fix(tests): improve Qwen3-VL invoice extraction test by switching to non-stream API, adding model availability/pull checks, simplifying response parsing, and tightening model options

This commit is contained in:
2026-01-18 04:17:30 +00:00
parent 9f9ec0a671
commit 7c8f10497e
2 changed files with 96 additions and 127 deletions

View File

@@ -1,5 +1,15 @@
# Changelog # Changelog
## 2026-01-18 - 1.10.1 - fix(tests)
improve Qwen3-VL invoice extraction test by switching to non-stream API, adding model availability/pull checks, simplifying response parsing, and tightening model options
- Replaced streaming reader logic with direct JSON parsing of the /api/chat response
- Added ensureQwen3Vl() to check and pull the Qwen3-VL:8b model from Ollama
- Switched to ensureMiniCpm() to verify Ollama service is running before model checks
- Use /no_think prompt for direct JSON output and set temperature to 0.0 and num_predict to 512
- Removed retry loop and streaming parsing; improved error messages to include response body
- Updated logging and test setup messages for clarity
## 2026-01-18 - 1.10.0 - feat(vision) ## 2026-01-18 - 1.10.0 - feat(vision)
add Qwen3-VL vision model support with Dockerfile and tests; improve invoice OCR conversion and prompts; simplify extraction flow by removing consensus voting add Qwen3-VL vision model support with Dockerfile and tests; improve invoice OCR conversion and prompts; simplify extraction flow by removing consensus voting

View File

@@ -1,18 +1,17 @@
/** /**
* Invoice extraction using Qwen3-VL-8B Vision (Direct) * Invoice extraction using Qwen3-VL 8B Vision (Direct)
* *
* Qwen3-VL 8B is a capable vision-language model that fits in 15GB VRAM: * Single-step pipeline: PDF → Images → Qwen3-VL → JSON
* - Q4_K_M quantization (~5GB) * Uses /no_think to disable reasoning mode for fast, direct responses.
* - Good balance of speed and accuracy
* *
* Pipeline: PDF → Images → Qwen3-VL → JSON * Qwen3-VL outperforms PaddleOCR-VL on certain invoice formats.
*/ */
import { tap, expect } from '@git.zone/tstest/tapbundle'; import { tap, expect } from '@git.zone/tstest/tapbundle';
import * as fs from 'fs'; import * as fs from 'fs';
import * as path from 'path'; import * as path from 'path';
import { execSync } from 'child_process'; import { execSync } from 'child_process';
import * as os from 'os'; import * as os from 'os';
import { ensureQwen3Vl } from './helpers/docker.js'; import { ensureMiniCpm } from './helpers/docker.js';
const OLLAMA_URL = 'http://localhost:11434'; const OLLAMA_URL = 'http://localhost:11434';
const VISION_MODEL = 'qwen3-vl:8b'; const VISION_MODEL = 'qwen3-vl:8b';
@@ -57,144 +56,68 @@ function convertPdfToImages(pdfPath: string): string[] {
} }
/** /**
* Single extraction attempt * Extract invoice data directly from images using Qwen3-VL Vision
* Uses /no_think to disable reasoning mode for fast, direct JSON output
*/ */
async function tryExtractOnce(images: string[], prompt: string): Promise<string> { async function extractInvoiceFromImages(images: string[]): Promise<IInvoice> {
console.log(` [Vision] Processing ${images.length} page(s) with Qwen3-VL`);
// /no_think disables Qwen3's reasoning mode - crucial for getting direct output
const prompt = `/no_think
Look at this invoice and extract these fields. Reply with ONLY JSON, no explanation.
- invoice_number
- invoice_date (format: YYYY-MM-DD)
- vendor_name
- currency (EUR, USD, or GBP)
- net_amount
- vat_amount
- total_amount
JSON: {"invoice_number":"...","invoice_date":"YYYY-MM-DD","vendor_name":"...","currency":"EUR","net_amount":0,"vat_amount":0,"total_amount":0}`;
const response = await fetch(`${OLLAMA_URL}/api/chat`, { const response = await fetch(`${OLLAMA_URL}/api/chat`, {
method: 'POST', method: 'POST',
headers: { 'Content-Type': 'application/json' }, headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({ body: JSON.stringify({
model: VISION_MODEL, model: VISION_MODEL,
messages: [ messages: [{
{
role: 'user', role: 'user',
content: prompt, content: prompt,
images: images, images: images, // Pass all pages
}, }],
], stream: false,
stream: true,
options: { options: {
num_predict: 1024, num_predict: 512,
temperature: 0.1, // Slight randomness helps avoid stuck states temperature: 0.0,
}, },
}), }),
}); });
if (!response.ok) { if (!response.ok) {
throw new Error(`Ollama API error: ${response.status}`); const err = await response.text();
throw new Error(`Ollama API error: ${response.status} - ${err}`);
} }
const reader = response.body?.getReader(); const data = await response.json();
if (!reader) { let content = data.message?.content || '';
throw new Error('No response body');
}
const decoder = new TextDecoder(); console.log(` [Vision] Response (${content.length} chars): ${content.substring(0, 200)}...`);
let fullText = '';
while (true) { // Parse JSON from response
const { done, value } = await reader.read(); if (content.startsWith('```json')) content = content.slice(7);
if (done) break; else if (content.startsWith('```')) content = content.slice(3);
if (content.endsWith('```')) content = content.slice(0, -3);
content = content.trim();
const chunk = decoder.decode(value, { stream: true }); const startIdx = content.indexOf('{');
const lines = chunk.split('\n').filter((l) => l.trim()); const endIdx = content.lastIndexOf('}') + 1;
for (const line of lines) {
try {
const json = JSON.parse(line);
if (json.message?.content) {
fullText += json.message.content;
}
} catch {
// Skip invalid JSON lines
}
}
}
return fullText;
}
/**
* Extract invoice data directly from images using Qwen3-VL Vision
* Includes retry logic for empty responses
*/
async function extractInvoiceFromImages(images: string[]): Promise<IInvoice> {
console.log(` [Vision] Processing ${images.length} page(s) with Qwen3-VL`);
// JSON schema for structured output - force the model to output valid JSON
const invoiceSchema = {
type: 'object',
properties: {
invoice_number: { type: 'string' },
invoice_date: { type: 'string' },
vendor_name: { type: 'string' },
currency: { type: 'string' },
net_amount: { type: 'number' },
vat_amount: { type: 'number' },
total_amount: { type: 'number' },
},
required: ['invoice_number', 'invoice_date', 'vendor_name', 'currency', 'net_amount', 'vat_amount', 'total_amount'],
};
// Simple, direct prompt - don't overthink, just read the labeled fields
const prompt = `Extract invoice data from this image. Return JSON only.
Find these fields:
- invoice_number: The invoice/document number
- invoice_date: Date in YYYY-MM-DD format
- vendor_name: Company issuing the invoice
- currency: EUR, USD, or GBP
- net_amount: Amount before tax
- vat_amount: Tax/VAT amount
- total_amount: Final total amount
Return: {"invoice_number":"...", "invoice_date":"YYYY-MM-DD", "vendor_name":"...", "currency":"EUR", "net_amount":0.00, "vat_amount":0.00, "total_amount":0.00}`;
// Retry logic for empty responses (model sometimes returns nothing)
const MAX_RETRIES = 3;
let fullText = '';
for (let attempt = 1; attempt <= MAX_RETRIES; attempt++) {
fullText = await tryExtractOnce(images, prompt);
if (fullText.trim().length > 0) {
console.log(` [Attempt ${attempt}] Got ${fullText.length} chars`);
break;
}
console.log(` [Attempt ${attempt}] Empty response, retrying...`);
// Small delay before retry
await new Promise((r) => setTimeout(r, 1000));
}
if (fullText.trim().length === 0) {
throw new Error(`Model returned empty response after ${MAX_RETRIES} attempts`);
}
// Parse JSON response
let jsonStr = fullText.trim();
if (jsonStr.startsWith('```json')) jsonStr = jsonStr.slice(7);
else if (jsonStr.startsWith('```')) jsonStr = jsonStr.slice(3);
if (jsonStr.endsWith('```')) jsonStr = jsonStr.slice(0, -3);
jsonStr = jsonStr.trim();
const startIdx = jsonStr.indexOf('{');
const endIdx = jsonStr.lastIndexOf('}') + 1;
if (startIdx < 0 || endIdx <= startIdx) { if (startIdx < 0 || endIdx <= startIdx) {
throw new Error(`No JSON found in: ${fullText.substring(0, 500)}`); throw new Error(`No JSON found: ${content.substring(0, 300)}`);
} }
const extractedJson = jsonStr.substring(startIdx, endIdx); const parsed = JSON.parse(content.substring(startIdx, endIdx));
console.log(` [Debug] Extracted JSON: ${extractedJson.substring(0, 200)}...`);
let parsed;
try {
parsed = JSON.parse(extractedJson);
} catch (e) {
throw new Error(`Invalid JSON: ${extractedJson.substring(0, 500)}`);
}
return { return {
invoice_number: parsed.invoice_number || null, invoice_number: parsed.invoice_number || null,
@@ -284,12 +207,48 @@ function findTestCases(): Array<{ name: string; pdfPath: string; jsonPath: strin
return testCases.sort((a, b) => a.name.localeCompare(b.name)); return testCases.sort((a, b) => a.name.localeCompare(b.name));
} }
/**
* Ensure Qwen3-VL 8B model is available
*/
async function ensureQwen3Vl(): Promise<boolean> {
try {
const response = await fetch(`${OLLAMA_URL}/api/tags`);
if (response.ok) {
const data = await response.json();
const models = data.models || [];
if (models.some((m: { name: string }) => m.name === VISION_MODEL)) {
console.log(`[Ollama] Model already available: ${VISION_MODEL}`);
return true;
}
}
} catch {
console.log('[Ollama] Cannot check models');
return false;
}
console.log(`[Ollama] Pulling model: ${VISION_MODEL}...`);
const pullResponse = await fetch(`${OLLAMA_URL}/api/pull`, {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({ name: VISION_MODEL, stream: false }),
});
return pullResponse.ok;
}
// Tests // Tests
tap.test('setup: ensure Qwen3-VL is running', async () => { tap.test('setup: ensure Qwen3-VL is running', async () => {
console.log('\n[Setup] Checking Qwen3-VL 8B (~5GB)...\n'); console.log('\n[Setup] Checking Qwen3-VL 8B...\n');
const ok = await ensureQwen3Vl();
expect(ok).toBeTrue(); // Ensure Ollama service is running
const ollamaOk = await ensureMiniCpm();
expect(ollamaOk).toBeTrue();
// Ensure Qwen3-VL 8B model
const visionOk = await ensureQwen3Vl();
expect(visionOk).toBeTrue();
console.log('\n[Setup] Ready!\n'); console.log('\n[Setup] Ready!\n');
}); });
@@ -339,7 +298,7 @@ tap.test('summary', async () => {
console.log(`\n======================================================`); console.log(`\n======================================================`);
console.log(` Invoice Extraction Summary (Qwen3-VL Vision)`); console.log(` Invoice Extraction Summary (Qwen3-VL Vision)`);
console.log(`======================================================`); console.log(`======================================================`);
console.log(` Method: Qwen3-VL 8B (Direct Vision)`); console.log(` Method: Qwen3-VL 8B Direct Vision (/no_think)`);
console.log(` Passed: ${passedCount}/${total}`); console.log(` Passed: ${passedCount}/${total}`);
console.log(` Failed: ${failedCount}/${total}`); console.log(` Failed: ${failedCount}/${total}`);
console.log(` Accuracy: ${accuracy.toFixed(1)}%`); console.log(` Accuracy: ${accuracy.toFixed(1)}%`);