feat(invoices): add hybrid OCR + vision invoice/document parsing with PaddleOCR, consensus voting, and prompt/test refactors
This commit is contained in:
@@ -1,129 +1,250 @@
|
||||
# Bank Statement Parsing with MiniCPM-V 4.5
|
||||
# Document Recognition with Hybrid OCR + Vision AI
|
||||
|
||||
Recipe for extracting transactions from bank statement PDFs using vision-language AI.
|
||||
Recipe for extracting structured data from invoices and documents using a hybrid approach:
|
||||
PaddleOCR for text extraction + MiniCPM-V 4.5 for intelligent parsing.
|
||||
|
||||
## Model
|
||||
## Architecture
|
||||
|
||||
- **Model**: MiniCPM-V 4.5 (8B parameters)
|
||||
- **Ollama Name**: `openbmb/minicpm-v4.5:q8_0`
|
||||
- **Quantization**: Q8_0 (9.8GB VRAM)
|
||||
- **Runtime**: Ollama on GPU
|
||||
```
|
||||
┌──────────────┐ ┌──────────────┐ ┌──────────────┐
|
||||
│ PDF/Image │ ───> │ PaddleOCR │ ───> │ Raw Text │
|
||||
└──────────────┘ └──────────────┘ └──────┬───────┘
|
||||
│
|
||||
┌──────────────┐ │
|
||||
│ MiniCPM-V │ <───────────┘
|
||||
│ 4.5 VLM │ <─── Image
|
||||
└──────┬───────┘
|
||||
│
|
||||
┌──────▼───────┐
|
||||
│ Structured │
|
||||
│ JSON │
|
||||
└──────────────┘
|
||||
```
|
||||
|
||||
## Why Hybrid?
|
||||
|
||||
| Approach | Accuracy | Speed | Best For |
|
||||
|----------|----------|-------|----------|
|
||||
| VLM Only | 85-90% | Fast | Simple layouts |
|
||||
| OCR Only | N/A | Fast | Just text extraction |
|
||||
| **Hybrid** | **91%+** | Medium | Complex invoices |
|
||||
|
||||
The hybrid approach provides OCR text as context to the VLM, improving accuracy on:
|
||||
- Small text and numbers
|
||||
- Low contrast documents
|
||||
- Dense tables
|
||||
|
||||
## Services
|
||||
|
||||
| Service | Port | Purpose |
|
||||
|---------|------|---------|
|
||||
| PaddleOCR | 5000 | Text extraction |
|
||||
| Ollama (MiniCPM-V) | 11434 | Intelligent parsing |
|
||||
|
||||
## Running the Containers
|
||||
|
||||
**Start both services:**
|
||||
|
||||
```bash
|
||||
# PaddleOCR (CPU is sufficient for OCR)
|
||||
docker run -d --name paddleocr -p 5000:5000 \
|
||||
code.foss.global/host.today/ht-docker-ai:paddleocr-cpu
|
||||
|
||||
# MiniCPM-V 4.5 (GPU recommended)
|
||||
docker run -d --name minicpm --gpus all -p 11434:11434 \
|
||||
-v ollama-data:/root/.ollama \
|
||||
code.foss.global/host.today/ht-docker-ai:minicpm45v
|
||||
```
|
||||
|
||||
## Image Conversion
|
||||
|
||||
Convert PDF to PNG at 300 DPI for optimal OCR accuracy.
|
||||
Convert PDF to PNG at 200 DPI:
|
||||
|
||||
```bash
|
||||
convert -density 300 -quality 100 input.pdf \
|
||||
convert -density 200 -quality 90 input.pdf \
|
||||
-background white -alpha remove \
|
||||
output-%d.png
|
||||
page-%d.png
|
||||
```
|
||||
|
||||
**Parameters:**
|
||||
- `-density 300`: 300 DPI resolution (critical for accuracy)
|
||||
- `-quality 100`: Maximum quality
|
||||
- `-background white -alpha remove`: Remove transparency
|
||||
- `output-%d.png`: Outputs page-0.png, page-1.png, etc.
|
||||
## Step 1: Extract OCR Text
|
||||
|
||||
**Dependencies:**
|
||||
```bash
|
||||
apt-get install imagemagick
|
||||
```typescript
|
||||
async function extractOcrText(imageBase64: string): Promise<string> {
|
||||
const response = await fetch('http://localhost:5000/ocr', {
|
||||
method: 'POST',
|
||||
headers: { 'Content-Type': 'application/json' },
|
||||
body: JSON.stringify({ image: imageBase64 }),
|
||||
});
|
||||
|
||||
const data = await response.json();
|
||||
if (data.success && data.results) {
|
||||
return data.results.map((r: { text: string }) => r.text).join('\n');
|
||||
}
|
||||
return '';
|
||||
}
|
||||
```
|
||||
|
||||
## Prompt
|
||||
## Step 2: Build Enhanced Prompt
|
||||
|
||||
```
|
||||
You are a bank statement parser. Extract EVERY transaction from the table.
|
||||
```typescript
|
||||
function buildPrompt(ocrText: string): string {
|
||||
const base = `You are an invoice parser. Extract the following fields:
|
||||
|
||||
Read the Amount column carefully:
|
||||
- "- 21,47 €" means DEBIT, output as: -21.47
|
||||
- "+ 1.000,00 €" means CREDIT, output as: 1000.00
|
||||
- European format: comma = decimal point
|
||||
1. invoice_number: The invoice/receipt number
|
||||
2. invoice_date: Date in YYYY-MM-DD format
|
||||
3. vendor_name: Company that issued the invoice
|
||||
4. currency: EUR, USD, etc.
|
||||
5. net_amount: Amount before tax (if shown)
|
||||
6. vat_amount: Tax/VAT amount (0 if reverse charge)
|
||||
7. total_amount: Final amount due
|
||||
|
||||
For each row output: {"date":"YYYY-MM-DD","counterparty":"NAME","amount":-21.47}
|
||||
Return ONLY valid JSON:
|
||||
{"invoice_number":"XXX","invoice_date":"YYYY-MM-DD","vendor_name":"Company","currency":"EUR","net_amount":100.00,"vat_amount":19.00,"total_amount":119.00}`;
|
||||
|
||||
Do not skip any rows. Return complete JSON array:
|
||||
if (ocrText) {
|
||||
return `${base}
|
||||
|
||||
OCR text extracted from the invoice:
|
||||
---
|
||||
${ocrText}
|
||||
---
|
||||
|
||||
Cross-reference the image with the OCR text above for accuracy.`;
|
||||
}
|
||||
return base;
|
||||
}
|
||||
```
|
||||
|
||||
## API Call
|
||||
## Step 3: Call Vision-Language Model
|
||||
|
||||
```python
|
||||
import base64
|
||||
import requests
|
||||
```typescript
|
||||
async function extractInvoice(images: string[], ocrText: string): Promise<Invoice> {
|
||||
const payload = {
|
||||
model: 'openbmb/minicpm-v4.5:q8_0',
|
||||
prompt: buildPrompt(ocrText),
|
||||
images, // Base64 encoded
|
||||
stream: false,
|
||||
options: {
|
||||
num_predict: 2048,
|
||||
temperature: 0.1,
|
||||
},
|
||||
};
|
||||
|
||||
# Load images
|
||||
with open('page-0.png', 'rb') as f:
|
||||
page0 = base64.b64encode(f.read()).decode('utf-8')
|
||||
with open('page-1.png', 'rb') as f:
|
||||
page1 = base64.b64encode(f.read()).decode('utf-8')
|
||||
const response = await fetch('http://localhost:11434/api/generate', {
|
||||
method: 'POST',
|
||||
headers: { 'Content-Type': 'application/json' },
|
||||
body: JSON.stringify(payload),
|
||||
});
|
||||
|
||||
payload = {
|
||||
"model": "openbmb/minicpm-v4.5:q8_0",
|
||||
"prompt": prompt,
|
||||
"images": [page0, page1], # Multiple pages supported
|
||||
"stream": False,
|
||||
"options": {
|
||||
"num_predict": 16384,
|
||||
"temperature": 0.1
|
||||
const result = await response.json();
|
||||
return JSON.parse(result.response);
|
||||
}
|
||||
```
|
||||
|
||||
## Consensus Voting
|
||||
|
||||
For production reliability, run multiple extraction passes and require consensus:
|
||||
|
||||
```typescript
|
||||
async function extractWithConsensus(images: string[], maxPasses: number = 5): Promise<Invoice> {
|
||||
const results: Map<string, { invoice: Invoice; count: number }> = new Map();
|
||||
|
||||
// Optimization: Run Pass 1 (no OCR) parallel with OCR + Pass 2
|
||||
const [pass1Result, ocrText] = await Promise.all([
|
||||
extractInvoice(images, ''),
|
||||
extractOcrText(images[0]),
|
||||
]);
|
||||
|
||||
// Add Pass 1 result
|
||||
addResult(results, pass1Result);
|
||||
|
||||
// Pass 2 with OCR context
|
||||
const pass2Result = await extractInvoice(images, ocrText);
|
||||
addResult(results, pass2Result);
|
||||
|
||||
// Check for consensus (2 matching results)
|
||||
for (const [hash, data] of results) {
|
||||
if (data.count >= 2) {
|
||||
return data.invoice; // Consensus reached!
|
||||
}
|
||||
}
|
||||
|
||||
// Continue until consensus or max passes
|
||||
for (let pass = 3; pass <= maxPasses; pass++) {
|
||||
const result = await extractInvoice(images, ocrText);
|
||||
addResult(results, result);
|
||||
// Check consensus...
|
||||
}
|
||||
|
||||
// Return most common result
|
||||
return getMostCommon(results);
|
||||
}
|
||||
|
||||
response = requests.post(
|
||||
'http://localhost:11434/api/generate',
|
||||
json=payload,
|
||||
timeout=600
|
||||
)
|
||||
|
||||
result = response.json()['response']
|
||||
function hashInvoice(inv: Invoice): string {
|
||||
return `${inv.invoice_number}|${inv.invoice_date}|${inv.total_amount.toFixed(2)}`;
|
||||
}
|
||||
```
|
||||
|
||||
## Output Format
|
||||
|
||||
```json
|
||||
[
|
||||
{"date":"2022-04-01","counterparty":"DIGITALOCEAN.COM","amount":-21.47},
|
||||
{"date":"2022-04-01","counterparty":"DIGITALOCEAN.COM","amount":-58.06},
|
||||
{"date":"2022-04-12","counterparty":"LOSSLESS GMBH","amount":1000.00}
|
||||
]
|
||||
{
|
||||
"invoice_number": "INV-2024-001234",
|
||||
"invoice_date": "2024-08-15",
|
||||
"vendor_name": "Hetzner Online GmbH",
|
||||
"currency": "EUR",
|
||||
"net_amount": 167.52,
|
||||
"vat_amount": 31.83,
|
||||
"total_amount": 199.35
|
||||
}
|
||||
```
|
||||
|
||||
## Running the Container
|
||||
|
||||
**GPU (recommended):**
|
||||
```bash
|
||||
docker run -d --gpus all -p 11434:11434 \
|
||||
-v ollama-data:/root/.ollama \
|
||||
-e MODEL_NAME="openbmb/minicpm-v4.5:q8_0" \
|
||||
ht-docker-ai:minicpm45v
|
||||
```
|
||||
|
||||
**CPU (slower):**
|
||||
```bash
|
||||
docker run -d -p 11434:11434 \
|
||||
-v ollama-data:/root/.ollama \
|
||||
-e MODEL_NAME="openbmb/minicpm-v4.5:q4_0" \
|
||||
ht-docker-ai:minicpm45v-cpu
|
||||
```
|
||||
|
||||
## Hardware Requirements
|
||||
|
||||
| Quantization | VRAM/RAM | Speed |
|
||||
|--------------|----------|-------|
|
||||
| Q8_0 (GPU) | 10GB | Fast |
|
||||
| Q4_0 (CPU) | 8GB | Slow |
|
||||
|
||||
## Test Results
|
||||
|
||||
| Statement | Pages | Transactions | Accuracy |
|
||||
|-----------|-------|--------------|----------|
|
||||
| bunq-2022-04 | 2 | 26 | 100% |
|
||||
| bunq-2021-06 | 3 | 28 | 100% |
|
||||
Tested on 46 real invoices from various vendors:
|
||||
|
||||
| Metric | Value |
|
||||
|--------|-------|
|
||||
| **Accuracy** | 91.3% (42/46) |
|
||||
| **Avg Time** | 42.7s per invoice |
|
||||
| **Consensus Rate** | 85% in 2 passes |
|
||||
|
||||
### Per-Vendor Results
|
||||
|
||||
| Vendor | Invoices | Accuracy |
|
||||
|--------|----------|----------|
|
||||
| Hetzner | 3 | 100% |
|
||||
| DigitalOcean | 4 | 100% |
|
||||
| Adobe | 3 | 100% |
|
||||
| Cloudflare | 1 | 100% |
|
||||
| Wasabi | 4 | 100% |
|
||||
| Figma | 3 | 100% |
|
||||
| Google Cloud | 1 | 100% |
|
||||
| MongoDB | 3 | 0% (date parsing) |
|
||||
|
||||
## Hardware Requirements
|
||||
|
||||
| Component | Minimum | Recommended |
|
||||
|-----------|---------|-------------|
|
||||
| PaddleOCR (CPU) | 4GB RAM | 8GB RAM |
|
||||
| MiniCPM-V (GPU) | 10GB VRAM | 12GB VRAM |
|
||||
| MiniCPM-V (CPU) | 16GB RAM | 32GB RAM |
|
||||
|
||||
## Tips
|
||||
|
||||
1. **DPI matters**: 150 DPI causes missed rows; 300 DPI is optimal
|
||||
2. **PNG over JPEG**: PNG preserves text clarity better
|
||||
3. **Remove alpha**: Some models struggle with transparency
|
||||
4. **Multi-page**: Pass all pages in single request for context
|
||||
1. **Use hybrid approach**: OCR text dramatically improves number/date accuracy
|
||||
2. **Consensus voting**: Run 2-5 passes to catch hallucinations
|
||||
3. **200 DPI is optimal**: Higher doesn't help, lower loses detail
|
||||
4. **PNG over JPEG**: Preserves text clarity
|
||||
5. **Temperature 0.1**: Low temperature for consistent output
|
||||
6. **European format**: Explicitly explain comma=decimal in prompt
|
||||
6. **Multi-page support**: Pass all pages in single request for context
|
||||
7. **Normalize for comparison**: Ignore case/whitespace when comparing invoice numbers
|
||||
|
||||
## Common Issues
|
||||
|
||||
| Issue | Cause | Solution |
|
||||
|-------|-------|----------|
|
||||
| Wrong date | Multiple dates on invoice | Be specific in prompt about which date |
|
||||
| Wrong currency | Symbol vs code mismatch | OCR helps disambiguate |
|
||||
| Missing digits | Low resolution | Increase density to 300 DPI |
|
||||
| Hallucinated data | VLM uncertainty | Use consensus voting |
|
||||
|
||||
Reference in New Issue
Block a user