feat(ocr): add PaddleOCR GPU Docker image and FastAPI OCR server with entrypoint; implement OCR endpoints and consensus extraction testing
This commit is contained in:
51
Dockerfile_paddleocr
Normal file
51
Dockerfile_paddleocr
Normal file
@@ -0,0 +1,51 @@
|
||||
# PaddleOCR GPU Variant
|
||||
# OCR processing with NVIDIA GPU support using PaddlePaddle
|
||||
FROM paddlepaddle/paddle:3.0.0-gpu-cuda11.8-cudnn8.9-trt8.6
|
||||
|
||||
LABEL maintainer="Task Venture Capital GmbH <hello@task.vc>"
|
||||
LABEL description="PaddleOCR PP-OCRv4 - GPU optimized"
|
||||
LABEL org.opencontainers.image.source="https://code.foss.global/host.today/ht-docker-ai"
|
||||
|
||||
# Environment configuration
|
||||
ENV OCR_LANGUAGE="en"
|
||||
ENV SERVER_PORT="5000"
|
||||
ENV SERVER_HOST="0.0.0.0"
|
||||
ENV PYTHONUNBUFFERED=1
|
||||
|
||||
# Set working directory
|
||||
WORKDIR /app
|
||||
|
||||
# Install system dependencies
|
||||
RUN apt-get update && apt-get install -y --no-install-recommends \
|
||||
libgl1-mesa-glx \
|
||||
libglib2.0-0 \
|
||||
curl \
|
||||
&& rm -rf /var/lib/apt/lists/*
|
||||
|
||||
# Install Python dependencies
|
||||
RUN pip install --no-cache-dir \
|
||||
paddleocr \
|
||||
fastapi \
|
||||
uvicorn[standard] \
|
||||
python-multipart \
|
||||
opencv-python-headless \
|
||||
pillow
|
||||
|
||||
# Copy server files
|
||||
COPY image_support_files/paddleocr-server.py /app/paddleocr-server.py
|
||||
COPY image_support_files/paddleocr-entrypoint.sh /usr/local/bin/paddleocr-entrypoint.sh
|
||||
RUN chmod +x /usr/local/bin/paddleocr-entrypoint.sh
|
||||
|
||||
# Pre-download OCR models during build (PP-OCRv4)
|
||||
RUN python -c "from paddleocr import PaddleOCR; \
|
||||
ocr = PaddleOCR(use_angle_cls=True, lang='en', use_gpu=False, show_log=True); \
|
||||
print('English model downloaded')"
|
||||
|
||||
# Expose API port
|
||||
EXPOSE 5000
|
||||
|
||||
# Health check
|
||||
HEALTHCHECK --interval=30s --timeout=10s --start-period=60s --retries=3 \
|
||||
CMD curl -f http://localhost:5000/health || exit 1
|
||||
|
||||
ENTRYPOINT ["/usr/local/bin/paddleocr-entrypoint.sh"]
|
||||
54
Dockerfile_paddleocr_cpu
Normal file
54
Dockerfile_paddleocr_cpu
Normal file
@@ -0,0 +1,54 @@
|
||||
# PaddleOCR CPU Variant
|
||||
# OCR processing optimized for CPU-only inference
|
||||
FROM python:3.10-slim
|
||||
|
||||
LABEL maintainer="Task Venture Capital GmbH <hello@task.vc>"
|
||||
LABEL description="PaddleOCR PP-OCRv4 - CPU optimized"
|
||||
LABEL org.opencontainers.image.source="https://code.foss.global/host.today/ht-docker-ai"
|
||||
|
||||
# Environment configuration for CPU-only mode
|
||||
ENV OCR_LANGUAGE="en"
|
||||
ENV SERVER_PORT="5000"
|
||||
ENV SERVER_HOST="0.0.0.0"
|
||||
ENV PYTHONUNBUFFERED=1
|
||||
# Disable GPU usage for CPU-only variant
|
||||
ENV CUDA_VISIBLE_DEVICES="-1"
|
||||
|
||||
# Set working directory
|
||||
WORKDIR /app
|
||||
|
||||
# Install system dependencies
|
||||
RUN apt-get update && apt-get install -y --no-install-recommends \
|
||||
libgl1-mesa-glx \
|
||||
libglib2.0-0 \
|
||||
curl \
|
||||
&& rm -rf /var/lib/apt/lists/*
|
||||
|
||||
# Install Python dependencies (CPU version of PaddlePaddle)
|
||||
RUN pip install --no-cache-dir \
|
||||
paddlepaddle \
|
||||
paddleocr \
|
||||
fastapi \
|
||||
uvicorn[standard] \
|
||||
python-multipart \
|
||||
opencv-python-headless \
|
||||
pillow
|
||||
|
||||
# Copy server files
|
||||
COPY image_support_files/paddleocr-server.py /app/paddleocr-server.py
|
||||
COPY image_support_files/paddleocr-entrypoint.sh /usr/local/bin/paddleocr-entrypoint.sh
|
||||
RUN chmod +x /usr/local/bin/paddleocr-entrypoint.sh
|
||||
|
||||
# Pre-download OCR models during build (PP-OCRv4)
|
||||
RUN python -c "from paddleocr import PaddleOCR; \
|
||||
ocr = PaddleOCR(use_angle_cls=True, lang='en', use_gpu=False, show_log=True); \
|
||||
print('English model downloaded')"
|
||||
|
||||
# Expose API port
|
||||
EXPOSE 5000
|
||||
|
||||
# Health check (longer start-period for CPU variant)
|
||||
HEALTHCHECK --interval=30s --timeout=10s --start-period=120s --retries=3 \
|
||||
CMD curl -f http://localhost:5000/health || exit 1
|
||||
|
||||
ENTRYPOINT ["/usr/local/bin/paddleocr-entrypoint.sh"]
|
||||
16
changelog.md
Normal file
16
changelog.md
Normal file
@@ -0,0 +1,16 @@
|
||||
# Changelog
|
||||
|
||||
## 2026-01-16 - 1.1.0 - feat(ocr)
|
||||
add PaddleOCR GPU Docker image and FastAPI OCR server with entrypoint; implement OCR endpoints and consensus extraction testing
|
||||
|
||||
- Add Dockerfile_paddleocr for GPU-accelerated PaddleOCR image (pre-downloads PP-OCRv4 models, exposes port 5000, healthcheck, entrypoint)
|
||||
- Add image_support_files/paddleocr-server.py: FastAPI app providing /ocr (base64), /ocr/upload (file), and /health endpoints; model warm-up on startup; structured JSON responses and error handling
|
||||
- Add image_support_files/paddleocr-entrypoint.sh to configure environment, detect GPU/CPU mode, and launch uvicorn
|
||||
- Update test/test.node.ts to replace streaming extraction with a consensus-based extraction flow (multiple passes, hashing of results, majority voting) and improve logging/prompt text
|
||||
- Add test/test.invoices.ts: integration tests for invoice extraction that call PaddleOCR, build prompts with optional OCR text, run consensus extraction, and produce a summary report
|
||||
|
||||
## 2026-01-16 - 1.0.0 - initial release
|
||||
Initial project files added with two small follow-up updates.
|
||||
|
||||
- initial: base project commit.
|
||||
- update: two minor follow-up updates refining the initial commit.
|
||||
25
image_support_files/paddleocr-entrypoint.sh
Normal file
25
image_support_files/paddleocr-entrypoint.sh
Normal file
@@ -0,0 +1,25 @@
|
||||
#!/bin/bash
|
||||
set -e
|
||||
|
||||
# Configuration from environment
|
||||
OCR_LANGUAGE="${OCR_LANGUAGE:-en}"
|
||||
SERVER_PORT="${SERVER_PORT:-5000}"
|
||||
SERVER_HOST="${SERVER_HOST:-0.0.0.0}"
|
||||
|
||||
echo "Starting PaddleOCR Server..."
|
||||
echo " Language: ${OCR_LANGUAGE}"
|
||||
echo " Host: ${SERVER_HOST}"
|
||||
echo " Port: ${SERVER_PORT}"
|
||||
|
||||
# Check GPU availability
|
||||
if [ "${CUDA_VISIBLE_DEVICES}" = "-1" ]; then
|
||||
echo " GPU: Disabled (CPU mode)"
|
||||
else
|
||||
echo " GPU: Enabled"
|
||||
fi
|
||||
|
||||
# Start the FastAPI server with uvicorn
|
||||
exec python -m uvicorn paddleocr-server:app \
|
||||
--host "${SERVER_HOST}" \
|
||||
--port "${SERVER_PORT}" \
|
||||
--workers 1
|
||||
258
image_support_files/paddleocr-server.py
Normal file
258
image_support_files/paddleocr-server.py
Normal file
@@ -0,0 +1,258 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
PaddleOCR FastAPI Server
|
||||
Provides REST API for OCR operations using PaddleOCR
|
||||
"""
|
||||
|
||||
import os
|
||||
import io
|
||||
import base64
|
||||
import logging
|
||||
from typing import Optional, List, Any
|
||||
|
||||
from fastapi import FastAPI, File, UploadFile, Form, HTTPException
|
||||
from fastapi.responses import JSONResponse
|
||||
from pydantic import BaseModel
|
||||
import numpy as np
|
||||
from PIL import Image
|
||||
from paddleocr import PaddleOCR
|
||||
|
||||
# Configure logging
|
||||
logging.basicConfig(
|
||||
level=logging.INFO,
|
||||
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
||||
)
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Environment configuration
|
||||
OCR_LANGUAGE = os.environ.get('OCR_LANGUAGE', 'en')
|
||||
USE_GPU = os.environ.get('CUDA_VISIBLE_DEVICES', '') != '-1'
|
||||
|
||||
# Initialize FastAPI app
|
||||
app = FastAPI(
|
||||
title="PaddleOCR Server",
|
||||
description="REST API for OCR operations using PaddleOCR PP-OCRv4",
|
||||
version="1.0.0"
|
||||
)
|
||||
|
||||
# Global OCR instance
|
||||
ocr_instance: Optional[PaddleOCR] = None
|
||||
|
||||
|
||||
class OCRRequest(BaseModel):
|
||||
"""Request model for base64 image OCR"""
|
||||
image: str
|
||||
language: Optional[str] = None
|
||||
|
||||
|
||||
class BoundingBox(BaseModel):
|
||||
"""Bounding box for detected text"""
|
||||
points: List[List[float]]
|
||||
|
||||
|
||||
class OCRResult(BaseModel):
|
||||
"""Single OCR detection result"""
|
||||
text: str
|
||||
confidence: float
|
||||
box: List[List[float]]
|
||||
|
||||
|
||||
class OCRResponse(BaseModel):
|
||||
"""OCR response model"""
|
||||
success: bool
|
||||
results: List[OCRResult]
|
||||
error: Optional[str] = None
|
||||
|
||||
|
||||
class HealthResponse(BaseModel):
|
||||
"""Health check response"""
|
||||
status: str
|
||||
model: str
|
||||
language: str
|
||||
gpu_enabled: bool
|
||||
|
||||
|
||||
def get_ocr() -> PaddleOCR:
|
||||
"""Get or initialize the OCR instance"""
|
||||
global ocr_instance
|
||||
if ocr_instance is None:
|
||||
logger.info(f"Initializing PaddleOCR with language={OCR_LANGUAGE}, use_gpu={USE_GPU}")
|
||||
ocr_instance = PaddleOCR(
|
||||
use_angle_cls=True,
|
||||
lang=OCR_LANGUAGE,
|
||||
use_gpu=USE_GPU,
|
||||
show_log=False
|
||||
)
|
||||
logger.info("PaddleOCR initialized successfully")
|
||||
return ocr_instance
|
||||
|
||||
|
||||
def decode_base64_image(base64_string: str) -> np.ndarray:
|
||||
"""Decode base64 string to numpy array"""
|
||||
# Remove data URL prefix if present
|
||||
if ',' in base64_string:
|
||||
base64_string = base64_string.split(',')[1]
|
||||
|
||||
image_data = base64.b64decode(base64_string)
|
||||
image = Image.open(io.BytesIO(image_data))
|
||||
|
||||
# Convert to RGB if necessary
|
||||
if image.mode != 'RGB':
|
||||
image = image.convert('RGB')
|
||||
|
||||
return np.array(image)
|
||||
|
||||
|
||||
def process_ocr_result(result: Any) -> List[OCRResult]:
|
||||
"""Process PaddleOCR result into structured format"""
|
||||
results = []
|
||||
|
||||
if result is None or len(result) == 0:
|
||||
return results
|
||||
|
||||
# PaddleOCR returns list of results per image
|
||||
# Each result is a list of [box, (text, confidence)]
|
||||
for line in result[0] if result[0] else []:
|
||||
if line is None:
|
||||
continue
|
||||
|
||||
box = line[0] # [[x1,y1], [x2,y2], [x3,y3], [x4,y4]]
|
||||
text_info = line[1] # (text, confidence)
|
||||
|
||||
results.append(OCRResult(
|
||||
text=text_info[0],
|
||||
confidence=float(text_info[1]),
|
||||
box=[[float(p[0]), float(p[1])] for p in box]
|
||||
))
|
||||
|
||||
return results
|
||||
|
||||
|
||||
@app.on_event("startup")
|
||||
async def startup_event():
|
||||
"""Pre-warm the OCR model on startup"""
|
||||
logger.info("Pre-warming OCR model...")
|
||||
try:
|
||||
ocr = get_ocr()
|
||||
# Create a small test image to warm up the model
|
||||
test_image = np.zeros((100, 100, 3), dtype=np.uint8)
|
||||
test_image.fill(255) # White image
|
||||
ocr.ocr(test_image, cls=True)
|
||||
logger.info("OCR model pre-warmed successfully")
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to pre-warm OCR model: {e}")
|
||||
|
||||
|
||||
@app.get("/health", response_model=HealthResponse)
|
||||
async def health_check():
|
||||
"""Health check endpoint"""
|
||||
try:
|
||||
# Ensure OCR is initialized
|
||||
get_ocr()
|
||||
return HealthResponse(
|
||||
status="healthy",
|
||||
model="PP-OCRv4",
|
||||
language=OCR_LANGUAGE,
|
||||
gpu_enabled=USE_GPU
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"Health check failed: {e}")
|
||||
raise HTTPException(status_code=503, detail=str(e))
|
||||
|
||||
|
||||
@app.post("/ocr", response_model=OCRResponse)
|
||||
async def ocr_base64(request: OCRRequest):
|
||||
"""
|
||||
Perform OCR on a base64-encoded image
|
||||
|
||||
Args:
|
||||
request: OCRRequest with base64 image and optional language
|
||||
|
||||
Returns:
|
||||
OCRResponse with detected text, confidence scores, and bounding boxes
|
||||
"""
|
||||
try:
|
||||
# Decode image
|
||||
image = decode_base64_image(request.image)
|
||||
|
||||
# Get OCR instance (use request language if provided)
|
||||
ocr = get_ocr()
|
||||
|
||||
# If a different language is requested, create a new instance
|
||||
if request.language and request.language != OCR_LANGUAGE:
|
||||
logger.info(f"Creating OCR instance for language: {request.language}")
|
||||
temp_ocr = PaddleOCR(
|
||||
use_angle_cls=True,
|
||||
lang=request.language,
|
||||
use_gpu=USE_GPU,
|
||||
show_log=False
|
||||
)
|
||||
result = temp_ocr.ocr(image, cls=True)
|
||||
else:
|
||||
result = ocr.ocr(image, cls=True)
|
||||
|
||||
# Process results
|
||||
results = process_ocr_result(result)
|
||||
|
||||
return OCRResponse(success=True, results=results)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"OCR processing failed: {e}")
|
||||
return OCRResponse(success=False, results=[], error=str(e))
|
||||
|
||||
|
||||
@app.post("/ocr/upload", response_model=OCRResponse)
|
||||
async def ocr_upload(
|
||||
img: UploadFile = File(...),
|
||||
language: Optional[str] = Form(None)
|
||||
):
|
||||
"""
|
||||
Perform OCR on an uploaded image file
|
||||
|
||||
Args:
|
||||
img: Uploaded image file
|
||||
language: Optional language code (default: env OCR_LANGUAGE)
|
||||
|
||||
Returns:
|
||||
OCRResponse with detected text, confidence scores, and bounding boxes
|
||||
"""
|
||||
try:
|
||||
# Read image
|
||||
contents = await img.read()
|
||||
image = Image.open(io.BytesIO(contents))
|
||||
|
||||
# Convert to RGB if necessary
|
||||
if image.mode != 'RGB':
|
||||
image = image.convert('RGB')
|
||||
|
||||
image_array = np.array(image)
|
||||
|
||||
# Get OCR instance
|
||||
ocr = get_ocr()
|
||||
|
||||
# If a different language is requested, create a new instance
|
||||
if language and language != OCR_LANGUAGE:
|
||||
logger.info(f"Creating OCR instance for language: {language}")
|
||||
temp_ocr = PaddleOCR(
|
||||
use_angle_cls=True,
|
||||
lang=language,
|
||||
use_gpu=USE_GPU,
|
||||
show_log=False
|
||||
)
|
||||
result = temp_ocr.ocr(image_array, cls=True)
|
||||
else:
|
||||
result = ocr.ocr(image_array, cls=True)
|
||||
|
||||
# Process results
|
||||
results = process_ocr_result(result)
|
||||
|
||||
return OCRResponse(success=True, results=results)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"OCR processing failed: {e}")
|
||||
return OCRResponse(success=False, results=[], error=str(e))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import uvicorn
|
||||
uvicorn.run(app, host="0.0.0.0", port=5000)
|
||||
377
test/test.invoices.ts
Normal file
377
test/test.invoices.ts
Normal file
@@ -0,0 +1,377 @@
|
||||
import { tap, expect } from '@git.zone/tstest/tapbundle';
|
||||
import * as fs from 'fs';
|
||||
import * as path from 'path';
|
||||
import { execSync } from 'child_process';
|
||||
import * as os from 'os';
|
||||
|
||||
const OLLAMA_URL = 'http://localhost:11434';
|
||||
const MODEL = 'openbmb/minicpm-v4.5:q8_0';
|
||||
const PADDLEOCR_URL = 'http://localhost:5000';
|
||||
|
||||
interface IInvoice {
|
||||
invoice_number: string;
|
||||
invoice_date: string;
|
||||
vendor_name: string;
|
||||
currency: string;
|
||||
net_amount: number;
|
||||
vat_amount: number;
|
||||
total_amount: number;
|
||||
}
|
||||
|
||||
/**
|
||||
* Extract OCR text from an image using PaddleOCR
|
||||
*/
|
||||
async function extractOcrText(imageBase64: string): Promise<string> {
|
||||
const formData = new FormData();
|
||||
const imageBuffer = Buffer.from(imageBase64, 'base64');
|
||||
const blob = new Blob([imageBuffer], { type: 'image/png' });
|
||||
formData.append('img', blob, 'image.png');
|
||||
formData.append('outtype', 'json');
|
||||
|
||||
try {
|
||||
const response = await fetch(`${PADDLEOCR_URL}/ocr`, {
|
||||
method: 'POST',
|
||||
body: formData,
|
||||
});
|
||||
|
||||
if (!response.ok) return '';
|
||||
|
||||
const data = await response.json();
|
||||
if (data.success && data.results) {
|
||||
return data.results.map((r: { text: string }) => r.text).join('\n');
|
||||
}
|
||||
} catch {
|
||||
// PaddleOCR unavailable
|
||||
}
|
||||
return '';
|
||||
}
|
||||
|
||||
/**
|
||||
* Build prompt with optional OCR text
|
||||
*/
|
||||
function buildPrompt(ocrText: string): string {
|
||||
const base = `You are an invoice parser. Extract the following fields from this invoice:
|
||||
|
||||
1. invoice_number: The invoice/receipt number
|
||||
2. invoice_date: Date in YYYY-MM-DD format
|
||||
3. vendor_name: Company that issued the invoice
|
||||
4. currency: EUR, USD, etc.
|
||||
5. net_amount: Amount before tax (if shown)
|
||||
6. vat_amount: Tax/VAT amount (if shown, 0 if reverse charge or no tax)
|
||||
7. total_amount: Final amount due
|
||||
|
||||
Return ONLY valid JSON in this exact format:
|
||||
{"invoice_number":"XXX","invoice_date":"YYYY-MM-DD","vendor_name":"Company Name","currency":"EUR","net_amount":100.00,"vat_amount":19.00,"total_amount":119.00}
|
||||
|
||||
If a field is not visible, use null for strings or 0 for numbers.
|
||||
No explanation, just the JSON object.`;
|
||||
|
||||
if (ocrText) {
|
||||
return `${base}
|
||||
|
||||
OCR text extracted from the invoice:
|
||||
---
|
||||
${ocrText}
|
||||
---
|
||||
|
||||
Cross-reference the image with the OCR text above for accuracy.`;
|
||||
}
|
||||
return base;
|
||||
}
|
||||
|
||||
/**
|
||||
* Convert PDF to PNG images using ImageMagick
|
||||
*/
|
||||
function convertPdfToImages(pdfPath: string): string[] {
|
||||
const tempDir = fs.mkdtempSync(path.join(os.tmpdir(), 'pdf-convert-'));
|
||||
const outputPattern = path.join(tempDir, 'page-%d.png');
|
||||
|
||||
try {
|
||||
execSync(
|
||||
`convert -density 200 -quality 90 "${pdfPath}" -background white -alpha remove "${outputPattern}"`,
|
||||
{ stdio: 'pipe' }
|
||||
);
|
||||
|
||||
const files = fs.readdirSync(tempDir).filter((f) => f.endsWith('.png')).sort();
|
||||
const images: string[] = [];
|
||||
|
||||
for (const file of files) {
|
||||
const imagePath = path.join(tempDir, file);
|
||||
const imageData = fs.readFileSync(imagePath);
|
||||
images.push(imageData.toString('base64'));
|
||||
}
|
||||
|
||||
return images;
|
||||
} finally {
|
||||
fs.rmSync(tempDir, { recursive: true, force: true });
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Single extraction pass
|
||||
*/
|
||||
async function extractOnce(images: string[], passNum: number, ocrText: string = ''): Promise<IInvoice> {
|
||||
const payload = {
|
||||
model: MODEL,
|
||||
prompt: buildPrompt(ocrText),
|
||||
images,
|
||||
stream: true,
|
||||
options: {
|
||||
num_predict: 2048,
|
||||
temperature: 0.1,
|
||||
},
|
||||
};
|
||||
|
||||
const response = await fetch(`${OLLAMA_URL}/api/generate`, {
|
||||
method: 'POST',
|
||||
headers: { 'Content-Type': 'application/json' },
|
||||
body: JSON.stringify(payload),
|
||||
});
|
||||
|
||||
if (!response.ok) {
|
||||
throw new Error(`Ollama API error: ${response.status}`);
|
||||
}
|
||||
|
||||
const reader = response.body?.getReader();
|
||||
if (!reader) {
|
||||
throw new Error('No response body');
|
||||
}
|
||||
|
||||
const decoder = new TextDecoder();
|
||||
let fullText = '';
|
||||
|
||||
while (true) {
|
||||
const { done, value } = await reader.read();
|
||||
if (done) break;
|
||||
|
||||
const chunk = decoder.decode(value, { stream: true });
|
||||
const lines = chunk.split('\n').filter((l) => l.trim());
|
||||
|
||||
for (const line of lines) {
|
||||
try {
|
||||
const json = JSON.parse(line);
|
||||
if (json.response) {
|
||||
fullText += json.response;
|
||||
}
|
||||
} catch {
|
||||
// Skip invalid JSON lines
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Extract JSON from response
|
||||
const startIdx = fullText.indexOf('{');
|
||||
const endIdx = fullText.lastIndexOf('}') + 1;
|
||||
|
||||
if (startIdx < 0 || endIdx <= startIdx) {
|
||||
throw new Error(`No JSON object found in response: ${fullText.substring(0, 200)}`);
|
||||
}
|
||||
|
||||
const jsonStr = fullText.substring(startIdx, endIdx);
|
||||
return JSON.parse(jsonStr);
|
||||
}
|
||||
|
||||
/**
|
||||
* Create a hash of invoice for comparison (using key fields)
|
||||
*/
|
||||
function hashInvoice(invoice: IInvoice): string {
|
||||
return `${invoice.invoice_number}|${invoice.invoice_date}|${invoice.total_amount.toFixed(2)}`;
|
||||
}
|
||||
|
||||
/**
|
||||
* Extract with majority voting - run until 2 passes match
|
||||
*/
|
||||
async function extractWithConsensus(images: string[], invoiceName: string, maxPasses: number = 5): Promise<IInvoice> {
|
||||
const results: Array<{ invoice: IInvoice; hash: string }> = [];
|
||||
const hashCounts: Map<string, number> = new Map();
|
||||
|
||||
// Extract OCR text from first page
|
||||
const ocrText = await extractOcrText(images[0]);
|
||||
if (ocrText) {
|
||||
console.log(` [OCR] Extracted ${ocrText.split('\n').length} text lines`);
|
||||
}
|
||||
|
||||
for (let pass = 1; pass <= maxPasses; pass++) {
|
||||
try {
|
||||
const invoice = await extractOnce(images, pass, ocrText);
|
||||
const hash = hashInvoice(invoice);
|
||||
|
||||
results.push({ invoice, hash });
|
||||
hashCounts.set(hash, (hashCounts.get(hash) || 0) + 1);
|
||||
|
||||
console.log(` [Pass ${pass}] ${invoice.invoice_number} | ${invoice.invoice_date} | ${invoice.total_amount} ${invoice.currency}`);
|
||||
|
||||
// Check if we have consensus (2+ matching)
|
||||
const count = hashCounts.get(hash)!;
|
||||
if (count >= 2) {
|
||||
console.log(` [Consensus] Reached after ${pass} passes`);
|
||||
return invoice;
|
||||
}
|
||||
} catch (err) {
|
||||
console.log(` [Pass ${pass}] Error: ${err}`);
|
||||
}
|
||||
}
|
||||
|
||||
// No consensus reached - return the most common result
|
||||
let bestHash = '';
|
||||
let bestCount = 0;
|
||||
for (const [hash, count] of hashCounts) {
|
||||
if (count > bestCount) {
|
||||
bestCount = count;
|
||||
bestHash = hash;
|
||||
}
|
||||
}
|
||||
|
||||
if (!bestHash) {
|
||||
throw new Error(`No valid results for ${invoiceName}`);
|
||||
}
|
||||
|
||||
const best = results.find((r) => r.hash === bestHash)!;
|
||||
console.log(` [No consensus] Using most common result (${bestCount}/${maxPasses} passes)`);
|
||||
return best.invoice;
|
||||
}
|
||||
|
||||
/**
|
||||
* Compare extracted invoice against expected
|
||||
*/
|
||||
function compareInvoice(
|
||||
extracted: IInvoice,
|
||||
expected: IInvoice
|
||||
): { match: boolean; errors: string[] } {
|
||||
const errors: string[] = [];
|
||||
|
||||
// Compare invoice number (normalize by removing spaces and case)
|
||||
const extNum = extracted.invoice_number?.replace(/\s/g, '').toLowerCase() || '';
|
||||
const expNum = expected.invoice_number?.replace(/\s/g, '').toLowerCase() || '';
|
||||
if (extNum !== expNum) {
|
||||
errors.push(`invoice_number: expected "${expected.invoice_number}", got "${extracted.invoice_number}"`);
|
||||
}
|
||||
|
||||
// Compare date
|
||||
if (extracted.invoice_date !== expected.invoice_date) {
|
||||
errors.push(`invoice_date: expected "${expected.invoice_date}", got "${extracted.invoice_date}"`);
|
||||
}
|
||||
|
||||
// Compare total amount (with tolerance)
|
||||
if (Math.abs(extracted.total_amount - expected.total_amount) > 0.02) {
|
||||
errors.push(`total_amount: expected ${expected.total_amount}, got ${extracted.total_amount}`);
|
||||
}
|
||||
|
||||
// Compare currency
|
||||
if (extracted.currency?.toUpperCase() !== expected.currency?.toUpperCase()) {
|
||||
errors.push(`currency: expected "${expected.currency}", got "${extracted.currency}"`);
|
||||
}
|
||||
|
||||
return { match: errors.length === 0, errors };
|
||||
}
|
||||
|
||||
/**
|
||||
* Find all test cases (PDF + JSON pairs) in .nogit/invoices/
|
||||
*/
|
||||
function findTestCases(): Array<{ name: string; pdfPath: string; jsonPath: string }> {
|
||||
const testDir = path.join(process.cwd(), '.nogit/invoices');
|
||||
if (!fs.existsSync(testDir)) {
|
||||
return [];
|
||||
}
|
||||
|
||||
const files = fs.readdirSync(testDir);
|
||||
const pdfFiles = files.filter((f) => f.endsWith('.pdf'));
|
||||
const testCases: Array<{ name: string; pdfPath: string; jsonPath: string }> = [];
|
||||
|
||||
for (const pdf of pdfFiles) {
|
||||
const baseName = pdf.replace('.pdf', '');
|
||||
const jsonFile = `${baseName}.json`;
|
||||
if (files.includes(jsonFile)) {
|
||||
testCases.push({
|
||||
name: baseName,
|
||||
pdfPath: path.join(testDir, pdf),
|
||||
jsonPath: path.join(testDir, jsonFile),
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
return testCases;
|
||||
}
|
||||
|
||||
// Tests
|
||||
|
||||
tap.test('should connect to Ollama API', async () => {
|
||||
const response = await fetch(`${OLLAMA_URL}/api/tags`);
|
||||
expect(response.ok).toBeTrue();
|
||||
const data = await response.json();
|
||||
expect(data.models).toBeArray();
|
||||
});
|
||||
|
||||
tap.test('should have MiniCPM-V 4.5 model loaded', async () => {
|
||||
const response = await fetch(`${OLLAMA_URL}/api/tags`);
|
||||
const data = await response.json();
|
||||
const modelNames = data.models.map((m: { name: string }) => m.name);
|
||||
expect(modelNames.some((name: string) => name.includes('minicpm-v4.5'))).toBeTrue();
|
||||
});
|
||||
|
||||
// Dynamic test for each PDF/JSON pair
|
||||
const testCases = findTestCases();
|
||||
console.log(`\nFound ${testCases.length} invoice test cases\n`);
|
||||
|
||||
let passedCount = 0;
|
||||
let failedCount = 0;
|
||||
const processingTimes: number[] = [];
|
||||
|
||||
for (const testCase of testCases) {
|
||||
tap.test(`should extract invoice: ${testCase.name}`, async () => {
|
||||
// Load expected data
|
||||
const expected: IInvoice = JSON.parse(fs.readFileSync(testCase.jsonPath, 'utf-8'));
|
||||
console.log(`\n=== ${testCase.name} ===`);
|
||||
console.log(`Expected: ${expected.invoice_number} | ${expected.invoice_date} | ${expected.total_amount} ${expected.currency}`);
|
||||
|
||||
const startTime = Date.now();
|
||||
|
||||
// Convert PDF to images
|
||||
const images = convertPdfToImages(testCase.pdfPath);
|
||||
console.log(` Pages: ${images.length}`);
|
||||
|
||||
// Extract with consensus voting
|
||||
const extracted = await extractWithConsensus(images, testCase.name);
|
||||
|
||||
const endTime = Date.now();
|
||||
const elapsedMs = endTime - startTime;
|
||||
processingTimes.push(elapsedMs);
|
||||
|
||||
// Compare results
|
||||
const result = compareInvoice(extracted, expected);
|
||||
|
||||
if (result.match) {
|
||||
passedCount++;
|
||||
console.log(` Result: MATCH (${(elapsedMs / 1000).toFixed(1)}s)`);
|
||||
} else {
|
||||
failedCount++;
|
||||
console.log(` Result: MISMATCH (${(elapsedMs / 1000).toFixed(1)}s)`);
|
||||
result.errors.forEach((e) => console.log(` - ${e}`));
|
||||
}
|
||||
|
||||
// Assert match
|
||||
expect(result.match).toBeTrue();
|
||||
});
|
||||
}
|
||||
|
||||
tap.test('summary', async () => {
|
||||
const totalInvoices = testCases.length;
|
||||
const accuracy = totalInvoices > 0 ? (passedCount / totalInvoices) * 100 : 0;
|
||||
const totalTimeMs = processingTimes.reduce((a, b) => a + b, 0);
|
||||
const avgTimeMs = processingTimes.length > 0 ? totalTimeMs / processingTimes.length : 0;
|
||||
const avgTimeSec = avgTimeMs / 1000;
|
||||
const totalTimeSec = totalTimeMs / 1000;
|
||||
|
||||
console.log(`\n========================================`);
|
||||
console.log(` Invoice Extraction Summary`);
|
||||
console.log(`========================================`);
|
||||
console.log(` Passed: ${passedCount}/${totalInvoices}`);
|
||||
console.log(` Failed: ${failedCount}/${totalInvoices}`);
|
||||
console.log(` Accuracy: ${accuracy.toFixed(1)}%`);
|
||||
console.log(`----------------------------------------`);
|
||||
console.log(` Total time: ${totalTimeSec.toFixed(1)}s`);
|
||||
console.log(` Avg per inv: ${avgTimeSec.toFixed(1)}s`);
|
||||
console.log(`========================================\n`);
|
||||
});
|
||||
|
||||
export default tap.start();
|
||||
@@ -7,7 +7,7 @@ import * as os from 'os';
|
||||
const OLLAMA_URL = 'http://localhost:11434';
|
||||
const MODEL = 'openbmb/minicpm-v4.5:q8_0';
|
||||
|
||||
const BANK_STATEMENT_PROMPT = `You are a bank statement parser. Extract EVERY transaction from the table.
|
||||
const EXTRACT_PROMPT = `You are a bank statement parser. Extract EVERY transaction from the table.
|
||||
|
||||
Read the Amount column carefully:
|
||||
- "- 21,47 €" means DEBIT, output as: -21.47
|
||||
@@ -16,7 +16,7 @@ Read the Amount column carefully:
|
||||
|
||||
For each row output: {"date":"YYYY-MM-DD","counterparty":"NAME","amount":-21.47}
|
||||
|
||||
Do not skip any rows. Return complete JSON array:`;
|
||||
Do not skip any rows. Return ONLY the JSON array, no explanation.`;
|
||||
|
||||
interface ITransaction {
|
||||
date: string;
|
||||
@@ -53,12 +53,12 @@ function convertPdfToImages(pdfPath: string): string[] {
|
||||
}
|
||||
|
||||
/**
|
||||
* Extract transactions from images using Ollama with streaming
|
||||
* Single extraction pass
|
||||
*/
|
||||
async function extractTransactionsStreaming(images: string[]): Promise<ITransaction[]> {
|
||||
async function extractOnce(images: string[], passNum: number): Promise<ITransaction[]> {
|
||||
const payload = {
|
||||
model: MODEL,
|
||||
prompt: BANK_STATEMENT_PROMPT,
|
||||
prompt: EXTRACT_PROMPT,
|
||||
images,
|
||||
stream: true,
|
||||
options: {
|
||||
@@ -86,7 +86,8 @@ async function extractTransactionsStreaming(images: string[]): Promise<ITransact
|
||||
let fullText = '';
|
||||
let lineBuffer = '';
|
||||
|
||||
// Stream and print output (buffer until newline for cleaner display)
|
||||
console.log(`[Pass ${passNum}] Extracting...`);
|
||||
|
||||
while (true) {
|
||||
const { done, value } = await reader.read();
|
||||
if (done) break;
|
||||
@@ -116,13 +117,11 @@ async function extractTransactionsStreaming(images: string[]): Promise<ITransact
|
||||
}
|
||||
}
|
||||
|
||||
// Print any remaining buffer
|
||||
if (lineBuffer) {
|
||||
console.log(lineBuffer);
|
||||
}
|
||||
console.log('');
|
||||
|
||||
// Parse JSON from response
|
||||
const startIdx = fullText.indexOf('[');
|
||||
const endIdx = fullText.lastIndexOf(']') + 1;
|
||||
|
||||
@@ -133,6 +132,60 @@ async function extractTransactionsStreaming(images: string[]): Promise<ITransact
|
||||
return JSON.parse(fullText.substring(startIdx, endIdx));
|
||||
}
|
||||
|
||||
/**
|
||||
* Create a hash of transactions for comparison
|
||||
*/
|
||||
function hashTransactions(transactions: ITransaction[]): string {
|
||||
return transactions
|
||||
.map((t) => `${t.date}|${t.amount.toFixed(2)}`)
|
||||
.sort()
|
||||
.join(';');
|
||||
}
|
||||
|
||||
/**
|
||||
* Extract with majority voting - run until 2 passes match
|
||||
*/
|
||||
async function extractWithConsensus(images: string[], maxPasses: number = 5): Promise<ITransaction[]> {
|
||||
const results: Array<{ transactions: ITransaction[]; hash: string }> = [];
|
||||
const hashCounts: Map<string, number> = new Map();
|
||||
|
||||
for (let pass = 1; pass <= maxPasses; pass++) {
|
||||
const transactions = await extractOnce(images, pass);
|
||||
const hash = hashTransactions(transactions);
|
||||
|
||||
results.push({ transactions, hash });
|
||||
hashCounts.set(hash, (hashCounts.get(hash) || 0) + 1);
|
||||
|
||||
console.log(`[Pass ${pass}] Got ${transactions.length} transactions (hash: ${hash.substring(0, 20)}...)`);
|
||||
|
||||
// Check if we have consensus (2+ matching)
|
||||
const count = hashCounts.get(hash)!;
|
||||
if (count >= 2) {
|
||||
console.log(`[Consensus] Reached after ${pass} passes (${count} matching results)`);
|
||||
return transactions;
|
||||
}
|
||||
|
||||
// After 2 passes, if no match yet, continue
|
||||
if (pass >= 2) {
|
||||
console.log(`[Pass ${pass}] No consensus yet, trying again...`);
|
||||
}
|
||||
}
|
||||
|
||||
// No consensus reached - return the most common result
|
||||
let bestHash = '';
|
||||
let bestCount = 0;
|
||||
for (const [hash, count] of hashCounts) {
|
||||
if (count > bestCount) {
|
||||
bestCount = count;
|
||||
bestHash = hash;
|
||||
}
|
||||
}
|
||||
|
||||
const best = results.find((r) => r.hash === bestHash)!;
|
||||
console.log(`[No consensus] Using most common result (${bestCount}/${maxPasses} passes)`);
|
||||
return best.transactions;
|
||||
}
|
||||
|
||||
/**
|
||||
* Compare extracted transactions against expected
|
||||
*/
|
||||
@@ -227,16 +280,15 @@ for (const testCase of testCases) {
|
||||
// Convert PDF to images
|
||||
console.log('Converting PDF to images...');
|
||||
const images = convertPdfToImages(testCase.pdfPath);
|
||||
console.log(`Converted: ${images.length} pages`);
|
||||
console.log(`Converted: ${images.length} pages\n`);
|
||||
|
||||
// Extract transactions with streaming output
|
||||
console.log('Extracting transactions (streaming)...\n');
|
||||
const extracted = await extractTransactionsStreaming(images);
|
||||
console.log(`Extracted: ${extracted.length} transactions`);
|
||||
// Extract with consensus voting
|
||||
const extracted = await extractWithConsensus(images);
|
||||
console.log(`\nFinal: ${extracted.length} transactions`);
|
||||
|
||||
// Compare results
|
||||
const result = compareTransactions(extracted, expected);
|
||||
console.log(`Matches: ${result.matches}/${result.total}`);
|
||||
console.log(`Accuracy: ${result.matches}/${result.total}`);
|
||||
|
||||
if (result.errors.length > 0) {
|
||||
console.log('Errors:');
|
||||
|
||||
Reference in New Issue
Block a user