diff --git a/changelog.md b/changelog.md index e631d16..6fd5a68 100644 --- a/changelog.md +++ b/changelog.md @@ -1,5 +1,11 @@ # Changelog +## 2026-01-18 - 1.13.1 - fix(image_support_files) +remove PaddleOCR-VL server scripts from image_support_files + +- Deleted files: image_support_files/paddleocr_vl_full_server.py (approx. 636 lines) and image_support_files/paddleocr_vl_server.py (approx. 465 lines) +- Cleanup/removal of legacy PaddleOCR-VL FastAPI server implementations — may affect users who relied on these local scripts + ## 2026-01-18 - 1.13.0 - feat(tests) revamp tests and remove legacy Dockerfiles: adopt JSON/consensus workflows, switch MiniCPM model, and delete deprecated Docker/test variants diff --git a/image_support_files/paddleocr_vl_full_server.py b/image_support_files/paddleocr_vl_full_server.py deleted file mode 100644 index 5c8862d..0000000 --- a/image_support_files/paddleocr_vl_full_server.py +++ /dev/null @@ -1,636 +0,0 @@ -#!/usr/bin/env python3 -""" -PaddleOCR-VL Full Pipeline API Server (Transformers backend) - -Provides REST API for document parsing using: -- PP-DocLayoutV2 for layout detection -- PaddleOCR-VL (transformers) for recognition -- Structured JSON/Markdown output -""" - -import os -import io -import re -import base64 -import logging -import tempfile -import time -import json -from typing import Optional, List, Union -from pathlib import Path - -from fastapi import FastAPI, HTTPException, UploadFile, File, Form -from fastapi.responses import JSONResponse -from pydantic import BaseModel -from PIL import Image -import torch - -# Configure logging -logging.basicConfig( - level=logging.INFO, - format='%(asctime)s - %(name)s - %(levelname)s - %(message)s' -) -logger = logging.getLogger(__name__) - -# Environment configuration -SERVER_HOST = os.environ.get('SERVER_HOST', '0.0.0.0') -SERVER_PORT = int(os.environ.get('SERVER_PORT', '8000')) -MODEL_NAME = "PaddlePaddle/PaddleOCR-VL" - -# Device configuration -DEVICE = "cuda" if torch.cuda.is_available() else "cpu" -logger.info(f"Using device: {DEVICE}") - -# Task prompts -TASK_PROMPTS = { - "ocr": "OCR:", - "table": "Table Recognition:", - "formula": "Formula Recognition:", - "chart": "Chart Recognition:", -} - -# Initialize FastAPI app -app = FastAPI( - title="PaddleOCR-VL Full Pipeline Server", - description="Document parsing with PP-DocLayoutV2 + PaddleOCR-VL (transformers)", - version="1.0.0" -) - -# Global model instances -vl_model = None -vl_processor = None -layout_model = None - - -def load_vl_model(): - """Load the PaddleOCR-VL model for element recognition""" - global vl_model, vl_processor - - if vl_model is not None: - return - - logger.info(f"Loading PaddleOCR-VL model: {MODEL_NAME}") - from transformers import AutoModelForCausalLM, AutoProcessor - - vl_processor = AutoProcessor.from_pretrained(MODEL_NAME, trust_remote_code=True) - - if DEVICE == "cuda": - vl_model = AutoModelForCausalLM.from_pretrained( - MODEL_NAME, - trust_remote_code=True, - torch_dtype=torch.bfloat16, - ).to(DEVICE).eval() - else: - vl_model = AutoModelForCausalLM.from_pretrained( - MODEL_NAME, - trust_remote_code=True, - torch_dtype=torch.float32, - low_cpu_mem_usage=True, - ).eval() - - logger.info("PaddleOCR-VL model loaded successfully") - - -def load_layout_model(): - """Load the LayoutDetection model for layout detection""" - global layout_model - - if layout_model is not None: - return - - try: - logger.info("Loading LayoutDetection model (PP-DocLayout_plus-L)...") - from paddleocr import LayoutDetection - - layout_model = LayoutDetection() - logger.info("LayoutDetection model loaded successfully") - except Exception as e: - logger.warning(f"Could not load LayoutDetection: {e}") - logger.info("Falling back to VL-only mode (no layout detection)") - - -def recognize_element(image: Image.Image, task: str = "ocr") -> str: - """Recognize a single element using PaddleOCR-VL""" - load_vl_model() - - prompt = TASK_PROMPTS.get(task, TASK_PROMPTS["ocr"]) - - messages = [ - { - "role": "user", - "content": [ - {"type": "image", "image": image}, - {"type": "text", "text": prompt}, - ] - } - ] - - inputs = vl_processor.apply_chat_template( - messages, - tokenize=True, - add_generation_prompt=True, - return_dict=True, - return_tensors="pt" - ) - - if DEVICE == "cuda": - inputs = {k: v.to(DEVICE) for k, v in inputs.items()} - - with torch.inference_mode(): - outputs = vl_model.generate( - **inputs, - max_new_tokens=4096, - do_sample=False, - use_cache=True - ) - - response = vl_processor.batch_decode(outputs, skip_special_tokens=True)[0] - - # Extract only the assistant's response content - # The response format is: "User: \nAssistant: " - # We want to extract just the content after "Assistant:" - if "Assistant:" in response: - parts = response.split("Assistant:") - if len(parts) > 1: - response = parts[-1].strip() - elif "assistant:" in response.lower(): - # Case-insensitive fallback - import re - match = re.split(r'[Aa]ssistant:', response) - if len(match) > 1: - response = match[-1].strip() - - return response - - -def detect_layout(image: Image.Image) -> List[dict]: - """Detect layout regions in the image""" - load_layout_model() - - if layout_model is None: - # No layout model - return a single region covering the whole image - return [{ - "type": "text", - "bbox": [0, 0, image.width, image.height], - "score": 1.0 - }] - - # Save image to temp file - with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp: - image.save(tmp.name, "PNG") - tmp_path = tmp.name - - try: - results = layout_model.predict(tmp_path) - regions = [] - - for res in results: - # LayoutDetection returns boxes in 'boxes' key - for box in res.get("boxes", []): - coord = box.get("coordinate", [0, 0, image.width, image.height]) - # Convert numpy floats to regular floats - bbox = [float(c) for c in coord] - regions.append({ - "type": box.get("label", "text"), - "bbox": bbox, - "score": float(box.get("score", 1.0)) - }) - - # Sort regions by vertical position (top to bottom) - regions.sort(key=lambda r: r["bbox"][1]) - - return regions if regions else [{ - "type": "text", - "bbox": [0, 0, image.width, image.height], - "score": 1.0 - }] - - finally: - os.unlink(tmp_path) - - -def process_document(image: Image.Image) -> dict: - """Process a document through the full pipeline""" - logger.info(f"Processing document: {image.size}") - - # Step 1: Detect layout - regions = detect_layout(image) - logger.info(f"Detected {len(regions)} layout regions") - - # Step 2: Recognize each region - blocks = [] - for i, region in enumerate(regions): - region_type = region["type"].lower() - bbox = region["bbox"] - - # Crop region from image - x1, y1, x2, y2 = [int(c) for c in bbox] - region_image = image.crop((x1, y1, x2, y2)) - - # Determine task based on region type - if "table" in region_type: - task = "table" - elif "formula" in region_type or "math" in region_type: - task = "formula" - elif "chart" in region_type or "figure" in region_type: - task = "chart" - else: - task = "ocr" - - # Recognize the region - try: - content = recognize_element(region_image, task) - blocks.append({ - "index": i, - "type": region_type, - "bbox": bbox, - "content": content, - "task": task - }) - logger.info(f" Region {i} ({region_type}): {len(content)} chars") - except Exception as e: - logger.error(f" Region {i} error: {e}") - blocks.append({ - "index": i, - "type": region_type, - "bbox": bbox, - "content": "", - "error": str(e) - }) - - return {"blocks": blocks, "image_size": list(image.size)} - - -def result_to_markdown(result: dict) -> str: - """Convert result to Markdown format with structural hints for LLM processing. - - Adds positional and type-based formatting to help downstream LLMs - understand document structure: - - Tables are marked with **[TABLE]** prefix - - Header zone content (top 15%) is bolded - - Footer zone content (bottom 15%) is separated with horizontal rule - - Titles are formatted as # headers - - Figures/charts are marked with *[Figure: ...]* - """ - lines = [] - image_height = result.get("image_size", [0, 1000])[1] - - for block in result.get("blocks", []): - block_type = block.get("type", "text").lower() - content = block.get("content", "").strip() - bbox = block.get("bbox", []) - - if not content: - continue - - # Determine position zone (top 15%, middle, bottom 15%) - y_pos = bbox[1] if bbox and len(bbox) > 1 else 0 - y_end = bbox[3] if bbox and len(bbox) > 3 else y_pos - is_header_zone = y_pos < image_height * 0.15 - is_footer_zone = y_end > image_height * 0.85 - - # Format based on type and position - if "table" in block_type: - lines.append(f"\n**[TABLE]**\n{content}\n") - elif "title" in block_type: - lines.append(f"# {content}") - elif "formula" in block_type or "math" in block_type: - lines.append(f"\n$$\n{content}\n$$\n") - elif "figure" in block_type or "chart" in block_type: - lines.append(f"*[Figure: {content}]*") - elif is_header_zone: - lines.append(f"**{content}**") - elif is_footer_zone: - lines.append(f"---\n{content}") - else: - lines.append(content) - - return "\n\n".join(lines) - - -def parse_markdown_table(content: str) -> str: - """Convert table content to HTML table. - - Handles: - - PaddleOCR-VL format: cellcell (detected by tags) - - Pipe-delimited tables: | Header | Header | - - Separator rows: |---|---| - - Returns HTML structure - """ - content_stripped = content.strip() - - # Check for PaddleOCR-VL table format (, , , ) - if '' in content_stripped or '' in content_stripped: - return parse_paddleocr_table(content_stripped) - - lines = content_stripped.split('\n') - if not lines: - return f'
{content}
' - - # Check if it looks like a markdown table - if not any('|' in line for line in lines): - return f'
{content}
' - - html_rows = [] - is_header = True - - for line in lines: - line = line.strip() - if not line or line.startswith('|') == False and '|' not in line: - continue - - # Skip separator rows (|---|---|) - if re.match(r'^[\|\s\-:]+$', line): - is_header = False - continue - - # Parse cells - cells = [c.strip() for c in line.split('|')] - cells = [c for c in cells if c] # Remove empty from edges - - if is_header: - row = '
' + ''.join(f'' for c in cells) + '' - html_rows.append(f'{row}') - is_header = False - else: - row = '' + ''.join(f'' for c in cells) + '' - html_rows.append(row) - - if html_rows: - # Wrap body rows in tbody - header = html_rows[0] if '' in html_rows[0] else '' - body_rows = [r for r in html_rows if '' not in r] - body = f'{"".join(body_rows)}' if body_rows else '' - return f'
{c}
{c}
{header}{body}
' - - return f'
{content}
' - - -def parse_paddleocr_table(content: str) -> str: - """Convert PaddleOCR-VL table format to HTML table. - - PaddleOCR-VL uses: - - = first cell in a row - - = subsequent cells - - = empty cell - - = row separator (newline) - - Example input: - Header1Header2Value1Value2 - """ - # Split into rows by - rows_raw = re.split(r'', content) - html_rows = [] - is_first_row = True - - for row_content in rows_raw: - row_content = row_content.strip() - if not row_content: - continue - - # Extract cells: split by , , or - # Each cell is the text between these markers - cells = [] - - # Pattern to match cell markers and capture content - # Content is everything between markers - parts = re.split(r'||', row_content) - for part in parts: - part = part.strip() - if part: - cells.append(part) - - if not cells: - continue - - # First row is header - if is_first_row: - row_html = '' + ''.join(f'{c}' for c in cells) + '' - html_rows.append(f'{row_html}') - is_first_row = False - else: - row_html = '' + ''.join(f'{c}' for c in cells) + '' - html_rows.append(row_html) - - if html_rows: - header = html_rows[0] if '' in html_rows[0] else '' - body_rows = [r for r in html_rows if '' not in r] - body = f'{"".join(body_rows)}' if body_rows else '' - return f'{header}{body}
' - - return f'
{content}
' - - -def result_to_html(result: dict) -> str: - """Convert result to semantic HTML for optimal LLM processing. - - Uses semantic HTML5 tags with position metadata as data-* attributes. - Markdown tables are converted to proper HTML tags for - unambiguous parsing by downstream LLMs. - """ - parts = [] - image_height = result.get("image_size", [0, 1000])[1] - - parts.append('') - - for block in result.get("blocks", []): - block_type = block.get("type", "text").lower() - content = block.get("content", "").strip() - bbox = block.get("bbox", []) - - if not content: - continue - - # Position metadata - y_pos = bbox[1] / image_height if bbox and len(bbox) > 1 else 0 - data_attrs = f'data-type="{block_type}" data-y="{y_pos:.2f}"' - - # Format based on type - if "table" in block_type: - table_html = parse_markdown_table(content) - parts.append(f'
{table_html}
') - elif "title" in block_type: - parts.append(f'

{content}

') - elif "formula" in block_type or "math" in block_type: - parts.append(f'
{content}
') - elif "figure" in block_type or "chart" in block_type: - parts.append(f'
{content}
') - elif y_pos < 0.15: - parts.append(f'
{content}
') - elif y_pos > 0.85: - parts.append(f'
{content}
') - else: - parts.append(f'

{content}

') - - parts.append('') - return '\n'.join(parts) - - -# Request/Response models -class ParseRequest(BaseModel): - image: str # base64 encoded image - output_format: Optional[str] = "json" - - -class ParseResponse(BaseModel): - success: bool - format: str - result: Union[dict, str] - processing_time: float - error: Optional[str] = None - - -def decode_image(image_source: str) -> Image.Image: - """Decode image from base64 or data URL""" - if image_source.startswith("data:"): - header, data = image_source.split(",", 1) - image_data = base64.b64decode(data) - else: - image_data = base64.b64decode(image_source) - - return Image.open(io.BytesIO(image_data)).convert("RGB") - - -@app.on_event("startup") -async def startup_event(): - """Pre-load models on startup""" - logger.info("Starting PaddleOCR-VL Full Pipeline Server...") - try: - load_vl_model() - load_layout_model() - logger.info("Models loaded successfully") - except Exception as e: - logger.error(f"Failed to pre-load models: {e}") - - -@app.get("/health") -async def health_check(): - """Health check endpoint""" - return { - "status": "healthy" if vl_model is not None else "loading", - "service": "PaddleOCR-VL Full Pipeline (Transformers)", - "device": DEVICE, - "vl_model_loaded": vl_model is not None, - "layout_model_loaded": layout_model is not None - } - - -@app.get("/formats") -async def supported_formats(): - """List supported output formats""" - return { - "output_formats": ["json", "markdown", "html"], - "image_formats": ["PNG", "JPEG", "WebP", "BMP", "GIF", "TIFF"], - "capabilities": [ - "Layout detection (PP-DocLayoutV2)", - "Text recognition (OCR)", - "Table recognition", - "Formula recognition (LaTeX)", - "Chart recognition", - "Multi-language support (109 languages)" - ] - } - - -@app.post("/parse", response_model=ParseResponse) -async def parse_document_endpoint(request: ParseRequest): - """Parse a document image and return structured output""" - try: - start_time = time.time() - - image = decode_image(request.image) - result = process_document(image) - - if request.output_format == "markdown": - markdown = result_to_markdown(result) - output = {"markdown": markdown} - elif request.output_format == "html": - html = result_to_html(result) - output = {"html": html} - else: - output = result - - elapsed = time.time() - start_time - logger.info(f"Processing complete in {elapsed:.2f}s") - - return ParseResponse( - success=True, - format=request.output_format, - result=output, - processing_time=elapsed - ) - - except Exception as e: - logger.error(f"Error processing document: {e}", exc_info=True) - return ParseResponse( - success=False, - format=request.output_format, - result={}, - processing_time=0, - error=str(e) - ) - - -@app.post("/v1/chat/completions") -async def chat_completions(request: dict): - """OpenAI-compatible chat completions endpoint""" - try: - messages = request.get("messages", []) - output_format = request.get("output_format", "json") - - # Find user message with image - image = None - for msg in reversed(messages): - if msg.get("role") == "user": - content = msg.get("content", []) - if isinstance(content, list): - for item in content: - if item.get("type") == "image_url": - url = item.get("image_url", {}).get("url", "") - image = decode_image(url) - break - break - - if image is None: - raise HTTPException(status_code=400, detail="No image provided") - - start_time = time.time() - result = process_document(image) - - if output_format == "markdown": - content = result_to_markdown(result) - elif output_format == "html": - content = result_to_html(result) - else: - content = json.dumps(result, ensure_ascii=False, indent=2) - - elapsed = time.time() - start_time - - return { - "id": f"chatcmpl-{int(time.time()*1000)}", - "object": "chat.completion", - "created": int(time.time()), - "model": "paddleocr-vl-full", - "choices": [{ - "index": 0, - "message": {"role": "assistant", "content": content}, - "finish_reason": "stop" - }], - "usage": { - "prompt_tokens": 100, - "completion_tokens": len(content) // 4, - "total_tokens": 100 + len(content) // 4 - }, - "processing_time": elapsed - } - - except HTTPException: - raise - except Exception as e: - logger.error(f"Error in chat completions: {e}", exc_info=True) - raise HTTPException(status_code=500, detail=str(e)) - - -if __name__ == "__main__": - import uvicorn - uvicorn.run(app, host=SERVER_HOST, port=SERVER_PORT) diff --git a/image_support_files/paddleocr_vl_server.py b/image_support_files/paddleocr_vl_server.py deleted file mode 100644 index 8a64b2b..0000000 --- a/image_support_files/paddleocr_vl_server.py +++ /dev/null @@ -1,465 +0,0 @@ -#!/usr/bin/env python3 -""" -PaddleOCR-VL FastAPI Server (CPU variant) -Provides OpenAI-compatible REST API for document parsing using PaddleOCR-VL -""" - -import os -import io -import base64 -import logging -import time -from typing import Optional, List, Any, Dict, Union - -from fastapi import FastAPI, HTTPException -from fastapi.responses import JSONResponse -from pydantic import BaseModel -import torch -from PIL import Image - -# Configure logging -logging.basicConfig( - level=logging.INFO, - format='%(asctime)s - %(name)s - %(levelname)s - %(message)s' -) -logger = logging.getLogger(__name__) - -# Environment configuration -SERVER_HOST = os.environ.get('SERVER_HOST', '0.0.0.0') -SERVER_PORT = int(os.environ.get('SERVER_PORT', '8000')) -MODEL_NAME = os.environ.get('MODEL_NAME', 'PaddlePaddle/PaddleOCR-VL') - -# Device configuration -DEVICE = "cuda" if torch.cuda.is_available() else "cpu" -logger.info(f"Using device: {DEVICE}") - -# Task prompts for PaddleOCR-VL -TASK_PROMPTS = { - "ocr": "OCR:", - "table": "Table Recognition:", - "formula": "Formula Recognition:", - "chart": "Chart Recognition:", -} - -# Initialize FastAPI app -app = FastAPI( - title="PaddleOCR-VL Server", - description="OpenAI-compatible REST API for document parsing using PaddleOCR-VL", - version="1.0.0" -) - -# Global model instances -model = None -processor = None - - -# Request/Response models (OpenAI-compatible) -class ImageUrl(BaseModel): - url: str - - -class ContentItem(BaseModel): - type: str - text: Optional[str] = None - image_url: Optional[ImageUrl] = None - - -class Message(BaseModel): - role: str - content: Union[str, List[ContentItem]] - - -class ChatCompletionRequest(BaseModel): - model: str = "paddleocr-vl" - messages: List[Message] - temperature: Optional[float] = 0.0 - max_tokens: Optional[int] = 4096 - - -class Choice(BaseModel): - index: int - message: Message - finish_reason: str - - -class Usage(BaseModel): - prompt_tokens: int - completion_tokens: int - total_tokens: int - - -class ChatCompletionResponse(BaseModel): - id: str - object: str = "chat.completion" - created: int - model: str - choices: List[Choice] - usage: Usage - - -class HealthResponse(BaseModel): - status: str - model: str - device: str - - -def load_model(): - """Load the PaddleOCR-VL model and processor""" - global model, processor - - if model is not None: - return - - logger.info(f"Loading PaddleOCR-VL model: {MODEL_NAME}") - - from transformers import AutoModelForCausalLM, AutoProcessor - - # Load processor - processor = AutoProcessor.from_pretrained(MODEL_NAME, trust_remote_code=True) - - # Load model with appropriate settings for CPU/GPU - if DEVICE == "cuda": - model = AutoModelForCausalLM.from_pretrained( - MODEL_NAME, - trust_remote_code=True, - torch_dtype=torch.bfloat16, - ).to(DEVICE).eval() - else: - # CPU mode - use float32 for compatibility - model = AutoModelForCausalLM.from_pretrained( - MODEL_NAME, - trust_remote_code=True, - torch_dtype=torch.float32, - low_cpu_mem_usage=True, - ).eval() - - logger.info("PaddleOCR-VL model loaded successfully") - - -def optimize_image_resolution(image: Image.Image, max_size: int = 2048, min_size: int = 1080) -> Image.Image: - """ - Optimize image resolution for PaddleOCR-VL. - - Best results are achieved with images in the 1080p-2K range. - - Images larger than max_size are scaled down - - Very small images are scaled up to min_size - """ - width, height = image.size - max_dim = max(width, height) - min_dim = min(width, height) - - # Scale down if too large (4K+ images often miss text) - if max_dim > max_size: - scale = max_size / max_dim - new_width = int(width * scale) - new_height = int(height * scale) - logger.info(f"Scaling down image from {width}x{height} to {new_width}x{new_height}") - image = image.resize((new_width, new_height), Image.Resampling.LANCZOS) - # Scale up if too small - elif max_dim < min_size and min_dim < min_size: - scale = min_size / max_dim - new_width = int(width * scale) - new_height = int(height * scale) - logger.info(f"Scaling up image from {width}x{height} to {new_width}x{new_height}") - image = image.resize((new_width, new_height), Image.Resampling.LANCZOS) - else: - logger.info(f"Image size {width}x{height} is optimal, no scaling needed") - - return image - - -def decode_image(image_source: str, optimize: bool = True) -> Image.Image: - """ - Decode image from various sources. - - Supported formats: - - Base64 data URL: data:image/png;base64,... or data:image/jpeg;base64,... - - HTTP/HTTPS URL: https://example.com/image.png - - Raw base64 string - - Local file path - - Supported image types: PNG, JPEG, WebP, BMP, GIF, TIFF - """ - image = None - - if image_source.startswith("data:"): - # Base64 encoded image with MIME type header - # Supports: data:image/png;base64,... data:image/jpeg;base64,... etc. - header, data = image_source.split(",", 1) - image_data = base64.b64decode(data) - image = Image.open(io.BytesIO(image_data)).convert("RGB") - logger.debug(f"Decoded base64 image with header: {header}") - elif image_source.startswith("http://") or image_source.startswith("https://"): - # URL - fetch image - import httpx - response = httpx.get(image_source, timeout=30.0) - response.raise_for_status() - image = Image.open(io.BytesIO(response.content)).convert("RGB") - logger.debug(f"Fetched image from URL: {image_source[:50]}...") - else: - # Assume it's a file path or raw base64 - try: - image_data = base64.b64decode(image_source) - image = Image.open(io.BytesIO(image_data)).convert("RGB") - logger.debug("Decoded raw base64 image") - except: - # Try as file path - image = Image.open(image_source).convert("RGB") - logger.debug(f"Loaded image from file: {image_source}") - - # Optimize resolution for best OCR results - if optimize: - image = optimize_image_resolution(image) - - return image - - -def extract_image_and_text(content: Union[str, List[ContentItem]]) -> tuple: - """Extract image and text prompt from message content""" - if isinstance(content, str): - return None, content - - image = None - text = "" - - for item in content: - if item.type == "image_url" and item.image_url: - image = decode_image(item.image_url.url) - elif item.type == "text" and item.text: - text = item.text - - return image, text - - -def generate_response(image: Image.Image, prompt: str, max_tokens: int = 4096) -> str: - """Generate response using PaddleOCR-VL""" - load_model() - - messages = [ - { - "role": "user", - "content": [ - {"type": "image", "image": image}, - {"type": "text", "text": prompt}, - ] - } - ] - - inputs = processor.apply_chat_template( - messages, - tokenize=True, - add_generation_prompt=True, - return_dict=True, - return_tensors="pt" - ) - - if DEVICE == "cuda": - inputs = {k: v.to(DEVICE) for k, v in inputs.items()} - - with torch.inference_mode(): - outputs = model.generate( - **inputs, - max_new_tokens=max_tokens, - do_sample=False, - use_cache=True - ) - - response = processor.batch_decode(outputs, skip_special_tokens=True)[0] - - # Extract the assistant's response (after the prompt) - if "assistant" in response.lower(): - parts = response.split("assistant") - if len(parts) > 1: - response = parts[-1].strip() - - return response - - -@app.on_event("startup") -async def startup_event(): - """Pre-load the model on startup""" - logger.info("Pre-loading PaddleOCR-VL model...") - try: - load_model() - logger.info("Model pre-loaded successfully") - except Exception as e: - logger.error(f"Failed to pre-load model: {e}") - # Don't fail startup - model will be loaded on first request - - -@app.get("/health", response_model=HealthResponse) -async def health_check(): - """Health check endpoint""" - return HealthResponse( - status="healthy" if model is not None else "loading", - model=MODEL_NAME, - device=DEVICE - ) - - -@app.get("/formats") -async def supported_formats(): - """List supported image formats and input methods""" - return { - "image_formats": { - "supported": ["PNG", "JPEG", "WebP", "BMP", "GIF", "TIFF"], - "recommended": ["PNG", "JPEG"], - "mime_types": [ - "image/png", - "image/jpeg", - "image/webp", - "image/bmp", - "image/gif", - "image/tiff" - ] - }, - "input_methods": { - "base64_data_url": { - "description": "Base64 encoded image with MIME type header", - "example": "..." - }, - "http_url": { - "description": "Direct HTTP/HTTPS URL to image", - "example": "https://example.com/image.png" - }, - "raw_base64": { - "description": "Raw base64 string without header", - "example": "iVBORw0KGgo..." - } - }, - "resolution": { - "optimal_range": "1080p to 2K (1080-2048 pixels on longest side)", - "auto_scaling": True, - "note": "Images are automatically scaled to optimal range. 4K+ images are scaled down for better accuracy." - }, - "task_prompts": TASK_PROMPTS - } - - -@app.get("/v1/models") -async def list_models(): - """List available models (OpenAI-compatible)""" - return { - "object": "list", - "data": [ - { - "id": "paddleocr-vl", - "object": "model", - "created": int(time.time()), - "owned_by": "paddlepaddle" - } - ] - } - - -@app.post("/v1/chat/completions", response_model=ChatCompletionResponse) -async def chat_completions(request: ChatCompletionRequest): - """ - OpenAI-compatible chat completions endpoint for PaddleOCR-VL - - Supports tasks: - - "OCR:" - Text recognition - - "Table Recognition:" - Table extraction - - "Formula Recognition:" - Formula extraction - - "Chart Recognition:" - Chart extraction - """ - try: - # Get the last user message - user_message = None - for msg in reversed(request.messages): - if msg.role == "user": - user_message = msg - break - - if not user_message: - raise HTTPException(status_code=400, detail="No user message found") - - # Extract image and prompt - image, prompt = extract_image_and_text(user_message.content) - - if image is None: - raise HTTPException(status_code=400, detail="No image provided in message") - - # Default to OCR if no specific prompt - if not prompt or prompt.strip() == "": - prompt = "OCR:" - - logger.info(f"Processing request with prompt: {prompt[:50]}...") - - # Generate response - start_time = time.time() - response_text = generate_response(image, prompt, request.max_tokens or 4096) - elapsed = time.time() - start_time - - logger.info(f"Generated response in {elapsed:.2f}s ({len(response_text)} chars)") - - # Build OpenAI-compatible response - return ChatCompletionResponse( - id=f"chatcmpl-{int(time.time()*1000)}", - created=int(time.time()), - model=request.model, - choices=[ - Choice( - index=0, - message=Message(role="assistant", content=response_text), - finish_reason="stop" - ) - ], - usage=Usage( - prompt_tokens=100, # Approximate - completion_tokens=len(response_text) // 4, - total_tokens=100 + len(response_text) // 4 - ) - ) - - except HTTPException: - raise - except Exception as e: - logger.error(f"Error processing request: {e}") - raise HTTPException(status_code=500, detail=str(e)) - - -# Legacy endpoint for compatibility with old PaddleOCR API -class LegacyOCRRequest(BaseModel): - image: str - task: Optional[str] = "ocr" - - -class LegacyOCRResponse(BaseModel): - success: bool - result: str - task: str - error: Optional[str] = None - - -@app.post("/ocr", response_model=LegacyOCRResponse) -async def legacy_ocr(request: LegacyOCRRequest): - """ - Legacy OCR endpoint for backwards compatibility - - Tasks: ocr, table, formula, chart - """ - try: - image = decode_image(request.image) - prompt = TASK_PROMPTS.get(request.task, TASK_PROMPTS["ocr"]) - - result = generate_response(image, prompt) - - return LegacyOCRResponse( - success=True, - result=result, - task=request.task - ) - except Exception as e: - logger.error(f"Legacy OCR error: {e}") - return LegacyOCRResponse( - success=False, - result="", - task=request.task, - error=str(e) - ) - - -if __name__ == "__main__": - import uvicorn - uvicorn.run(app, host=SERVER_HOST, port=SERVER_PORT)