = await fetch(`${OLLAMA_URL}/api/generate`, {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
@@ -168,7 +114,7 @@ async function doExtraction(payload: object, passLabel: string): Promise<ITransa
let fullText = '';
let lineBuffer = '';
console.log(`[${passLabel}] Extracting...`);
console.log(`[${passLabel}] Extracting with MiniCPM-V...`);
while (true) {
const { done, value } = await reader.read();
@@ -184,7 +130,6 @@ async function doExtraction(payload: object, passLabel: string): Promise<ITransa
fullText += json.response;
lineBuffer += json.response;
// Print complete lines
if (lineBuffer.includes('\n')) {
const parts = lineBuffer.split('\n');
for (let i = 0; i < parts.length - 1; i++) {
@@ -214,6 +159,140 @@ async function doExtraction(payload: object, passLabel: string): Promise<ITransa
return JSON.parse(fullText.substring(startIdx, endIdx));
}
/**
* Extract table using PaddleOCR-VL via OpenAI-compatible API
*/
async function extractTableWithPaddleOCRVL(imageBase64: string): Promise<string> {
const payload = {
model: PADDLEOCR_VL_MODEL,
messages: [
{
role: 'user',
content: [
{
type: 'image_url',
image_url: { url: `data:image/png;base64,${imageBase64}` },
},
{
type: 'text',
text: PADDLEOCR_VL_TABLE_PROMPT,
},
],
},
],
temperature: 0.0,
max_tokens: 8192,
};
const response = await fetch(`${PADDLEOCR_VL_URL}/v1/chat/completions`, {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify(payload),
});
if (!response.ok) {
const text = await response.text();
throw new Error(`PaddleOCR-VL API error: ${response.status} - ${text}`);
}
const data = await response.json();
return data.choices?.[0]?.message?.content || '';
}
/**
* Convert PaddleOCR-VL table output to transactions using MiniCPM-V
*/
async function convertTableToTransactions(
tableData: string,
passLabel: string
): Promise<ITransaction[]> {
const prompt = PADDLEOCR_VL_CONVERT_PROMPT.replace('{TABLE_DATA}', tableData);
const payload = {
model: MINICPM_MODEL,
prompt,
stream: true,
options: {
num_predict: 16384,
temperature: 0.1,
},
};
const response = await fetch(`${OLLAMA_URL}/api/generate`, {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify(payload),
});
if (!response.ok) {
throw new Error(`Ollama API error: ${response.status}`);
}
const reader = response.body?.getReader();
if (!reader) {
throw new Error('No response body');
}
const decoder = new TextDecoder();
let fullText = '';
console.log(`[${passLabel}] Converting table data to JSON...`);
while (true) {
const { done, value } = await reader.read();
if (done) break;
const chunk = decoder.decode(value, { stream: true });
const lines = chunk.split('\n').filter((l) => l.trim());
for (const line of lines) {
try {
const json = JSON.parse(line);
if (json.response) {
fullText += json.response;
}
} catch {
// Skip invalid JSON lines
}
}
}
const startIdx = fullText.indexOf('[');
const endIdx = fullText.lastIndexOf(']') + 1;
if (startIdx < 0 || endIdx <= startIdx) {
throw new Error('No JSON array found in response');
}
return JSON.parse(fullText.substring(startIdx, endIdx));
}
/**
* Extract using PaddleOCR-VL (table recognition) + conversion
*/
async function extractWithPaddleOCRVL(
images: string[],
passLabel: string
): Promise<ITransaction[]> {
console.log(`[${passLabel}] Extracting tables with PaddleOCR-VL...`);
// Extract table data from each page
const tableDataParts: string[] = [];
for (let i = 0; i < images.length; i++) {
console.log(`[${passLabel}] Processing page ${i + 1}/${images.length}...`);
const tableData = await extractTableWithPaddleOCRVL(images[i]);
if (tableData.trim()) {
tableDataParts.push(`--- Page ${i + 1} ---\n${tableData}`);
}
}
const combinedTableData = tableDataParts.join('\n\n');
console.log(`[${passLabel}] Got ${combinedTableData.length} chars of table data`);
// Convert to transactions
return convertTableToTransactions(combinedTableData, passLabel);
}
/**
* Create a hash of transactions for comparison
*/
@@ -225,10 +304,31 @@ function hashTransactions(transactions: ITransaction[]): string {
}
/**
* Extract with majority voting - run until 2 passes match
* Strategy: Pass 1 = Visual (images), Pass 2 = OCR-only (text), Pass 3+ = Visual
* Check if PaddleOCR-VL service is available
*/
async function extractWithConsensus(images: string[], maxPasses: number = 5): Promise<ITransaction[]> {
async function isPaddleOCRVLAvailable(): Promise<boolean> {
try {
const response = await fetch(`${PADDLEOCR_VL_URL}/health`, {
method: 'GET',
signal: AbortSignal.timeout(5000),
});
return response.ok;
} catch {
return false;
}
}
/**
* Extract with dual-VLM consensus
* Strategy:
* Pass 1 = MiniCPM-V visual extraction
* Pass 2 = PaddleOCR-VL table recognition (if available)
* Pass 3+ = MiniCPM-V visual (fallback)
*/
async function extractWithConsensus(
images: string[],
maxPasses: number = 5
): Promise<ITransaction[]> {
const results: Array<{ transactions: ITransaction[]; hash: string }> = [];
const hashCounts: Map<string, number> = new Map();
@@ -236,59 +336,48 @@ async function extractWithConsensus(images: string[], maxPasses: number = 5): Pr
const hash = hashTransactions(transactions);
results.push({ transactions, hash });
hashCounts.set(hash, (hashCounts.get(hash) || 0) + 1);
console.log(`[${passLabel}] Got ${transactions.length} transactions (hash: ${hash.substring(0, 20)}...)`);
console.log(
`[${passLabel}] Got ${transactions.length} transactions (hash: ${hash.substring(0, 20)}...)`
);
return hashCounts.get(hash)!;
};
// Run Pass 1 (Visual) in parallel with OCR extraction
let ocrText = '';
const pass1Promise = extractVisual(images, 'Pass 1 Visual').catch((err) => ({ error: err }));
// Extract OCR from all pages
const ocrPromise = (async () => {
const ocrTexts: string[] = [];
for (let i = 0; i < images.length; i++) {
const pageOcr = await extractOcrText(images[i]);
if (pageOcr) {
ocrTexts.push(`--- Page ${i + 1} ---\n${pageOcr}`);
}
}
ocrText = ocrTexts.join('\n\n');
if (ocrText) {
console.log(`[OCR] Extracted text from ${ocrTexts.length} page(s)`);
}
return ocrText;
})();
// Wait for Pass 1 and OCR to complete
const [pass1Result] = await Promise.all([pass1Promise, ocrPromise]);
// Process Pass 1 result
if ('error' in pass1Result) {
console.log(`[Pass 1] Error: ${(pass1Result as { error: unknown }).error}`);
// Check if PaddleOCR-VL is available
const paddleOCRVLAvailable = await isPaddleOCRVLAvailable();
if (paddleOCRVLAvailable) {
console.log('[Setup] PaddleOCR-VL service available - using dual-VLM consensus');
} else {
addResult(pass1Result as ITransaction[], 'Pass 1 Visual');
console.log('[Setup] PaddleOCR-VL not available - using MiniCPM-V only');
}
// Pass 2: OCR-only (no images) - faster, different approach
if (ocrText) {
// Pass 1: MiniCPM-V visual extraction
try {
const pass1Result = await extractWithMiniCPM(images, 'Pass 1 MiniCPM-V');
addResult(pass1Result, 'Pass 1 MiniCPM-V');
} catch (err) {
console.log(`[Pass 1] Error: ${err}`);
}
// Pass 2: PaddleOCR-VL table recognition (if available)
if (paddleOCRVLAvailable) {
try {
const pass2Result = await extractFromOcr(ocrText, 'Pass 2 OCR-only');
const count = addResult(pass2Result, 'Pass 2 OCR-only');
const pass2Result = await extractWithPaddleOCRVL(images, 'Pass 2 PaddleOCR-VL');
const count = addResult(pass2Result, 'Pass 2 PaddleOCR-VL');
if (count >= 2) {
console.log(`[Consensus] Visual and OCR extractions match!`);
console.log('[Consensus] MiniCPM-V and PaddleOCR-VL extractions match!');
return pass2Result;
}
} catch (err) {
console.log(`[Pass 2 OCR-only] Error: ${err}`);
console.log(`[Pass 2 PaddleOCR-VL] Error: ${err}`);
}
}
// Continue with visual passes 3+ if no consensus yet
for (let pass = 3; pass <= maxPasses; pass++) {
// Pass 3+: Continue with MiniCPM-V visual passes
const startPass = paddleOCRVLAvailable ? 3 : 2;
for (let pass = startPass; pass <= maxPasses; pass++) {
try {
const transactions = await extractVisual(images, `Pass ${pass} Visual`);
const count = addResult(transactions, `Pass ${pass} Visual`);
const transactions = await extractWithMiniCPM(images, `Pass ${pass} MiniCPM-V`);
const count = addResult(transactions, `Pass ${pass} MiniCPM-V`);
if (count >= 2) {
console.log(`[Consensus] Reached after ${pass} passes`);
@@ -368,7 +457,7 @@ function findTestCases(): Array<{ name: string; pdfPath: string; jsonPath: strin
}
const files = fs.readdirSync(testDir);
const pdfFiles = files.filter((f) => f.endsWith('.pdf'));
const pdfFiles = files.filter((f: string) => f.endsWith('.pdf'));
const testCases: Array<{ name: string; pdfPath: string; jsonPath: string }> = [];
for (const pdf of pdfFiles) {
@@ -402,6 +491,13 @@ tap.test('should have MiniCPM-V 4.5 model loaded', async () => {
expect(modelNames.some((name: string) => name.includes('minicpm-v4.5'))).toBeTrue();
});
tap.test('should check PaddleOCR-VL availability', async () => {
const available = await isPaddleOCRVLAvailable();
console.log(`PaddleOCR-VL available: ${available}`);
// This test passes regardless - PaddleOCR-VL is optional
expect(true).toBeTrue();
});
// Dynamic test for each PDF/JSON pair
const testCases = findTestCases();
for (const testCase of testCases) {
@@ -416,7 +512,7 @@ for (const testCase of testCases) {
const images = convertPdfToImages(testCase.pdfPath);
console.log(`Converted: ${images.length} pages\n`);
// Extract with consensus voting
// Extract with dual-VLM consensus
const extracted = await extractWithConsensus(images);
console.log(`\nFinal: ${extracted.length} transactions`);