15 Commits

Author SHA1 Message Date
0d8a1ebac2 v1.7.1
Some checks failed
Docker (tags) / security (push) Successful in 31s
Docker (tags) / test (push) Failing after 39s
Docker (tags) / release (push) Has been skipped
Docker (tags) / metadata (push) Has been skipped
2026-01-17 23:13:47 +00:00
5a311dca2d fix(docker): standardize Dockerfile and entrypoint filenames; add GPU-specific Dockerfiles and update build and test references 2026-01-17 23:13:47 +00:00
ab288380f1 v1.7.0
Some checks failed
Docker (tags) / security (push) Successful in 30s
Docker (tags) / test (push) Failing after 40s
Docker (tags) / release (push) Has been skipped
Docker (tags) / metadata (push) Has been skipped
2026-01-17 21:50:09 +00:00
30c73b24c1 feat(tests): use Qwen2.5 (Ollama) for invoice extraction tests and add helpers for model management; normalize dates and coerce numeric fields 2026-01-17 21:50:09 +00:00
311e7a8fd4 v1.6.0
Some checks failed
Docker (tags) / security (push) Successful in 32s
Docker (tags) / test (push) Failing after 40s
Docker (tags) / release (push) Has been skipped
Docker (tags) / metadata (push) Has been skipped
2026-01-17 20:22:23 +00:00
80e6866442 feat(paddleocr-vl): add PaddleOCR-VL full pipeline Docker image and API server, plus integration tests and docker helpers 2026-01-17 20:22:23 +00:00
addae20cbd v1.5.0
Some checks failed
Docker (tags) / security (push) Successful in 31s
Docker (tags) / test (push) Failing after 40s
Docker (tags) / release (push) Has been skipped
Docker (tags) / metadata (push) Has been skipped
2026-01-17 16:57:26 +00:00
0482c35b69 feat(paddleocr-vl): add PaddleOCR-VL GPU Dockerfile, pin vllm, update CPU image deps, and improve entrypoint and tests 2026-01-17 16:57:26 +00:00
15ac1fcf67 update 2026-01-16 16:21:44 +00:00
3c5cf578a5 v1.4.0
Some checks failed
Docker (tags) / security (push) Successful in 28s
Docker (tags) / test (push) Failing after 54s
Docker (tags) / release (push) Has been skipped
Docker (tags) / metadata (push) Has been skipped
2026-01-16 14:24:37 +00:00
82358b2d5d feat(invoices): add hybrid OCR + vision invoice/document parsing with PaddleOCR, consensus voting, and prompt/test refactors 2026-01-16 14:24:37 +00:00
acded2a165 v1.3.0
Some checks failed
Docker (tags) / security (push) Successful in 30s
Docker (tags) / test (push) Failing after 41s
Docker (tags) / release (push) Has been skipped
Docker (tags) / metadata (push) Has been skipped
2026-01-16 13:23:01 +00:00
bec379e9ca feat(paddleocr): add PaddleOCR OCR service (Docker images, server, tests, docs) and CI workflows 2026-01-16 13:23:01 +00:00
67c38eeb67 v1.2.0 2026-01-16 10:23:32 +00:00
ae4bb26931 feat(paddleocr): add PaddleOCR support: Docker images, FastAPI server, entrypoint and tests 2026-01-16 10:23:32 +00:00
31 changed files with 4105 additions and 596 deletions

View File

@@ -0,0 +1,67 @@
name: Docker (no tags)
on:
push:
tags-ignore:
- '**'
env:
IMAGE: code.foss.global/host.today/ht-docker-node:npmci
NPMCI_COMPUTED_REPOURL: https://${{gitea.repository_owner}}:${{secrets.GITEA_TOKEN}}@gitea.lossless.digital/${{gitea.repository}}.git
NPMCI_LOGIN_DOCKER_DOCKERREGISTRY: ${{ secrets.NPMCI_LOGIN_DOCKER_DOCKERREGISTRY }}
jobs:
security:
runs-on: ubuntu-latest
container:
image: ${{ env.IMAGE }}
continue-on-error: true
steps:
- uses: actions/checkout@v3
- name: Prepare
run: |
pnpm install -g pnpm
pnpm install -g @ship.zone/npmci
npmci npm prepare
- name: Audit production dependencies
run: |
npmci command npm config set registry https://registry.npmjs.org
npmci command pnpm audit --audit-level=high --prod
continue-on-error: true
- name: Audit development dependencies
run: |
npmci command npm config set registry https://registry.npmjs.org
npmci command pnpm audit --audit-level=high --dev
continue-on-error: true
test:
needs: security
runs-on: ubuntu-latest
container:
image: ${{ env.IMAGE }}
steps:
- uses: actions/checkout@v3
- name: Prepare
run: |
pnpm install -g pnpm
pnpm install -g @ship.zone/npmci
npmci npm prepare
- name: Test stable
run: |
npmci node install stable
npmci npm install
npmci npm test
continue-on-error: true
- name: Test build
run: |
npmci node install stable
npmci npm install
npmci command npm run build

View File

@@ -0,0 +1,101 @@
name: Docker (tags)
on:
push:
tags:
- '*'
env:
IMAGE: code.foss.global/host.today/ht-docker-node:npmci
NPMCI_COMPUTED_REPOURL: https://${{gitea.repository_owner}}:${{secrets.GITEA_TOKEN}}@gitea.lossless.digital/${{gitea.repository}}.git
NPMCI_LOGIN_DOCKER_DOCKERREGISTRY: ${{ secrets.NPMCI_LOGIN_DOCKER_DOCKERREGISTRY }}
jobs:
security:
runs-on: ubuntu-latest
container:
image: ${{ env.IMAGE }}
continue-on-error: true
steps:
- uses: actions/checkout@v3
- name: Prepare
run: |
pnpm install -g pnpm
pnpm install -g @ship.zone/npmci
npmci npm prepare
- name: Audit production dependencies
run: |
npmci command npm config set registry https://registry.npmjs.org
npmci command pnpm audit --audit-level=high --prod
continue-on-error: true
- name: Audit development dependencies
run: |
npmci command npm config set registry https://registry.npmjs.org
npmci command pnpm audit --audit-level=high --dev
continue-on-error: true
test:
needs: security
runs-on: ubuntu-latest
container:
image: ${{ env.IMAGE }}
steps:
- uses: actions/checkout@v3
- name: Prepare
run: |
pnpm install -g pnpm
pnpm install -g @ship.zone/npmci
npmci npm prepare
- name: Test stable
run: |
npmci node install stable
npmci npm install
npmci npm test
continue-on-error: true
- name: Test build
run: |
npmci node install stable
npmci npm install
npmci command npm run build
release:
needs: test
if: github.event_name == 'push' && startsWith(github.ref, 'refs/tags/')
runs-on: ubuntu-latest
container:
image: code.foss.global/host.today/ht-docker-dbase:npmci
steps:
- uses: actions/checkout@v3
- name: Prepare
run: |
pnpm install -g pnpm
pnpm install -g @ship.zone/npmci
- name: Release
run: |
npmci docker login
npmci docker build
npmci docker push code.foss.global
metadata:
needs: test
if: github.event_name == 'push' && startsWith(github.ref, 'refs/tags/')
runs-on: ubuntu-latest
container:
image: ${{ env.IMAGE }}
steps:
- uses: actions/checkout@v3
- name: Trigger
run: npmci trigger

View File

@@ -14,7 +14,7 @@ ENV OLLAMA_ORIGINS="*"
ENV CUDA_VISIBLE_DEVICES="" ENV CUDA_VISIBLE_DEVICES=""
# Copy and setup entrypoint # Copy and setup entrypoint
COPY image_support_files/docker-entrypoint.sh /usr/local/bin/docker-entrypoint.sh COPY image_support_files/minicpm45v_entrypoint.sh /usr/local/bin/docker-entrypoint.sh
RUN chmod +x /usr/local/bin/docker-entrypoint.sh RUN chmod +x /usr/local/bin/docker-entrypoint.sh
# Expose Ollama API port # Expose Ollama API port

View File

@@ -12,7 +12,7 @@ ENV OLLAMA_HOST="0.0.0.0"
ENV OLLAMA_ORIGINS="*" ENV OLLAMA_ORIGINS="*"
# Copy and setup entrypoint # Copy and setup entrypoint
COPY image_support_files/docker-entrypoint.sh /usr/local/bin/docker-entrypoint.sh COPY image_support_files/minicpm45v_entrypoint.sh /usr/local/bin/docker-entrypoint.sh
RUN chmod +x /usr/local/bin/docker-entrypoint.sh RUN chmod +x /usr/local/bin/docker-entrypoint.sh
# Expose Ollama API port # Expose Ollama API port

View File

@@ -1,51 +0,0 @@
# PaddleOCR GPU Variant
# OCR processing with NVIDIA GPU support using PaddlePaddle
FROM paddlepaddle/paddle:3.0.0-gpu-cuda11.8-cudnn8.9-trt8.6
LABEL maintainer="Task Venture Capital GmbH <hello@task.vc>"
LABEL description="PaddleOCR PP-OCRv4 - GPU optimized"
LABEL org.opencontainers.image.source="https://code.foss.global/host.today/ht-docker-ai"
# Environment configuration
ENV OCR_LANGUAGE="en"
ENV SERVER_PORT="5000"
ENV SERVER_HOST="0.0.0.0"
ENV PYTHONUNBUFFERED=1
# Set working directory
WORKDIR /app
# Install system dependencies
RUN apt-get update && apt-get install -y --no-install-recommends \
libgl1-mesa-glx \
libglib2.0-0 \
curl \
&& rm -rf /var/lib/apt/lists/*
# Install Python dependencies
RUN pip install --no-cache-dir \
paddleocr \
fastapi \
uvicorn[standard] \
python-multipart \
opencv-python-headless \
pillow
# Copy server files
COPY image_support_files/paddleocr-server.py /app/paddleocr-server.py
COPY image_support_files/paddleocr-entrypoint.sh /usr/local/bin/paddleocr-entrypoint.sh
RUN chmod +x /usr/local/bin/paddleocr-entrypoint.sh
# Pre-download OCR models during build (PP-OCRv4)
RUN python -c "from paddleocr import PaddleOCR; \
ocr = PaddleOCR(use_angle_cls=True, lang='en', use_gpu=False, show_log=True); \
print('English model downloaded')"
# Expose API port
EXPOSE 5000
# Health check
HEALTHCHECK --interval=30s --timeout=10s --start-period=60s --retries=3 \
CMD curl -f http://localhost:5000/health || exit 1
ENTRYPOINT ["/usr/local/bin/paddleocr-entrypoint.sh"]

View File

@@ -1,54 +0,0 @@
# PaddleOCR CPU Variant
# OCR processing optimized for CPU-only inference
FROM python:3.10-slim
LABEL maintainer="Task Venture Capital GmbH <hello@task.vc>"
LABEL description="PaddleOCR PP-OCRv4 - CPU optimized"
LABEL org.opencontainers.image.source="https://code.foss.global/host.today/ht-docker-ai"
# Environment configuration for CPU-only mode
ENV OCR_LANGUAGE="en"
ENV SERVER_PORT="5000"
ENV SERVER_HOST="0.0.0.0"
ENV PYTHONUNBUFFERED=1
# Disable GPU usage for CPU-only variant
ENV CUDA_VISIBLE_DEVICES="-1"
# Set working directory
WORKDIR /app
# Install system dependencies
RUN apt-get update && apt-get install -y --no-install-recommends \
libgl1-mesa-glx \
libglib2.0-0 \
curl \
&& rm -rf /var/lib/apt/lists/*
# Install Python dependencies (CPU version of PaddlePaddle)
RUN pip install --no-cache-dir \
paddlepaddle \
paddleocr \
fastapi \
uvicorn[standard] \
python-multipart \
opencv-python-headless \
pillow
# Copy server files
COPY image_support_files/paddleocr-server.py /app/paddleocr-server.py
COPY image_support_files/paddleocr-entrypoint.sh /usr/local/bin/paddleocr-entrypoint.sh
RUN chmod +x /usr/local/bin/paddleocr-entrypoint.sh
# Pre-download OCR models during build (PP-OCRv4)
RUN python -c "from paddleocr import PaddleOCR; \
ocr = PaddleOCR(use_angle_cls=True, lang='en', use_gpu=False, show_log=True); \
print('English model downloaded')"
# Expose API port
EXPOSE 5000
# Health check (longer start-period for CPU variant)
HEALTHCHECK --interval=30s --timeout=10s --start-period=120s --retries=3 \
CMD curl -f http://localhost:5000/health || exit 1
ENTRYPOINT ["/usr/local/bin/paddleocr-entrypoint.sh"]

View File

@@ -0,0 +1,57 @@
# PaddleOCR-VL CPU Variant
# Vision-Language Model for document parsing using transformers (slower, no GPU required)
FROM python:3.11-slim-bookworm
LABEL maintainer="Task Venture Capital GmbH <hello@task.vc>"
LABEL description="PaddleOCR-VL 0.9B CPU - Vision-Language Model for document parsing"
LABEL org.opencontainers.image.source="https://code.foss.global/host.today/ht-docker-ai"
# Environment configuration
ENV PYTHONUNBUFFERED=1
ENV HF_HOME=/root/.cache/huggingface
ENV CUDA_VISIBLE_DEVICES=""
ENV SERVER_PORT=8000
ENV SERVER_HOST=0.0.0.0
# Set working directory
WORKDIR /app
# Install system dependencies
RUN apt-get update && apt-get install -y --no-install-recommends \
libgl1-mesa-glx \
libglib2.0-0 \
libgomp1 \
curl \
git \
&& rm -rf /var/lib/apt/lists/*
# Install Python dependencies
RUN pip install --no-cache-dir --upgrade pip && \
pip install --no-cache-dir \
torch==2.5.1 torchvision==0.20.1 --index-url https://download.pytorch.org/whl/cpu && \
pip install --no-cache-dir \
transformers \
accelerate \
safetensors \
pillow \
fastapi \
uvicorn[standard] \
python-multipart \
httpx \
protobuf \
sentencepiece \
einops
# Copy server files
COPY image_support_files/paddleocr_vl_server.py /app/paddleocr_vl_server.py
COPY image_support_files/paddleocr_vl_entrypoint.sh /usr/local/bin/paddleocr-vl-cpu-entrypoint.sh
RUN chmod +x /usr/local/bin/paddleocr-vl-cpu-entrypoint.sh
# Expose API port
EXPOSE 8000
# Health check (longer start-period for CPU + model download)
HEALTHCHECK --interval=30s --timeout=10s --start-period=600s --retries=3 \
CMD curl -f http://localhost:8000/health || exit 1
ENTRYPOINT ["/usr/local/bin/paddleocr-vl-cpu-entrypoint.sh"]

View File

@@ -0,0 +1,90 @@
# PaddleOCR-VL Full Pipeline (PP-DocLayoutV2 + PaddleOCR-VL + Structured Output)
# Self-contained GPU image with complete document parsing pipeline
FROM nvidia/cuda:12.4.0-devel-ubuntu22.04
LABEL maintainer="Task Venture Capital GmbH <hello@task.vc>"
LABEL description="PaddleOCR-VL Full Pipeline - Layout Detection + VL Recognition + JSON/Markdown Output"
LABEL org.opencontainers.image.source="https://code.foss.global/host.today/ht-docker-ai"
# Environment configuration
ENV DEBIAN_FRONTEND=noninteractive
ENV PYTHONUNBUFFERED=1
ENV HF_HOME=/root/.cache/huggingface
ENV PADDLEOCR_HOME=/root/.paddleocr
ENV SERVER_PORT=8000
ENV SERVER_HOST=0.0.0.0
ENV VLM_PORT=8080
# Set working directory
WORKDIR /app
# Install system dependencies
RUN apt-get update && apt-get install -y --no-install-recommends \
python3.11 \
python3.11-venv \
python3.11-dev \
python3-pip \
libgl1-mesa-glx \
libglib2.0-0 \
libgomp1 \
libsm6 \
libxext6 \
libxrender1 \
curl \
git \
wget \
&& rm -rf /var/lib/apt/lists/* \
&& update-alternatives --install /usr/bin/python python /usr/bin/python3.11 1 \
&& update-alternatives --install /usr/bin/python3 python3 /usr/bin/python3.11 1
# Create and activate virtual environment
RUN python -m venv /opt/venv
ENV PATH="/opt/venv/bin:$PATH"
# Upgrade pip
RUN pip install --no-cache-dir --upgrade pip setuptools wheel
# Install PaddlePaddle GPU (CUDA 12.x)
RUN pip install --no-cache-dir \
paddlepaddle-gpu==3.2.1 \
--extra-index-url https://www.paddlepaddle.org.cn/packages/stable/cu126/
# Install PaddleOCR with doc-parser (includes PP-DocLayoutV2)
RUN pip install --no-cache-dir \
"paddleocr[doc-parser]" \
safetensors
# Install PyTorch with CUDA support
RUN pip install --no-cache-dir \
torch==2.5.1 \
torchvision \
--index-url https://download.pytorch.org/whl/cu124
# Install transformers for PaddleOCR-VL inference (no vLLM - use local inference)
# PaddleOCR-VL requires transformers>=4.55.0 for use_kernel_forward_from_hub
RUN pip install --no-cache-dir \
transformers>=4.55.0 \
accelerate \
hf-kernels
# Install our API server dependencies
RUN pip install --no-cache-dir \
fastapi \
uvicorn[standard] \
python-multipart \
httpx \
pillow
# Copy server files
COPY image_support_files/paddleocr_vl_full_server.py /app/server.py
COPY image_support_files/paddleocr_vl_full_entrypoint.sh /usr/local/bin/entrypoint.sh
RUN chmod +x /usr/local/bin/entrypoint.sh
# Expose ports (8000 = API, 8080 = internal VLM server)
EXPOSE 8000
# Health check
HEALTHCHECK --interval=30s --timeout=10s --start-period=600s --retries=3 \
CMD curl -f http://localhost:8000/health || exit 1
ENTRYPOINT ["/usr/local/bin/entrypoint.sh"]

View File

@@ -0,0 +1,71 @@
# PaddleOCR-VL GPU Variant (Transformers-based, not vLLM)
# Vision-Language Model for document parsing using transformers with CUDA
FROM nvidia/cuda:12.4.0-runtime-ubuntu22.04
LABEL maintainer="Task Venture Capital GmbH <hello@task.vc>"
LABEL description="PaddleOCR-VL 0.9B GPU - Vision-Language Model using transformers"
LABEL org.opencontainers.image.source="https://code.foss.global/host.today/ht-docker-ai"
# Environment configuration
ENV DEBIAN_FRONTEND=noninteractive
ENV PYTHONUNBUFFERED=1
ENV HF_HOME=/root/.cache/huggingface
ENV SERVER_PORT=8000
ENV SERVER_HOST=0.0.0.0
# Set working directory
WORKDIR /app
# Install system dependencies
RUN apt-get update && apt-get install -y --no-install-recommends \
python3.11 \
python3.11-venv \
python3.11-dev \
python3-pip \
libgl1-mesa-glx \
libglib2.0-0 \
libgomp1 \
curl \
git \
&& rm -rf /var/lib/apt/lists/* \
&& update-alternatives --install /usr/bin/python python /usr/bin/python3.11 1 \
&& update-alternatives --install /usr/bin/python3 python3 /usr/bin/python3.11 1
# Create and activate virtual environment
RUN python -m venv /opt/venv
ENV PATH="/opt/venv/bin:$PATH"
# Install PyTorch with CUDA support
RUN pip install --no-cache-dir --upgrade pip && \
pip install --no-cache-dir \
torch==2.5.1 \
torchvision \
--index-url https://download.pytorch.org/whl/cu124
# Install Python dependencies (transformers-based, not vLLM)
RUN pip install --no-cache-dir \
transformers \
accelerate \
safetensors \
pillow \
fastapi \
uvicorn[standard] \
python-multipart \
httpx \
protobuf \
sentencepiece \
einops
# Copy server files (same as CPU variant - it auto-detects CUDA)
COPY image_support_files/paddleocr_vl_server.py /app/paddleocr_vl_server.py
COPY image_support_files/paddleocr_vl_entrypoint.sh /usr/local/bin/paddleocr-vl-entrypoint.sh
RUN chmod +x /usr/local/bin/paddleocr-vl-entrypoint.sh
# Expose API port
EXPOSE 8000
# Health check
HEALTHCHECK --interval=30s --timeout=10s --start-period=300s --retries=3 \
CMD curl -f http://localhost:8000/health || exit 1
ENTRYPOINT ["/usr/local/bin/paddleocr-vl-entrypoint.sh"]

View File

@@ -16,7 +16,7 @@ echo -e "${BLUE}Building ht-docker-ai images...${NC}"
# Build GPU variant # Build GPU variant
echo -e "${GREEN}Building MiniCPM-V 4.5 GPU variant...${NC}" echo -e "${GREEN}Building MiniCPM-V 4.5 GPU variant...${NC}"
docker build \ docker build \
-f Dockerfile_minicpm45v \ -f Dockerfile_minicpm45v_gpu \
-t ${REGISTRY}/${NAMESPACE}/${IMAGE_NAME}:minicpm45v \ -t ${REGISTRY}/${NAMESPACE}/${IMAGE_NAME}:minicpm45v \
-t ${REGISTRY}/${NAMESPACE}/${IMAGE_NAME}:minicpm45v-gpu \ -t ${REGISTRY}/${NAMESPACE}/${IMAGE_NAME}:minicpm45v-gpu \
-t ${REGISTRY}/${NAMESPACE}/${IMAGE_NAME}:latest \ -t ${REGISTRY}/${NAMESPACE}/${IMAGE_NAME}:latest \
@@ -29,9 +29,30 @@ docker build \
-t ${REGISTRY}/${NAMESPACE}/${IMAGE_NAME}:minicpm45v-cpu \ -t ${REGISTRY}/${NAMESPACE}/${IMAGE_NAME}:minicpm45v-cpu \
. .
# Build PaddleOCR-VL GPU variant
echo -e "${GREEN}Building PaddleOCR-VL GPU variant...${NC}"
docker build \
-f Dockerfile_paddleocr_vl_gpu \
-t ${REGISTRY}/${NAMESPACE}/${IMAGE_NAME}:paddleocr-vl \
-t ${REGISTRY}/${NAMESPACE}/${IMAGE_NAME}:paddleocr-vl-gpu \
.
# Build PaddleOCR-VL CPU variant
echo -e "${GREEN}Building PaddleOCR-VL CPU variant...${NC}"
docker build \
-f Dockerfile_paddleocr_vl_cpu \
-t ${REGISTRY}/${NAMESPACE}/${IMAGE_NAME}:paddleocr-vl-cpu \
.
echo -e "${GREEN}All images built successfully!${NC}" echo -e "${GREEN}All images built successfully!${NC}"
echo "" echo ""
echo "Available images:" echo "Available images:"
echo " MiniCPM-V 4.5:"
echo " - ${REGISTRY}/${NAMESPACE}/${IMAGE_NAME}:minicpm45v (GPU)" echo " - ${REGISTRY}/${NAMESPACE}/${IMAGE_NAME}:minicpm45v (GPU)"
echo " - ${REGISTRY}/${NAMESPACE}/${IMAGE_NAME}:minicpm45v-cpu (CPU)" echo " - ${REGISTRY}/${NAMESPACE}/${IMAGE_NAME}:minicpm45v-cpu (CPU)"
echo " - ${REGISTRY}/${NAMESPACE}/${IMAGE_NAME}:latest (GPU)" echo " - ${REGISTRY}/${NAMESPACE}/${IMAGE_NAME}:latest (GPU)"
echo ""
echo " PaddleOCR-VL (Vision-Language Model):"
echo " - ${REGISTRY}/${NAMESPACE}/${IMAGE_NAME}:paddleocr-vl (GPU/vLLM)"
echo " - ${REGISTRY}/${NAMESPACE}/${IMAGE_NAME}:paddleocr-vl-gpu (GPU/vLLM)"
echo " - ${REGISTRY}/${NAMESPACE}/${IMAGE_NAME}:paddleocr-vl-cpu (CPU)"

View File

@@ -1,5 +1,70 @@
# Changelog # Changelog
## 2026-01-17 - 1.7.1 - fix(docker)
standardize Dockerfile and entrypoint filenames; add GPU-specific Dockerfiles and update build and test references
- Added Dockerfile_minicpm45v_gpu and image_support_files/minicpm45v_entrypoint.sh; removed the old Dockerfile_minicpm45v and docker-entrypoint.sh
- Renamed and simplified PaddleOCR entrypoint to image_support_files/paddleocr_vl_entrypoint.sh and updated CPU/GPU Dockerfile references
- Updated build-images.sh to use *_gpu Dockerfiles and clarified PaddleOCR GPU build log
- Updated test/helpers/docker.ts to point to Dockerfile_minicpm45v_gpu so tests build the GPU variant
## 2026-01-17 - 1.7.0 - feat(tests)
use Qwen2.5 (Ollama) for invoice extraction tests and add helpers for model management; normalize dates and coerce numeric fields
- Added ensureOllamaModel and ensureQwen25 test helpers to pull/check Ollama models via localhost:11434
- Updated invoices test to use qwen2.5:7b instead of MiniCPM and removed image payload from the text-only extraction step
- Increased Markdown truncate limit from 8000 to 12000 and reduced model num_predict from 2048 to 512
- Rewrote extraction prompt to require strict JSON output and added post-processing to parse/convert numeric fields
- Added normalizeDate and improved compareInvoice to normalize dates and handle numeric formatting/tolerance
- Updated test setup to ensure Qwen2.5 is available and adjusted logging/messages to reflect the Qwen2.5-based workflow
## 2026-01-17 - 1.6.0 - feat(paddleocr-vl)
add PaddleOCR-VL full pipeline Docker image and API server, plus integration tests and docker helpers
- Add Dockerfile_paddleocr_vl_full and entrypoint script to build a GPU-enabled image with PP-DocLayoutV2 + PaddleOCR-VL and a FastAPI server
- Introduce image_support_files/paddleocr_vl_full_server.py implementing the full pipeline API (/parse, OpenAI-compatible /v1/chat/completions) and a /formats endpoint
- Improve image handling: decode_image supports data URLs, HTTP(S), raw base64 and file paths; add optimize_image_resolution to auto-scale images into the recommended 1080-2048px range
- Add test helpers (test/helpers/docker.ts) to build/start/health-check Docker images and new ensurePaddleOcrVlFull workflow
- Add comprehensive integration tests for bank statements and invoices (MiniCPM and PaddleOCR-VL variants) and update tests to ensure required containers are running before tests
- Switch MiniCPM model references to 'minicpm-v:latest' and increase health/timeout expectations for the full pipeline
## 2026-01-17 - 1.5.0 - feat(paddleocr-vl)
add PaddleOCR-VL GPU Dockerfile, pin vllm, update CPU image deps, and improve entrypoint and tests
- Add a new GPU Dockerfile for PaddleOCR-VL (transformers-based) with CUDA support, healthcheck, and entrypoint.
- Pin vllm to 0.11.1 in Dockerfile_paddleocr_vl to use the first stable release with PaddleOCR-VL support.
- Update CPU image: add torchvision==0.20.1 and extra Python deps (protobuf, sentencepiece, einops) required by the transformers-based server.
- Rewrite paddleocr-vl-entrypoint.sh to build vllm args array, add MAX_MODEL_LEN and ENFORCE_EAGER env vars, include --limit-mm-per-prompt and optional --enforce-eager, and switch to exec vllm with constructed args.
- Update tests to use the OpenAI-compatible PaddleOCR-VL chat completions API (/v1/chat/completions) with image+text message payload and model 'paddleocr-vl'.
- Add @types/node to package.json dependencies and tidy devDependencies ordering.
## 2026-01-16 - 1.4.0 - feat(invoices)
add hybrid OCR + vision invoice/document parsing with PaddleOCR, consensus voting, and prompt/test refactors
- Add hybrid pipeline documentation and examples (PaddleOCR + MiniCPM-V) and architecture diagram in recipes/document.md
- Integrate PaddleOCR: new OCR extraction functions and OCR-only prompt flow in test/test.node.ts
- Add consensus voting and parallel-pass optimization to improve reliability (multiple passes, hashing, and majority voting)
- Refactor prompts and tests: introduce /nothink token, OCR truncation limits, separate visual and OCR-only prompts, and improved prompt building in test/test.invoices.ts
- Update image conversion defaults (200 DPI, filename change) and add TypeScript helper functions for extraction and consensus handling
## 2026-01-16 - 1.3.0 - feat(paddleocr)
add PaddleOCR OCR service (Docker images, server, tests, docs) and CI workflows
- Add GPU and CPU PaddleOCR Dockerfiles; pin paddlepaddle/paddle and paddleocr to stable 2.x and install libgomp1 for CPU builds
- Avoid pre-downloading OCR models at build-time to prevent build-time segfaults; models are downloaded on first run
- Refactor PaddleOCR FastAPI server: respect CUDA_VISIBLE_DEVICES, support per-request language, cache default language instance and create temporary instances for other languages
- Add comprehensive tests (test.paddleocr.ts) and improve invoice extraction tests (parallelize passes, JSON OCR API usage, prioritize certain test cases)
- Add Gitea CI workflows for tag and non-tag Docker runs and release pipeline (docker build/push, metadata trigger)
- Update documentation (readme.hints.md) with PaddleOCR usage and add docker registry entry to npmextra.json
## 2026-01-16 - 1.2.0 - feat(paddleocr)
add PaddleOCR support: Docker images, FastAPI server, entrypoint and tests
- Add PaddleOCR FastAPI server implementation at image_support_files/paddleocr_server.py
- Remove old image_support_files/paddleocr-server.py and update entrypoint to import paddleocr_server:app
- Extend build-images.sh to build paddleocr (GPU) and paddleocr-cpu images and list them
- Extend test-images.sh to add paddleocr health/OCR tests, new test_paddleocr_image function, port config, and cleanup; rename test_image -> test_minicpm_image
## 2026-01-16 - 1.1.0 - feat(ocr) ## 2026-01-16 - 1.1.0 - feat(ocr)
add PaddleOCR GPU Docker image and FastAPI OCR server with entrypoint; implement OCR endpoints and consensus extraction testing add PaddleOCR GPU Docker image and FastAPI OCR server with entrypoint; implement OCR endpoints and consensus extraction testing

View File

@@ -1,25 +0,0 @@
#!/bin/bash
set -e
# Configuration from environment
OCR_LANGUAGE="${OCR_LANGUAGE:-en}"
SERVER_PORT="${SERVER_PORT:-5000}"
SERVER_HOST="${SERVER_HOST:-0.0.0.0}"
echo "Starting PaddleOCR Server..."
echo " Language: ${OCR_LANGUAGE}"
echo " Host: ${SERVER_HOST}"
echo " Port: ${SERVER_PORT}"
# Check GPU availability
if [ "${CUDA_VISIBLE_DEVICES}" = "-1" ]; then
echo " GPU: Disabled (CPU mode)"
else
echo " GPU: Enabled"
fi
# Start the FastAPI server with uvicorn
exec python -m uvicorn paddleocr-server:app \
--host "${SERVER_HOST}" \
--port "${SERVER_PORT}" \
--workers 1

View File

@@ -1,258 +0,0 @@
#!/usr/bin/env python3
"""
PaddleOCR FastAPI Server
Provides REST API for OCR operations using PaddleOCR
"""
import os
import io
import base64
import logging
from typing import Optional, List, Any
from fastapi import FastAPI, File, UploadFile, Form, HTTPException
from fastapi.responses import JSONResponse
from pydantic import BaseModel
import numpy as np
from PIL import Image
from paddleocr import PaddleOCR
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
# Environment configuration
OCR_LANGUAGE = os.environ.get('OCR_LANGUAGE', 'en')
USE_GPU = os.environ.get('CUDA_VISIBLE_DEVICES', '') != '-1'
# Initialize FastAPI app
app = FastAPI(
title="PaddleOCR Server",
description="REST API for OCR operations using PaddleOCR PP-OCRv4",
version="1.0.0"
)
# Global OCR instance
ocr_instance: Optional[PaddleOCR] = None
class OCRRequest(BaseModel):
"""Request model for base64 image OCR"""
image: str
language: Optional[str] = None
class BoundingBox(BaseModel):
"""Bounding box for detected text"""
points: List[List[float]]
class OCRResult(BaseModel):
"""Single OCR detection result"""
text: str
confidence: float
box: List[List[float]]
class OCRResponse(BaseModel):
"""OCR response model"""
success: bool
results: List[OCRResult]
error: Optional[str] = None
class HealthResponse(BaseModel):
"""Health check response"""
status: str
model: str
language: str
gpu_enabled: bool
def get_ocr() -> PaddleOCR:
"""Get or initialize the OCR instance"""
global ocr_instance
if ocr_instance is None:
logger.info(f"Initializing PaddleOCR with language={OCR_LANGUAGE}, use_gpu={USE_GPU}")
ocr_instance = PaddleOCR(
use_angle_cls=True,
lang=OCR_LANGUAGE,
use_gpu=USE_GPU,
show_log=False
)
logger.info("PaddleOCR initialized successfully")
return ocr_instance
def decode_base64_image(base64_string: str) -> np.ndarray:
"""Decode base64 string to numpy array"""
# Remove data URL prefix if present
if ',' in base64_string:
base64_string = base64_string.split(',')[1]
image_data = base64.b64decode(base64_string)
image = Image.open(io.BytesIO(image_data))
# Convert to RGB if necessary
if image.mode != 'RGB':
image = image.convert('RGB')
return np.array(image)
def process_ocr_result(result: Any) -> List[OCRResult]:
"""Process PaddleOCR result into structured format"""
results = []
if result is None or len(result) == 0:
return results
# PaddleOCR returns list of results per image
# Each result is a list of [box, (text, confidence)]
for line in result[0] if result[0] else []:
if line is None:
continue
box = line[0] # [[x1,y1], [x2,y2], [x3,y3], [x4,y4]]
text_info = line[1] # (text, confidence)
results.append(OCRResult(
text=text_info[0],
confidence=float(text_info[1]),
box=[[float(p[0]), float(p[1])] for p in box]
))
return results
@app.on_event("startup")
async def startup_event():
"""Pre-warm the OCR model on startup"""
logger.info("Pre-warming OCR model...")
try:
ocr = get_ocr()
# Create a small test image to warm up the model
test_image = np.zeros((100, 100, 3), dtype=np.uint8)
test_image.fill(255) # White image
ocr.ocr(test_image, cls=True)
logger.info("OCR model pre-warmed successfully")
except Exception as e:
logger.error(f"Failed to pre-warm OCR model: {e}")
@app.get("/health", response_model=HealthResponse)
async def health_check():
"""Health check endpoint"""
try:
# Ensure OCR is initialized
get_ocr()
return HealthResponse(
status="healthy",
model="PP-OCRv4",
language=OCR_LANGUAGE,
gpu_enabled=USE_GPU
)
except Exception as e:
logger.error(f"Health check failed: {e}")
raise HTTPException(status_code=503, detail=str(e))
@app.post("/ocr", response_model=OCRResponse)
async def ocr_base64(request: OCRRequest):
"""
Perform OCR on a base64-encoded image
Args:
request: OCRRequest with base64 image and optional language
Returns:
OCRResponse with detected text, confidence scores, and bounding boxes
"""
try:
# Decode image
image = decode_base64_image(request.image)
# Get OCR instance (use request language if provided)
ocr = get_ocr()
# If a different language is requested, create a new instance
if request.language and request.language != OCR_LANGUAGE:
logger.info(f"Creating OCR instance for language: {request.language}")
temp_ocr = PaddleOCR(
use_angle_cls=True,
lang=request.language,
use_gpu=USE_GPU,
show_log=False
)
result = temp_ocr.ocr(image, cls=True)
else:
result = ocr.ocr(image, cls=True)
# Process results
results = process_ocr_result(result)
return OCRResponse(success=True, results=results)
except Exception as e:
logger.error(f"OCR processing failed: {e}")
return OCRResponse(success=False, results=[], error=str(e))
@app.post("/ocr/upload", response_model=OCRResponse)
async def ocr_upload(
img: UploadFile = File(...),
language: Optional[str] = Form(None)
):
"""
Perform OCR on an uploaded image file
Args:
img: Uploaded image file
language: Optional language code (default: env OCR_LANGUAGE)
Returns:
OCRResponse with detected text, confidence scores, and bounding boxes
"""
try:
# Read image
contents = await img.read()
image = Image.open(io.BytesIO(contents))
# Convert to RGB if necessary
if image.mode != 'RGB':
image = image.convert('RGB')
image_array = np.array(image)
# Get OCR instance
ocr = get_ocr()
# If a different language is requested, create a new instance
if language and language != OCR_LANGUAGE:
logger.info(f"Creating OCR instance for language: {language}")
temp_ocr = PaddleOCR(
use_angle_cls=True,
lang=language,
use_gpu=USE_GPU,
show_log=False
)
result = temp_ocr.ocr(image_array, cls=True)
else:
result = ocr.ocr(image_array, cls=True)
# Process results
results = process_ocr_result(result)
return OCRResponse(success=True, results=results)
except Exception as e:
logger.error(f"OCR processing failed: {e}")
return OCRResponse(success=False, results=[], error=str(e))
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=5000)

View File

@@ -0,0 +1,19 @@
#!/bin/bash
set -e
echo "==================================="
echo "PaddleOCR-VL Server (CPU)"
echo "==================================="
HOST="${SERVER_HOST:-0.0.0.0}"
PORT="${SERVER_PORT:-8000}"
echo "Host: ${HOST}"
echo "Port: ${PORT}"
echo "Device: CPU (no GPU)"
echo ""
echo "Starting PaddleOCR-VL CPU server..."
echo "==================================="
exec python /app/paddleocr_vl_server.py

View File

@@ -0,0 +1,12 @@
#!/bin/bash
set -e
echo "Starting PaddleOCR-VL Full Pipeline Server (Transformers backend)..."
# Environment
SERVER_PORT=${SERVER_PORT:-8000}
SERVER_HOST=${SERVER_HOST:-0.0.0.0}
# Start our API server directly (no vLLM - uses local transformers inference)
echo "Starting API server on port $SERVER_PORT..."
exec python /app/server.py

View File

@@ -0,0 +1,443 @@
#!/usr/bin/env python3
"""
PaddleOCR-VL Full Pipeline API Server (Transformers backend)
Provides REST API for document parsing using:
- PP-DocLayoutV2 for layout detection
- PaddleOCR-VL (transformers) for recognition
- Structured JSON/Markdown output
"""
import os
import io
import base64
import logging
import tempfile
import time
import json
from typing import Optional, List, Union
from pathlib import Path
from fastapi import FastAPI, HTTPException, UploadFile, File, Form
from fastapi.responses import JSONResponse
from pydantic import BaseModel
from PIL import Image
import torch
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
# Environment configuration
SERVER_HOST = os.environ.get('SERVER_HOST', '0.0.0.0')
SERVER_PORT = int(os.environ.get('SERVER_PORT', '8000'))
MODEL_NAME = "PaddlePaddle/PaddleOCR-VL"
# Device configuration
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
logger.info(f"Using device: {DEVICE}")
# Task prompts
TASK_PROMPTS = {
"ocr": "OCR:",
"table": "Table Recognition:",
"formula": "Formula Recognition:",
"chart": "Chart Recognition:",
}
# Initialize FastAPI app
app = FastAPI(
title="PaddleOCR-VL Full Pipeline Server",
description="Document parsing with PP-DocLayoutV2 + PaddleOCR-VL (transformers)",
version="1.0.0"
)
# Global model instances
vl_model = None
vl_processor = None
layout_model = None
def load_vl_model():
"""Load the PaddleOCR-VL model for element recognition"""
global vl_model, vl_processor
if vl_model is not None:
return
logger.info(f"Loading PaddleOCR-VL model: {MODEL_NAME}")
from transformers import AutoModelForCausalLM, AutoProcessor
vl_processor = AutoProcessor.from_pretrained(MODEL_NAME, trust_remote_code=True)
if DEVICE == "cuda":
vl_model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
trust_remote_code=True,
torch_dtype=torch.bfloat16,
).to(DEVICE).eval()
else:
vl_model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
trust_remote_code=True,
torch_dtype=torch.float32,
low_cpu_mem_usage=True,
).eval()
logger.info("PaddleOCR-VL model loaded successfully")
def load_layout_model():
"""Load the LayoutDetection model for layout detection"""
global layout_model
if layout_model is not None:
return
try:
logger.info("Loading LayoutDetection model (PP-DocLayout_plus-L)...")
from paddleocr import LayoutDetection
layout_model = LayoutDetection()
logger.info("LayoutDetection model loaded successfully")
except Exception as e:
logger.warning(f"Could not load LayoutDetection: {e}")
logger.info("Falling back to VL-only mode (no layout detection)")
def recognize_element(image: Image.Image, task: str = "ocr") -> str:
"""Recognize a single element using PaddleOCR-VL"""
load_vl_model()
prompt = TASK_PROMPTS.get(task, TASK_PROMPTS["ocr"])
messages = [
{
"role": "user",
"content": [
{"type": "image", "image": image},
{"type": "text", "text": prompt},
]
}
]
inputs = vl_processor.apply_chat_template(
messages,
tokenize=True,
add_generation_prompt=True,
return_dict=True,
return_tensors="pt"
)
if DEVICE == "cuda":
inputs = {k: v.to(DEVICE) for k, v in inputs.items()}
with torch.inference_mode():
outputs = vl_model.generate(
**inputs,
max_new_tokens=4096,
do_sample=False,
use_cache=True
)
response = vl_processor.batch_decode(outputs, skip_special_tokens=True)[0]
# Extract only the assistant's response content
# The response format is: "User: <prompt>\nAssistant: <content>"
# We want to extract just the content after "Assistant:"
if "Assistant:" in response:
parts = response.split("Assistant:")
if len(parts) > 1:
response = parts[-1].strip()
elif "assistant:" in response.lower():
# Case-insensitive fallback
import re
match = re.split(r'[Aa]ssistant:', response)
if len(match) > 1:
response = match[-1].strip()
return response
def detect_layout(image: Image.Image) -> List[dict]:
"""Detect layout regions in the image"""
load_layout_model()
if layout_model is None:
# No layout model - return a single region covering the whole image
return [{
"type": "text",
"bbox": [0, 0, image.width, image.height],
"score": 1.0
}]
# Save image to temp file
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp:
image.save(tmp.name, "PNG")
tmp_path = tmp.name
try:
results = layout_model.predict(tmp_path)
regions = []
for res in results:
# LayoutDetection returns boxes in 'boxes' key
for box in res.get("boxes", []):
coord = box.get("coordinate", [0, 0, image.width, image.height])
# Convert numpy floats to regular floats
bbox = [float(c) for c in coord]
regions.append({
"type": box.get("label", "text"),
"bbox": bbox,
"score": float(box.get("score", 1.0))
})
# Sort regions by vertical position (top to bottom)
regions.sort(key=lambda r: r["bbox"][1])
return regions if regions else [{
"type": "text",
"bbox": [0, 0, image.width, image.height],
"score": 1.0
}]
finally:
os.unlink(tmp_path)
def process_document(image: Image.Image) -> dict:
"""Process a document through the full pipeline"""
logger.info(f"Processing document: {image.size}")
# Step 1: Detect layout
regions = detect_layout(image)
logger.info(f"Detected {len(regions)} layout regions")
# Step 2: Recognize each region
blocks = []
for i, region in enumerate(regions):
region_type = region["type"].lower()
bbox = region["bbox"]
# Crop region from image
x1, y1, x2, y2 = [int(c) for c in bbox]
region_image = image.crop((x1, y1, x2, y2))
# Determine task based on region type
if "table" in region_type:
task = "table"
elif "formula" in region_type or "math" in region_type:
task = "formula"
elif "chart" in region_type or "figure" in region_type:
task = "chart"
else:
task = "ocr"
# Recognize the region
try:
content = recognize_element(region_image, task)
blocks.append({
"index": i,
"type": region_type,
"bbox": bbox,
"content": content,
"task": task
})
logger.info(f" Region {i} ({region_type}): {len(content)} chars")
except Exception as e:
logger.error(f" Region {i} error: {e}")
blocks.append({
"index": i,
"type": region_type,
"bbox": bbox,
"content": "",
"error": str(e)
})
return {"blocks": blocks, "image_size": list(image.size)}
def result_to_markdown(result: dict) -> str:
"""Convert result to Markdown format"""
lines = []
for block in result.get("blocks", []):
block_type = block.get("type", "text")
content = block.get("content", "")
if "table" in block_type.lower():
lines.append(f"\n{content}\n")
elif "formula" in block_type.lower():
lines.append(f"\n$$\n{content}\n$$\n")
else:
lines.append(content)
return "\n\n".join(lines)
# Request/Response models
class ParseRequest(BaseModel):
image: str # base64 encoded image
output_format: Optional[str] = "json"
class ParseResponse(BaseModel):
success: bool
format: str
result: Union[dict, str]
processing_time: float
error: Optional[str] = None
def decode_image(image_source: str) -> Image.Image:
"""Decode image from base64 or data URL"""
if image_source.startswith("data:"):
header, data = image_source.split(",", 1)
image_data = base64.b64decode(data)
else:
image_data = base64.b64decode(image_source)
return Image.open(io.BytesIO(image_data)).convert("RGB")
@app.on_event("startup")
async def startup_event():
"""Pre-load models on startup"""
logger.info("Starting PaddleOCR-VL Full Pipeline Server...")
try:
load_vl_model()
load_layout_model()
logger.info("Models loaded successfully")
except Exception as e:
logger.error(f"Failed to pre-load models: {e}")
@app.get("/health")
async def health_check():
"""Health check endpoint"""
return {
"status": "healthy" if vl_model is not None else "loading",
"service": "PaddleOCR-VL Full Pipeline (Transformers)",
"device": DEVICE,
"vl_model_loaded": vl_model is not None,
"layout_model_loaded": layout_model is not None
}
@app.get("/formats")
async def supported_formats():
"""List supported output formats"""
return {
"output_formats": ["json", "markdown"],
"image_formats": ["PNG", "JPEG", "WebP", "BMP", "GIF", "TIFF"],
"capabilities": [
"Layout detection (PP-DocLayoutV2)",
"Text recognition (OCR)",
"Table recognition",
"Formula recognition (LaTeX)",
"Chart recognition",
"Multi-language support (109 languages)"
]
}
@app.post("/parse", response_model=ParseResponse)
async def parse_document_endpoint(request: ParseRequest):
"""Parse a document image and return structured output"""
try:
start_time = time.time()
image = decode_image(request.image)
result = process_document(image)
if request.output_format == "markdown":
markdown = result_to_markdown(result)
output = {"markdown": markdown}
else:
output = result
elapsed = time.time() - start_time
logger.info(f"Processing complete in {elapsed:.2f}s")
return ParseResponse(
success=True,
format=request.output_format,
result=output,
processing_time=elapsed
)
except Exception as e:
logger.error(f"Error processing document: {e}", exc_info=True)
return ParseResponse(
success=False,
format=request.output_format,
result={},
processing_time=0,
error=str(e)
)
@app.post("/v1/chat/completions")
async def chat_completions(request: dict):
"""OpenAI-compatible chat completions endpoint"""
try:
messages = request.get("messages", [])
output_format = request.get("output_format", "json")
# Find user message with image
image = None
for msg in reversed(messages):
if msg.get("role") == "user":
content = msg.get("content", [])
if isinstance(content, list):
for item in content:
if item.get("type") == "image_url":
url = item.get("image_url", {}).get("url", "")
image = decode_image(url)
break
break
if image is None:
raise HTTPException(status_code=400, detail="No image provided")
start_time = time.time()
result = process_document(image)
if output_format == "markdown":
content = result_to_markdown(result)
else:
content = json.dumps(result, ensure_ascii=False, indent=2)
elapsed = time.time() - start_time
return {
"id": f"chatcmpl-{int(time.time()*1000)}",
"object": "chat.completion",
"created": int(time.time()),
"model": "paddleocr-vl-full",
"choices": [{
"index": 0,
"message": {"role": "assistant", "content": content},
"finish_reason": "stop"
}],
"usage": {
"prompt_tokens": 100,
"completion_tokens": len(content) // 4,
"total_tokens": 100 + len(content) // 4
},
"processing_time": elapsed
}
except HTTPException:
raise
except Exception as e:
logger.error(f"Error in chat completions: {e}", exc_info=True)
raise HTTPException(status_code=500, detail=str(e))
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host=SERVER_HOST, port=SERVER_PORT)

View File

@@ -0,0 +1,465 @@
#!/usr/bin/env python3
"""
PaddleOCR-VL FastAPI Server (CPU variant)
Provides OpenAI-compatible REST API for document parsing using PaddleOCR-VL
"""
import os
import io
import base64
import logging
import time
from typing import Optional, List, Any, Dict, Union
from fastapi import FastAPI, HTTPException
from fastapi.responses import JSONResponse
from pydantic import BaseModel
import torch
from PIL import Image
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
# Environment configuration
SERVER_HOST = os.environ.get('SERVER_HOST', '0.0.0.0')
SERVER_PORT = int(os.environ.get('SERVER_PORT', '8000'))
MODEL_NAME = os.environ.get('MODEL_NAME', 'PaddlePaddle/PaddleOCR-VL')
# Device configuration
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
logger.info(f"Using device: {DEVICE}")
# Task prompts for PaddleOCR-VL
TASK_PROMPTS = {
"ocr": "OCR:",
"table": "Table Recognition:",
"formula": "Formula Recognition:",
"chart": "Chart Recognition:",
}
# Initialize FastAPI app
app = FastAPI(
title="PaddleOCR-VL Server",
description="OpenAI-compatible REST API for document parsing using PaddleOCR-VL",
version="1.0.0"
)
# Global model instances
model = None
processor = None
# Request/Response models (OpenAI-compatible)
class ImageUrl(BaseModel):
url: str
class ContentItem(BaseModel):
type: str
text: Optional[str] = None
image_url: Optional[ImageUrl] = None
class Message(BaseModel):
role: str
content: Union[str, List[ContentItem]]
class ChatCompletionRequest(BaseModel):
model: str = "paddleocr-vl"
messages: List[Message]
temperature: Optional[float] = 0.0
max_tokens: Optional[int] = 4096
class Choice(BaseModel):
index: int
message: Message
finish_reason: str
class Usage(BaseModel):
prompt_tokens: int
completion_tokens: int
total_tokens: int
class ChatCompletionResponse(BaseModel):
id: str
object: str = "chat.completion"
created: int
model: str
choices: List[Choice]
usage: Usage
class HealthResponse(BaseModel):
status: str
model: str
device: str
def load_model():
"""Load the PaddleOCR-VL model and processor"""
global model, processor
if model is not None:
return
logger.info(f"Loading PaddleOCR-VL model: {MODEL_NAME}")
from transformers import AutoModelForCausalLM, AutoProcessor
# Load processor
processor = AutoProcessor.from_pretrained(MODEL_NAME, trust_remote_code=True)
# Load model with appropriate settings for CPU/GPU
if DEVICE == "cuda":
model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
trust_remote_code=True,
torch_dtype=torch.bfloat16,
).to(DEVICE).eval()
else:
# CPU mode - use float32 for compatibility
model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
trust_remote_code=True,
torch_dtype=torch.float32,
low_cpu_mem_usage=True,
).eval()
logger.info("PaddleOCR-VL model loaded successfully")
def optimize_image_resolution(image: Image.Image, max_size: int = 2048, min_size: int = 1080) -> Image.Image:
"""
Optimize image resolution for PaddleOCR-VL.
Best results are achieved with images in the 1080p-2K range.
- Images larger than max_size are scaled down
- Very small images are scaled up to min_size
"""
width, height = image.size
max_dim = max(width, height)
min_dim = min(width, height)
# Scale down if too large (4K+ images often miss text)
if max_dim > max_size:
scale = max_size / max_dim
new_width = int(width * scale)
new_height = int(height * scale)
logger.info(f"Scaling down image from {width}x{height} to {new_width}x{new_height}")
image = image.resize((new_width, new_height), Image.Resampling.LANCZOS)
# Scale up if too small
elif max_dim < min_size and min_dim < min_size:
scale = min_size / max_dim
new_width = int(width * scale)
new_height = int(height * scale)
logger.info(f"Scaling up image from {width}x{height} to {new_width}x{new_height}")
image = image.resize((new_width, new_height), Image.Resampling.LANCZOS)
else:
logger.info(f"Image size {width}x{height} is optimal, no scaling needed")
return image
def decode_image(image_source: str, optimize: bool = True) -> Image.Image:
"""
Decode image from various sources.
Supported formats:
- Base64 data URL: data:image/png;base64,... or data:image/jpeg;base64,...
- HTTP/HTTPS URL: https://example.com/image.png
- Raw base64 string
- Local file path
Supported image types: PNG, JPEG, WebP, BMP, GIF, TIFF
"""
image = None
if image_source.startswith("data:"):
# Base64 encoded image with MIME type header
# Supports: data:image/png;base64,... data:image/jpeg;base64,... etc.
header, data = image_source.split(",", 1)
image_data = base64.b64decode(data)
image = Image.open(io.BytesIO(image_data)).convert("RGB")
logger.debug(f"Decoded base64 image with header: {header}")
elif image_source.startswith("http://") or image_source.startswith("https://"):
# URL - fetch image
import httpx
response = httpx.get(image_source, timeout=30.0)
response.raise_for_status()
image = Image.open(io.BytesIO(response.content)).convert("RGB")
logger.debug(f"Fetched image from URL: {image_source[:50]}...")
else:
# Assume it's a file path or raw base64
try:
image_data = base64.b64decode(image_source)
image = Image.open(io.BytesIO(image_data)).convert("RGB")
logger.debug("Decoded raw base64 image")
except:
# Try as file path
image = Image.open(image_source).convert("RGB")
logger.debug(f"Loaded image from file: {image_source}")
# Optimize resolution for best OCR results
if optimize:
image = optimize_image_resolution(image)
return image
def extract_image_and_text(content: Union[str, List[ContentItem]]) -> tuple:
"""Extract image and text prompt from message content"""
if isinstance(content, str):
return None, content
image = None
text = ""
for item in content:
if item.type == "image_url" and item.image_url:
image = decode_image(item.image_url.url)
elif item.type == "text" and item.text:
text = item.text
return image, text
def generate_response(image: Image.Image, prompt: str, max_tokens: int = 4096) -> str:
"""Generate response using PaddleOCR-VL"""
load_model()
messages = [
{
"role": "user",
"content": [
{"type": "image", "image": image},
{"type": "text", "text": prompt},
]
}
]
inputs = processor.apply_chat_template(
messages,
tokenize=True,
add_generation_prompt=True,
return_dict=True,
return_tensors="pt"
)
if DEVICE == "cuda":
inputs = {k: v.to(DEVICE) for k, v in inputs.items()}
with torch.inference_mode():
outputs = model.generate(
**inputs,
max_new_tokens=max_tokens,
do_sample=False,
use_cache=True
)
response = processor.batch_decode(outputs, skip_special_tokens=True)[0]
# Extract the assistant's response (after the prompt)
if "assistant" in response.lower():
parts = response.split("assistant")
if len(parts) > 1:
response = parts[-1].strip()
return response
@app.on_event("startup")
async def startup_event():
"""Pre-load the model on startup"""
logger.info("Pre-loading PaddleOCR-VL model...")
try:
load_model()
logger.info("Model pre-loaded successfully")
except Exception as e:
logger.error(f"Failed to pre-load model: {e}")
# Don't fail startup - model will be loaded on first request
@app.get("/health", response_model=HealthResponse)
async def health_check():
"""Health check endpoint"""
return HealthResponse(
status="healthy" if model is not None else "loading",
model=MODEL_NAME,
device=DEVICE
)
@app.get("/formats")
async def supported_formats():
"""List supported image formats and input methods"""
return {
"image_formats": {
"supported": ["PNG", "JPEG", "WebP", "BMP", "GIF", "TIFF"],
"recommended": ["PNG", "JPEG"],
"mime_types": [
"image/png",
"image/jpeg",
"image/webp",
"image/bmp",
"image/gif",
"image/tiff"
]
},
"input_methods": {
"base64_data_url": {
"description": "Base64 encoded image with MIME type header",
"example": "..."
},
"http_url": {
"description": "Direct HTTP/HTTPS URL to image",
"example": "https://example.com/image.png"
},
"raw_base64": {
"description": "Raw base64 string without header",
"example": "iVBORw0KGgo..."
}
},
"resolution": {
"optimal_range": "1080p to 2K (1080-2048 pixels on longest side)",
"auto_scaling": True,
"note": "Images are automatically scaled to optimal range. 4K+ images are scaled down for better accuracy."
},
"task_prompts": TASK_PROMPTS
}
@app.get("/v1/models")
async def list_models():
"""List available models (OpenAI-compatible)"""
return {
"object": "list",
"data": [
{
"id": "paddleocr-vl",
"object": "model",
"created": int(time.time()),
"owned_by": "paddlepaddle"
}
]
}
@app.post("/v1/chat/completions", response_model=ChatCompletionResponse)
async def chat_completions(request: ChatCompletionRequest):
"""
OpenAI-compatible chat completions endpoint for PaddleOCR-VL
Supports tasks:
- "OCR:" - Text recognition
- "Table Recognition:" - Table extraction
- "Formula Recognition:" - Formula extraction
- "Chart Recognition:" - Chart extraction
"""
try:
# Get the last user message
user_message = None
for msg in reversed(request.messages):
if msg.role == "user":
user_message = msg
break
if not user_message:
raise HTTPException(status_code=400, detail="No user message found")
# Extract image and prompt
image, prompt = extract_image_and_text(user_message.content)
if image is None:
raise HTTPException(status_code=400, detail="No image provided in message")
# Default to OCR if no specific prompt
if not prompt or prompt.strip() == "":
prompt = "OCR:"
logger.info(f"Processing request with prompt: {prompt[:50]}...")
# Generate response
start_time = time.time()
response_text = generate_response(image, prompt, request.max_tokens or 4096)
elapsed = time.time() - start_time
logger.info(f"Generated response in {elapsed:.2f}s ({len(response_text)} chars)")
# Build OpenAI-compatible response
return ChatCompletionResponse(
id=f"chatcmpl-{int(time.time()*1000)}",
created=int(time.time()),
model=request.model,
choices=[
Choice(
index=0,
message=Message(role="assistant", content=response_text),
finish_reason="stop"
)
],
usage=Usage(
prompt_tokens=100, # Approximate
completion_tokens=len(response_text) // 4,
total_tokens=100 + len(response_text) // 4
)
)
except HTTPException:
raise
except Exception as e:
logger.error(f"Error processing request: {e}")
raise HTTPException(status_code=500, detail=str(e))
# Legacy endpoint for compatibility with old PaddleOCR API
class LegacyOCRRequest(BaseModel):
image: str
task: Optional[str] = "ocr"
class LegacyOCRResponse(BaseModel):
success: bool
result: str
task: str
error: Optional[str] = None
@app.post("/ocr", response_model=LegacyOCRResponse)
async def legacy_ocr(request: LegacyOCRRequest):
"""
Legacy OCR endpoint for backwards compatibility
Tasks: ocr, table, formula, chart
"""
try:
image = decode_image(request.image)
prompt = TASK_PROMPTS.get(request.task, TASK_PROMPTS["ocr"])
result = generate_response(image, prompt)
return LegacyOCRResponse(
success=True,
result=result,
task=request.task
)
except Exception as e:
logger.error(f"Legacy OCR error: {e}")
return LegacyOCRResponse(
success=False,
result="",
task=request.task,
error=str(e)
)
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host=SERVER_HOST, port=SERVER_PORT)

View File

@@ -1,7 +1,10 @@
{ {
"npmci": { "npmci": {
"npmGlobalTools": [], "npmGlobalTools": [],
"npmAccessLevel": "public" "npmAccessLevel": "public",
"dockerRegistries": [
"code.foss.global"
]
}, },
"gitzone": { "gitzone": {
"projectType": "docker", "projectType": "docker",

View File

@@ -1,6 +1,6 @@
{ {
"name": "@host.today/ht-docker-ai", "name": "@host.today/ht-docker-ai",
"version": "1.1.0", "version": "1.7.1",
"type": "module", "type": "module",
"private": false, "private": false,
"description": "Docker images for AI vision-language models including MiniCPM-V 4.5", "description": "Docker images for AI vision-language models including MiniCPM-V 4.5",
@@ -13,8 +13,8 @@
"test": "tstest test/ --verbose" "test": "tstest test/ --verbose"
}, },
"devDependencies": { "devDependencies": {
"@git.zone/tstest": "^1.0.90", "@git.zone/tsrun": "^1.3.3",
"@git.zone/tsrun": "^1.3.3" "@git.zone/tstest": "^1.0.90"
}, },
"repository": { "repository": {
"type": "git", "type": "git",
@@ -28,5 +28,8 @@
"minicpm", "minicpm",
"ollama", "ollama",
"multimodal" "multimodal"
] ],
"dependencies": {
"@types/node": "^25.0.9"
}
} }

4
pnpm-lock.yaml generated
View File

@@ -7,6 +7,10 @@ settings:
importers: importers:
.: .:
dependencies:
'@types/node':
specifier: ^25.0.9
version: 25.0.9
devDependencies: devDependencies:
'@git.zone/tsrun': '@git.zone/tsrun':
specifier: ^1.3.3 specifier: ^1.3.3

View File

@@ -77,6 +77,95 @@ HEALTHCHECK --interval=30s --timeout=10s --start-period=60s --retries=3 \
CPU variant has longer `start-period` (120s) due to slower startup. CPU variant has longer `start-period` (120s) due to slower startup.
## PaddleOCR-VL (Recommended)
### Overview
PaddleOCR-VL is a 0.9B parameter Vision-Language Model specifically optimized for document parsing. It replaces the older PP-Structure approach with native VLM understanding.
**Key advantages over PP-Structure:**
- Native table understanding (no HTML parsing needed)
- 109 language support
- Better handling of complex multi-row tables
- Structured Markdown/JSON output
### Docker Images
| Tag | Description |
|-----|-------------|
| `paddleocr-vl` | GPU variant using vLLM (recommended) |
| `paddleocr-vl-cpu` | CPU variant using transformers |
### API Endpoints (OpenAI-compatible)
| Endpoint | Method | Description |
|----------|--------|-------------|
| `/health` | GET | Health check with model info |
| `/v1/models` | GET | List available models |
| `/v1/chat/completions` | POST | OpenAI-compatible chat completions |
| `/ocr` | POST | Legacy OCR endpoint |
### Request/Response Format
**POST /v1/chat/completions (OpenAI-compatible)**
```json
{
"model": "paddleocr-vl",
"messages": [
{
"role": "user",
"content": [
{"type": "image_url", "image_url": {"url": "data:image/png;base64,..."}},
{"type": "text", "text": "Table Recognition:"}
]
}
],
"temperature": 0.0,
"max_tokens": 8192
}
```
**Task Prompts:**
- `"OCR:"` - Text recognition
- `"Table Recognition:"` - Table extraction (returns markdown)
- `"Formula Recognition:"` - Formula extraction
- `"Chart Recognition:"` - Chart extraction
**Response**
```json
{
"id": "chatcmpl-...",
"object": "chat.completion",
"choices": [
{
"index": 0,
"message": {
"role": "assistant",
"content": "| Date | Description | Amount |\n|---|---|---|\n| 2021-06-01 | GITLAB INC | -119.96 |"
},
"finish_reason": "stop"
}
]
}
```
### Environment Variables
| Variable | Default | Description |
|----------|---------|-------------|
| `MODEL_NAME` | `PaddlePaddle/PaddleOCR-VL` | Model to load |
| `HOST` | `0.0.0.0` | Server host |
| `PORT` | `8000` | Server port |
| `MAX_BATCHED_TOKENS` | `16384` | vLLM max batch tokens |
| `GPU_MEMORY_UTILIZATION` | `0.9` | GPU memory usage (0-1) |
### Performance
- **GPU (vLLM)**: ~2-5 seconds per page
- **CPU**: ~30-60 seconds per page
---
## Adding New Models ## Adding New Models
To add a new model variant: To add a new model variant:
@@ -118,6 +207,43 @@ npmci docker build
npmci docker push code.foss.global npmci docker push code.foss.global
``` ```
## Multi-Pass Extraction Strategy
The bank statement extraction uses a dual-VLM consensus approach:
### Architecture: Dual-VLM Consensus
| VLM | Model | Purpose |
|-----|-------|---------|
| **MiniCPM-V 4.5** | 8B params | Primary visual extraction |
| **PaddleOCR-VL** | 0.9B params | Table-specialized extraction |
### Extraction Strategy
1. **Pass 1**: MiniCPM-V visual extraction (images → JSON)
2. **Pass 2**: PaddleOCR-VL table recognition (images → markdown → JSON)
3. **Consensus**: If Pass 1 == Pass 2 → Done (fast path)
4. **Pass 3+**: MiniCPM-V visual if no consensus
### Why Dual-VLM Works
- **Different architectures**: Two independent models cross-check each other
- **Specialized strengths**: PaddleOCR-VL optimized for tables, MiniCPM-V for general vision
- **No structure loss**: Both VLMs see the original images directly
- **Fast consensus**: Most documents complete in 2 passes when VLMs agree
### Comparison vs Old PP-Structure Approach
| Approach | Bank Statement Result | Issue |
|----------|----------------------|-------|
| MiniCPM-V Visual | 28 transactions ✓ | - |
| PP-Structure HTML + Visual | 13 transactions ✗ | HTML merged rows incorrectly |
| PaddleOCR-VL Table | 28 transactions ✓ | Native table understanding |
**Key insight**: PP-Structure's HTML output loses structure for complex tables. PaddleOCR-VL's native VLM approach maintains table integrity.
---
## Related Resources ## Related Resources
- [Ollama Documentation](https://ollama.ai/docs) - [Ollama Documentation](https://ollama.ai/docs)

View File

@@ -1,129 +1,250 @@
# Bank Statement Parsing with MiniCPM-V 4.5 # Document Recognition with Hybrid OCR + Vision AI
Recipe for extracting transactions from bank statement PDFs using vision-language AI. Recipe for extracting structured data from invoices and documents using a hybrid approach:
PaddleOCR for text extraction + MiniCPM-V 4.5 for intelligent parsing.
## Model ## Architecture
- **Model**: MiniCPM-V 4.5 (8B parameters) ```
- **Ollama Name**: `openbmb/minicpm-v4.5:q8_0` ┌──────────────┐ ┌──────────────┐ ┌──────────────┐
- **Quantization**: Q8_0 (9.8GB VRAM) │ PDF/Image │ ───> │ PaddleOCR │ ───> │ Raw Text │
- **Runtime**: Ollama on GPU └──────────────┘ └──────────────┘ └──────┬───────┘
┌──────────────┐ │
│ MiniCPM-V │ <───────────┘
│ 4.5 VLM │ <─── Image
└──────┬───────┘
┌──────▼───────┐
│ Structured │
│ JSON │
└──────────────┘
```
## Why Hybrid?
| Approach | Accuracy | Speed | Best For |
|----------|----------|-------|----------|
| VLM Only | 85-90% | Fast | Simple layouts |
| OCR Only | N/A | Fast | Just text extraction |
| **Hybrid** | **91%+** | Medium | Complex invoices |
The hybrid approach provides OCR text as context to the VLM, improving accuracy on:
- Small text and numbers
- Low contrast documents
- Dense tables
## Services
| Service | Port | Purpose |
|---------|------|---------|
| PaddleOCR | 5000 | Text extraction |
| Ollama (MiniCPM-V) | 11434 | Intelligent parsing |
## Running the Containers
**Start both services:**
```bash
# PaddleOCR (CPU is sufficient for OCR)
docker run -d --name paddleocr -p 5000:5000 \
code.foss.global/host.today/ht-docker-ai:paddleocr-cpu
# MiniCPM-V 4.5 (GPU recommended)
docker run -d --name minicpm --gpus all -p 11434:11434 \
-v ollama-data:/root/.ollama \
code.foss.global/host.today/ht-docker-ai:minicpm45v
```
## Image Conversion ## Image Conversion
Convert PDF to PNG at 300 DPI for optimal OCR accuracy. Convert PDF to PNG at 200 DPI:
```bash ```bash
convert -density 300 -quality 100 input.pdf \ convert -density 200 -quality 90 input.pdf \
-background white -alpha remove \ -background white -alpha remove \
output-%d.png page-%d.png
``` ```
**Parameters:** ## Step 1: Extract OCR Text
- `-density 300`: 300 DPI resolution (critical for accuracy)
- `-quality 100`: Maximum quality
- `-background white -alpha remove`: Remove transparency
- `output-%d.png`: Outputs page-0.png, page-1.png, etc.
**Dependencies:** ```typescript
```bash async function extractOcrText(imageBase64: string): Promise<string> {
apt-get install imagemagick const response = await fetch('http://localhost:5000/ocr', {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({ image: imageBase64 }),
});
const data = await response.json();
if (data.success && data.results) {
return data.results.map((r: { text: string }) => r.text).join('\n');
}
return '';
}
``` ```
## Prompt ## Step 2: Build Enhanced Prompt
``` ```typescript
You are a bank statement parser. Extract EVERY transaction from the table. function buildPrompt(ocrText: string): string {
const base = `You are an invoice parser. Extract the following fields:
Read the Amount column carefully: 1. invoice_number: The invoice/receipt number
- "- 21,47 €" means DEBIT, output as: -21.47 2. invoice_date: Date in YYYY-MM-DD format
- "+ 1.000,00 €" means CREDIT, output as: 1000.00 3. vendor_name: Company that issued the invoice
- European format: comma = decimal point 4. currency: EUR, USD, etc.
5. net_amount: Amount before tax (if shown)
6. vat_amount: Tax/VAT amount (0 if reverse charge)
7. total_amount: Final amount due
For each row output: {"date":"YYYY-MM-DD","counterparty":"NAME","amount":-21.47} Return ONLY valid JSON:
{"invoice_number":"XXX","invoice_date":"YYYY-MM-DD","vendor_name":"Company","currency":"EUR","net_amount":100.00,"vat_amount":19.00,"total_amount":119.00}`;
Do not skip any rows. Return complete JSON array: if (ocrText) {
return `${base}
OCR text extracted from the invoice:
---
${ocrText}
---
Cross-reference the image with the OCR text above for accuracy.`;
}
return base;
}
``` ```
## API Call ## Step 3: Call Vision-Language Model
```python ```typescript
import base64 async function extractInvoice(images: string[], ocrText: string): Promise<Invoice> {
import requests const payload = {
model: 'openbmb/minicpm-v4.5:q8_0',
prompt: buildPrompt(ocrText),
images, // Base64 encoded
stream: false,
options: {
num_predict: 2048,
temperature: 0.1,
},
};
# Load images const response = await fetch('http://localhost:11434/api/generate', {
with open('page-0.png', 'rb') as f: method: 'POST',
page0 = base64.b64encode(f.read()).decode('utf-8') headers: { 'Content-Type': 'application/json' },
with open('page-1.png', 'rb') as f: body: JSON.stringify(payload),
page1 = base64.b64encode(f.read()).decode('utf-8') });
payload = { const result = await response.json();
"model": "openbmb/minicpm-v4.5:q8_0", return JSON.parse(result.response);
"prompt": prompt, }
"images": [page0, page1], # Multiple pages supported ```
"stream": False,
"options": { ## Consensus Voting
"num_predict": 16384,
"temperature": 0.1 For production reliability, run multiple extraction passes and require consensus:
```typescript
async function extractWithConsensus(images: string[], maxPasses: number = 5): Promise<Invoice> {
const results: Map<string, { invoice: Invoice; count: number }> = new Map();
// Optimization: Run Pass 1 (no OCR) parallel with OCR + Pass 2
const [pass1Result, ocrText] = await Promise.all([
extractInvoice(images, ''),
extractOcrText(images[0]),
]);
// Add Pass 1 result
addResult(results, pass1Result);
// Pass 2 with OCR context
const pass2Result = await extractInvoice(images, ocrText);
addResult(results, pass2Result);
// Check for consensus (2 matching results)
for (const [hash, data] of results) {
if (data.count >= 2) {
return data.invoice; // Consensus reached!
} }
}
// Continue until consensus or max passes
for (let pass = 3; pass <= maxPasses; pass++) {
const result = await extractInvoice(images, ocrText);
addResult(results, result);
// Check consensus...
}
// Return most common result
return getMostCommon(results);
} }
response = requests.post( function hashInvoice(inv: Invoice): string {
'http://localhost:11434/api/generate', return `${inv.invoice_number}|${inv.invoice_date}|${inv.total_amount.toFixed(2)}`;
json=payload, }
timeout=600
)
result = response.json()['response']
``` ```
## Output Format ## Output Format
```json ```json
[ {
{"date":"2022-04-01","counterparty":"DIGITALOCEAN.COM","amount":-21.47}, "invoice_number": "INV-2024-001234",
{"date":"2022-04-01","counterparty":"DIGITALOCEAN.COM","amount":-58.06}, "invoice_date": "2024-08-15",
{"date":"2022-04-12","counterparty":"LOSSLESS GMBH","amount":1000.00} "vendor_name": "Hetzner Online GmbH",
] "currency": "EUR",
"net_amount": 167.52,
"vat_amount": 31.83,
"total_amount": 199.35
}
``` ```
## Running the Container
**GPU (recommended):**
```bash
docker run -d --gpus all -p 11434:11434 \
-v ollama-data:/root/.ollama \
-e MODEL_NAME="openbmb/minicpm-v4.5:q8_0" \
ht-docker-ai:minicpm45v
```
**CPU (slower):**
```bash
docker run -d -p 11434:11434 \
-v ollama-data:/root/.ollama \
-e MODEL_NAME="openbmb/minicpm-v4.5:q4_0" \
ht-docker-ai:minicpm45v-cpu
```
## Hardware Requirements
| Quantization | VRAM/RAM | Speed |
|--------------|----------|-------|
| Q8_0 (GPU) | 10GB | Fast |
| Q4_0 (CPU) | 8GB | Slow |
## Test Results ## Test Results
| Statement | Pages | Transactions | Accuracy | Tested on 46 real invoices from various vendors:
|-----------|-------|--------------|----------|
| bunq-2022-04 | 2 | 26 | 100% | | Metric | Value |
| bunq-2021-06 | 3 | 28 | 100% | |--------|-------|
| **Accuracy** | 91.3% (42/46) |
| **Avg Time** | 42.7s per invoice |
| **Consensus Rate** | 85% in 2 passes |
### Per-Vendor Results
| Vendor | Invoices | Accuracy |
|--------|----------|----------|
| Hetzner | 3 | 100% |
| DigitalOcean | 4 | 100% |
| Adobe | 3 | 100% |
| Cloudflare | 1 | 100% |
| Wasabi | 4 | 100% |
| Figma | 3 | 100% |
| Google Cloud | 1 | 100% |
| MongoDB | 3 | 0% (date parsing) |
## Hardware Requirements
| Component | Minimum | Recommended |
|-----------|---------|-------------|
| PaddleOCR (CPU) | 4GB RAM | 8GB RAM |
| MiniCPM-V (GPU) | 10GB VRAM | 12GB VRAM |
| MiniCPM-V (CPU) | 16GB RAM | 32GB RAM |
## Tips ## Tips
1. **DPI matters**: 150 DPI causes missed rows; 300 DPI is optimal 1. **Use hybrid approach**: OCR text dramatically improves number/date accuracy
2. **PNG over JPEG**: PNG preserves text clarity better 2. **Consensus voting**: Run 2-5 passes to catch hallucinations
3. **Remove alpha**: Some models struggle with transparency 3. **200 DPI is optimal**: Higher doesn't help, lower loses detail
4. **Multi-page**: Pass all pages in single request for context 4. **PNG over JPEG**: Preserves text clarity
5. **Temperature 0.1**: Low temperature for consistent output 5. **Temperature 0.1**: Low temperature for consistent output
6. **European format**: Explicitly explain comma=decimal in prompt 6. **Multi-page support**: Pass all pages in single request for context
7. **Normalize for comparison**: Ignore case/whitespace when comparing invoice numbers
## Common Issues
| Issue | Cause | Solution |
|-------|-------|----------|
| Wrong date | Multiple dates on invoice | Be specific in prompt about which date |
| Wrong currency | Symbol vs code mismatch | OCR helps disambiguate |
| Missing digits | Low resolution | Increase density to 300 DPI |
| Hallucinated data | VLM uncertainty | Use consensus voting |

View File

@@ -5,7 +5,8 @@ set -e
REGISTRY="code.foss.global" REGISTRY="code.foss.global"
NAMESPACE="host.today" NAMESPACE="host.today"
IMAGE_NAME="ht-docker-ai" IMAGE_NAME="ht-docker-ai"
TEST_PORT=11434 MINICPM_PORT=11434
PADDLEOCR_PORT=5000
# Colors for output # Colors for output
GREEN='\033[0;32m' GREEN='\033[0;32m'
@@ -17,11 +18,13 @@ cleanup() {
echo -e "${BLUE}Cleaning up test containers...${NC}" echo -e "${BLUE}Cleaning up test containers...${NC}"
docker rm -f test-minicpm-gpu 2>/dev/null || true docker rm -f test-minicpm-gpu 2>/dev/null || true
docker rm -f test-minicpm-cpu 2>/dev/null || true docker rm -f test-minicpm-cpu 2>/dev/null || true
docker rm -f test-paddleocr-gpu 2>/dev/null || true
docker rm -f test-paddleocr-cpu 2>/dev/null || true
} }
trap cleanup EXIT trap cleanup EXIT
test_image() { test_minicpm_image() {
local tag=$1 local tag=$1
local container_name=$2 local container_name=$2
local extra_args=$3 local extra_args=$3
@@ -31,7 +34,7 @@ test_image() {
# Start container # Start container
docker run -d \ docker run -d \
--name ${container_name} \ --name ${container_name} \
-p ${TEST_PORT}:11434 \ -p ${MINICPM_PORT}:11434 \
${extra_args} \ ${extra_args} \
${REGISTRY}/${NAMESPACE}/${IMAGE_NAME}:${tag} ${REGISTRY}/${NAMESPACE}/${IMAGE_NAME}:${tag}
@@ -41,7 +44,7 @@ test_image() {
# Test API endpoint # Test API endpoint
echo "Testing API endpoint..." echo "Testing API endpoint..."
if curl -s -f http://localhost:${TEST_PORT}/api/tags > /dev/null; then if curl -s -f http://localhost:${MINICPM_PORT}/api/tags > /dev/null; then
echo -e "${GREEN}API endpoint responding!${NC}" echo -e "${GREEN}API endpoint responding!${NC}"
else else
echo -e "${RED}API endpoint not responding!${NC}" echo -e "${RED}API endpoint not responding!${NC}"
@@ -56,17 +59,85 @@ test_image() {
echo "" echo ""
} }
test_paddleocr_image() {
local tag=$1
local container_name=$2
local extra_args=$3
echo -e "${BLUE}Testing ${tag}...${NC}"
# Start container
docker run -d \
--name ${container_name} \
-p ${PADDLEOCR_PORT}:5000 \
${extra_args} \
${REGISTRY}/${NAMESPACE}/${IMAGE_NAME}:${tag}
# Wait for startup (PaddleOCR takes longer to initialize)
echo "Waiting for container to start..."
sleep 30
# Test health endpoint
echo "Testing health endpoint..."
if curl -s -f http://localhost:${PADDLEOCR_PORT}/health > /dev/null; then
echo -e "${GREEN}Health endpoint responding!${NC}"
else
echo -e "${RED}Health endpoint not responding!${NC}"
docker logs ${container_name}
return 1
fi
# Test OCR endpoint with a minimal base64 image (1x1 white pixel PNG)
echo "Testing OCR endpoint..."
local test_image="iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAYAAAAfFcSJAAAADUlEQVR42mP8/5+hHgAHggJ/PchI7wAAAABJRU5ErkJggg=="
local response=$(curl -s -X POST http://localhost:${PADDLEOCR_PORT}/ocr \
-H "Content-Type: application/json" \
-d "{\"image\": \"${test_image}\"}")
if echo "$response" | grep -q '"success"'; then
echo -e "${GREEN}OCR endpoint responding!${NC}"
else
echo -e "${RED}OCR endpoint not responding correctly!${NC}"
echo "Response: $response"
docker logs ${container_name}
return 1
fi
# Cleanup this container
docker rm -f ${container_name}
echo -e "${GREEN}${tag} test passed!${NC}"
echo ""
}
echo -e "${BLUE}=== Testing ht-docker-ai images ===${NC}" echo -e "${BLUE}=== Testing ht-docker-ai images ===${NC}"
echo "" echo ""
# Test CPU variant (doesn't require GPU) echo -e "${BLUE}--- MiniCPM-V Tests ---${NC}"
test_image "minicpm45v-cpu" "test-minicpm-cpu" "" echo ""
# Test GPU variant only if NVIDIA runtime is available # Test MiniCPM CPU variant (doesn't require GPU)
test_minicpm_image "minicpm45v-cpu" "test-minicpm-cpu" ""
# Test MiniCPM GPU variant only if NVIDIA runtime is available
if docker info 2>/dev/null | grep -q "nvidia"; then if docker info 2>/dev/null | grep -q "nvidia"; then
test_image "minicpm45v" "test-minicpm-gpu" "--gpus all" test_minicpm_image "minicpm45v" "test-minicpm-gpu" "--gpus all"
else else
echo -e "${BLUE}Skipping GPU test (NVIDIA runtime not available)${NC}" echo -e "${BLUE}Skipping MiniCPM GPU test (NVIDIA runtime not available)${NC}"
fi
echo ""
echo -e "${BLUE}--- PaddleOCR Tests ---${NC}"
echo ""
# Test PaddleOCR CPU variant (doesn't require GPU)
test_paddleocr_image "paddleocr-cpu" "test-paddleocr-cpu" ""
# Test PaddleOCR GPU variant only if NVIDIA runtime is available
if docker info 2>/dev/null | grep -q "nvidia"; then
test_paddleocr_image "paddleocr" "test-paddleocr-gpu" "--gpus all"
else
echo -e "${BLUE}Skipping PaddleOCR GPU test (NVIDIA runtime not available)${NC}"
fi fi
echo -e "${GREEN}=== All tests passed! ===${NC}" echo -e "${GREEN}=== All tests passed! ===${NC}"

360
test/helpers/docker.ts Normal file
View File

@@ -0,0 +1,360 @@
import { execSync } from 'child_process';
// Project container names (only manage these)
const PROJECT_CONTAINERS = [
'paddleocr-vl-test',
'paddleocr-vl-gpu-test',
'paddleocr-vl-cpu-test',
'paddleocr-vl-full-test',
'minicpm-test',
];
// Image configurations
export interface IImageConfig {
name: string;
dockerfile: string;
buildContext: string;
containerName: string;
ports: string[];
volumes?: string[];
gpus?: boolean;
healthEndpoint?: string;
healthTimeout?: number;
}
export const IMAGES = {
paddleocrVlGpu: {
name: 'paddleocr-vl-gpu',
dockerfile: 'Dockerfile_paddleocr_vl_gpu',
buildContext: '.',
containerName: 'paddleocr-vl-test',
ports: ['8000:8000'],
volumes: ['ht-huggingface-cache:/root/.cache/huggingface'],
gpus: true,
healthEndpoint: 'http://localhost:8000/health',
healthTimeout: 300000, // 5 minutes for model loading
} as IImageConfig,
paddleocrVlCpu: {
name: 'paddleocr-vl-cpu',
dockerfile: 'Dockerfile_paddleocr_vl_cpu',
buildContext: '.',
containerName: 'paddleocr-vl-test',
ports: ['8000:8000'],
volumes: ['ht-huggingface-cache:/root/.cache/huggingface'],
gpus: false,
healthEndpoint: 'http://localhost:8000/health',
healthTimeout: 300000,
} as IImageConfig,
minicpm: {
name: 'minicpm45v',
dockerfile: 'Dockerfile_minicpm45v_gpu',
buildContext: '.',
containerName: 'minicpm-test',
ports: ['11434:11434'],
volumes: ['ht-ollama-models:/root/.ollama'],
gpus: true,
healthEndpoint: 'http://localhost:11434/api/tags',
healthTimeout: 120000,
} as IImageConfig,
// Full PaddleOCR-VL pipeline with PP-DocLayoutV2 + structured JSON output
paddleocrVlFull: {
name: 'paddleocr-vl-full',
dockerfile: 'Dockerfile_paddleocr_vl_full',
buildContext: '.',
containerName: 'paddleocr-vl-full-test',
ports: ['8000:8000'],
volumes: [
'ht-huggingface-cache:/root/.cache/huggingface',
'ht-paddleocr-cache:/root/.paddleocr',
],
gpus: true,
healthEndpoint: 'http://localhost:8000/health',
healthTimeout: 600000, // 10 minutes for model loading (vLLM + PP-DocLayoutV2)
} as IImageConfig,
};
/**
* Execute a shell command and return output
*/
function exec(command: string, silent = false): string {
try {
return execSync(command, {
encoding: 'utf-8',
stdio: silent ? 'pipe' : 'inherit',
});
} catch (err: unknown) {
if (silent) return '';
throw err;
}
}
/**
* Check if a Docker image exists locally
*/
export function imageExists(imageName: string): boolean {
const result = exec(`docker images -q ${imageName}`, true);
return result.trim().length > 0;
}
/**
* Check if a container is running
*/
export function isContainerRunning(containerName: string): boolean {
const result = exec(`docker ps --filter "name=^${containerName}$" --format "{{.Names}}"`, true);
return result.trim() === containerName;
}
/**
* Check if a container exists (running or stopped)
*/
export function containerExists(containerName: string): boolean {
const result = exec(`docker ps -a --filter "name=^${containerName}$" --format "{{.Names}}"`, true);
return result.trim() === containerName;
}
/**
* Stop and remove a container
*/
export function removeContainer(containerName: string): void {
if (containerExists(containerName)) {
console.log(`[Docker] Removing container: ${containerName}`);
exec(`docker rm -f ${containerName}`, true);
}
}
/**
* Stop all project containers that conflict with the required one
*/
export function stopConflictingContainers(requiredContainer: string, requiredPort: string): void {
// Stop project containers using the same port
for (const container of PROJECT_CONTAINERS) {
if (container === requiredContainer) continue;
if (isContainerRunning(container)) {
// Check if this container uses the same port
const ports = exec(`docker port ${container} 2>/dev/null || true`, true);
if (ports.includes(requiredPort.split(':')[0])) {
console.log(`[Docker] Stopping conflicting container: ${container}`);
exec(`docker stop ${container}`, true);
}
}
}
}
/**
* Build a Docker image
*/
export function buildImage(config: IImageConfig): void {
console.log(`[Docker] Building image: ${config.name}`);
const cmd = `docker build --load -f ${config.dockerfile} -t ${config.name} ${config.buildContext}`;
exec(cmd);
}
/**
* Start a container from an image
*/
export function startContainer(config: IImageConfig): void {
// Remove existing container if it exists
removeContainer(config.containerName);
console.log(`[Docker] Starting container: ${config.containerName}`);
const portArgs = config.ports.map((p) => `-p ${p}`).join(' ');
const volumeArgs = config.volumes?.map((v) => `-v ${v}`).join(' ') || '';
const gpuArgs = config.gpus ? '--gpus all' : '';
const cmd = `docker run -d --name ${config.containerName} ${gpuArgs} ${portArgs} ${volumeArgs} ${config.name}`;
exec(cmd);
}
/**
* Wait for a container to become healthy
*/
export async function waitForHealth(
endpoint: string,
timeoutMs: number = 120000,
intervalMs: number = 5000
): Promise<boolean> {
const startTime = Date.now();
console.log(`[Docker] Waiting for health: ${endpoint}`);
while (Date.now() - startTime < timeoutMs) {
try {
const response = await fetch(endpoint, {
method: 'GET',
signal: AbortSignal.timeout(5000),
});
if (response.ok) {
console.log(`[Docker] Service healthy!`);
return true;
}
} catch {
// Service not ready yet
}
const elapsed = Math.round((Date.now() - startTime) / 1000);
console.log(`[Docker] Waiting... (${elapsed}s)`);
await new Promise((resolve) => setTimeout(resolve, intervalMs));
}
console.log(`[Docker] Health check timeout after ${timeoutMs / 1000}s`);
return false;
}
/**
* Ensure a service is running and healthy
* - Builds image if missing
* - Stops conflicting project containers
* - Starts container if not running
* - Waits for health check
*/
export async function ensureService(config: IImageConfig): Promise<boolean> {
console.log(`\n[Docker] Ensuring service: ${config.name}`);
// Build image if it doesn't exist
if (!imageExists(config.name)) {
console.log(`[Docker] Image not found, building...`);
buildImage(config);
}
// Stop conflicting containers on the same port
const mainPort = config.ports[0];
stopConflictingContainers(config.containerName, mainPort);
// Start container if not running
if (!isContainerRunning(config.containerName)) {
startContainer(config);
} else {
console.log(`[Docker] Container already running: ${config.containerName}`);
}
// Wait for health
if (config.healthEndpoint) {
return waitForHealth(config.healthEndpoint, config.healthTimeout);
}
return true;
}
/**
* Ensure PaddleOCR-VL GPU service is running
*/
export async function ensurePaddleOcrVlGpu(): Promise<boolean> {
return ensureService(IMAGES.paddleocrVlGpu);
}
/**
* Ensure PaddleOCR-VL CPU service is running
*/
export async function ensurePaddleOcrVlCpu(): Promise<boolean> {
return ensureService(IMAGES.paddleocrVlCpu);
}
/**
* Ensure MiniCPM service is running
*/
export async function ensureMiniCpm(): Promise<boolean> {
return ensureService(IMAGES.minicpm);
}
/**
* Check if GPU is available
*/
export function isGpuAvailable(): boolean {
try {
const result = exec('nvidia-smi --query-gpu=name --format=csv,noheader 2>/dev/null', true);
return result.trim().length > 0;
} catch {
return false;
}
}
/**
* Ensure PaddleOCR-VL service (auto-detect GPU/CPU)
*/
export async function ensurePaddleOcrVl(): Promise<boolean> {
if (isGpuAvailable()) {
console.log('[Docker] GPU detected, using GPU image');
return ensurePaddleOcrVlGpu();
} else {
console.log('[Docker] No GPU detected, using CPU image');
return ensurePaddleOcrVlCpu();
}
}
/**
* Ensure PaddleOCR-VL Full Pipeline service (PP-DocLayoutV2 + structured output)
* This is the recommended service for production use - outputs structured JSON/Markdown
*/
export async function ensurePaddleOcrVlFull(): Promise<boolean> {
if (!isGpuAvailable()) {
console.log('[Docker] WARNING: Full pipeline requires GPU, but none detected');
}
return ensureService(IMAGES.paddleocrVlFull);
}
/**
* Ensure an Ollama model is pulled and available
* Uses the MiniCPM container (which runs Ollama) to pull the model
*/
export async function ensureOllamaModel(modelName: string): Promise<boolean> {
const OLLAMA_URL = 'http://localhost:11434';
console.log(`\n[Ollama] Ensuring model: ${modelName}`);
// Check if model exists
try {
const response = await fetch(`${OLLAMA_URL}/api/tags`);
if (response.ok) {
const data = await response.json();
const models = data.models || [];
const exists = models.some((m: { name: string }) =>
m.name === modelName || m.name.startsWith(modelName.split(':')[0])
);
if (exists) {
console.log(`[Ollama] Model already available: ${modelName}`);
return true;
}
}
} catch {
console.log(`[Ollama] Cannot check models, Ollama may not be running`);
return false;
}
// Pull the model
console.log(`[Ollama] Pulling model: ${modelName} (this may take a while)...`);
try {
const response = await fetch(`${OLLAMA_URL}/api/pull`, {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({ name: modelName, stream: false }),
});
if (response.ok) {
console.log(`[Ollama] Model pulled successfully: ${modelName}`);
return true;
} else {
console.log(`[Ollama] Failed to pull model: ${response.status}`);
return false;
}
} catch (err) {
console.log(`[Ollama] Error pulling model: ${err}`);
return false;
}
}
/**
* Ensure Qwen2.5 7B model is available (for text-only JSON extraction)
*/
export async function ensureQwen25(): Promise<boolean> {
// First ensure the Ollama service (MiniCPM container) is running
const ollamaOk = await ensureMiniCpm();
if (!ollamaOk) return false;
// Then ensure the Qwen2.5 model is pulled
return ensureOllamaModel('qwen2.5:7b');
}

View File

@@ -0,0 +1,549 @@
/**
* Bank statement extraction test using MiniCPM-V (visual) + PaddleOCR-VL (table recognition)
*
* This is the combined/dual-VLM approach that uses both models for consensus:
* - MiniCPM-V for visual extraction
* - PaddleOCR-VL for table recognition
*/
import { tap, expect } from '@git.zone/tstest/tapbundle';
import * as fs from 'fs';
import * as path from 'path';
import { execSync } from 'child_process';
import * as os from 'os';
import { ensurePaddleOcrVl, ensureMiniCpm } from './helpers/docker.js';
// Service URLs
const OLLAMA_URL = 'http://localhost:11434';
const PADDLEOCR_VL_URL = 'http://localhost:8000';
// Models
const MINICPM_MODEL = 'minicpm-v:latest';
const PADDLEOCR_VL_MODEL = 'paddleocr-vl';
// Prompt for MiniCPM-V visual extraction
const MINICPM_EXTRACT_PROMPT = `/nothink
You are a bank statement parser. Extract EVERY transaction from the table.
Read the Amount column carefully:
- "- 21,47 €" means DEBIT, output as: -21.47
- "+ 1.000,00 €" means CREDIT, output as: 1000.00
- European format: comma = decimal point
For each row output: {"date":"YYYY-MM-DD","counterparty":"NAME","amount":-21.47}
Do not skip any rows. Return ONLY the JSON array, no explanation.`;
// Prompt for PaddleOCR-VL table extraction
const PADDLEOCR_VL_TABLE_PROMPT = `Table Recognition:`;
// Post-processing prompt to convert PaddleOCR-VL output to JSON
const PADDLEOCR_VL_CONVERT_PROMPT = `/nothink
Convert the following bank statement table data to JSON.
Read the Amount values carefully:
- "- 21,47 €" means DEBIT, output as: -21.47
- "+ 1.000,00 €" means CREDIT, output as: 1000.00
- European format: comma = decimal point
For each transaction output: {"date":"YYYY-MM-DD","counterparty":"NAME","amount":-21.47}
Return ONLY the JSON array, no explanation.
Table data:
---
{TABLE_DATA}
---`;
interface ITransaction {
date: string;
counterparty: string;
amount: number;
}
/**
* Convert PDF to PNG images using ImageMagick
*/
function convertPdfToImages(pdfPath: string): string[] {
const tempDir = fs.mkdtempSync(path.join(os.tmpdir(), 'pdf-convert-'));
const outputPattern = path.join(tempDir, 'page-%d.png');
try {
execSync(
`convert -density 300 -quality 100 "${pdfPath}" -background white -alpha remove "${outputPattern}"`,
{ stdio: 'pipe' }
);
const files = fs.readdirSync(tempDir).filter((f: string) => f.endsWith('.png')).sort();
const images: string[] = [];
for (const file of files) {
const imagePath = path.join(tempDir, file);
const imageData = fs.readFileSync(imagePath);
images.push(imageData.toString('base64'));
}
return images;
} finally {
fs.rmSync(tempDir, { recursive: true, force: true });
}
}
/**
* Extract using MiniCPM-V via Ollama
*/
async function extractWithMiniCPM(images: string[], passLabel: string): Promise<ITransaction[]> {
const payload = {
model: MINICPM_MODEL,
prompt: MINICPM_EXTRACT_PROMPT,
images,
stream: true,
options: {
num_predict: 16384,
temperature: 0.1,
},
};
const response = await fetch(`${OLLAMA_URL}/api/generate`, {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify(payload),
});
if (!response.ok) {
throw new Error(`Ollama API error: ${response.status}`);
}
const reader = response.body?.getReader();
if (!reader) {
throw new Error('No response body');
}
const decoder = new TextDecoder();
let fullText = '';
let lineBuffer = '';
console.log(`[${passLabel}] Extracting with MiniCPM-V...`);
while (true) {
const { done, value } = await reader.read();
if (done) break;
const chunk = decoder.decode(value, { stream: true });
const lines = chunk.split('\n').filter((l) => l.trim());
for (const line of lines) {
try {
const json = JSON.parse(line);
if (json.response) {
fullText += json.response;
lineBuffer += json.response;
if (lineBuffer.includes('\n')) {
const parts = lineBuffer.split('\n');
for (let i = 0; i < parts.length - 1; i++) {
console.log(parts[i]);
}
lineBuffer = parts[parts.length - 1];
}
}
} catch {
// Skip invalid JSON lines
}
}
}
if (lineBuffer) {
console.log(lineBuffer);
}
console.log('');
const startIdx = fullText.indexOf('[');
const endIdx = fullText.lastIndexOf(']') + 1;
if (startIdx < 0 || endIdx <= startIdx) {
throw new Error('No JSON array found in response');
}
return JSON.parse(fullText.substring(startIdx, endIdx));
}
/**
* Extract table using PaddleOCR-VL via OpenAI-compatible API
*/
async function extractTableWithPaddleOCRVL(imageBase64: string): Promise<string> {
const payload = {
model: PADDLEOCR_VL_MODEL,
messages: [
{
role: 'user',
content: [
{
type: 'image_url',
image_url: { url: `data:image/png;base64,${imageBase64}` },
},
{
type: 'text',
text: PADDLEOCR_VL_TABLE_PROMPT,
},
],
},
],
temperature: 0.0,
max_tokens: 8192,
};
const response = await fetch(`${PADDLEOCR_VL_URL}/v1/chat/completions`, {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify(payload),
});
if (!response.ok) {
const text = await response.text();
throw new Error(`PaddleOCR-VL API error: ${response.status} - ${text}`);
}
const data = await response.json();
return data.choices?.[0]?.message?.content || '';
}
/**
* Convert PaddleOCR-VL table output to transactions using MiniCPM-V
*/
async function convertTableToTransactions(
tableData: string,
passLabel: string
): Promise<ITransaction[]> {
const prompt = PADDLEOCR_VL_CONVERT_PROMPT.replace('{TABLE_DATA}', tableData);
const payload = {
model: MINICPM_MODEL,
prompt,
stream: true,
options: {
num_predict: 16384,
temperature: 0.1,
},
};
const response = await fetch(`${OLLAMA_URL}/api/generate`, {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify(payload),
});
if (!response.ok) {
throw new Error(`Ollama API error: ${response.status}`);
}
const reader = response.body?.getReader();
if (!reader) {
throw new Error('No response body');
}
const decoder = new TextDecoder();
let fullText = '';
console.log(`[${passLabel}] Converting table data to JSON...`);
while (true) {
const { done, value } = await reader.read();
if (done) break;
const chunk = decoder.decode(value, { stream: true });
const lines = chunk.split('\n').filter((l) => l.trim());
for (const line of lines) {
try {
const json = JSON.parse(line);
if (json.response) {
fullText += json.response;
}
} catch {
// Skip invalid JSON lines
}
}
}
const startIdx = fullText.indexOf('[');
const endIdx = fullText.lastIndexOf(']') + 1;
if (startIdx < 0 || endIdx <= startIdx) {
throw new Error('No JSON array found in response');
}
return JSON.parse(fullText.substring(startIdx, endIdx));
}
/**
* Extract using PaddleOCR-VL (table recognition) + conversion
*/
async function extractWithPaddleOCRVL(
images: string[],
passLabel: string
): Promise<ITransaction[]> {
console.log(`[${passLabel}] Extracting tables with PaddleOCR-VL...`);
// Extract table data from each page
const tableDataParts: string[] = [];
for (let i = 0; i < images.length; i++) {
console.log(`[${passLabel}] Processing page ${i + 1}/${images.length}...`);
const tableData = await extractTableWithPaddleOCRVL(images[i]);
if (tableData.trim()) {
tableDataParts.push(`--- Page ${i + 1} ---\n${tableData}`);
}
}
const combinedTableData = tableDataParts.join('\n\n');
console.log(`[${passLabel}] Got ${combinedTableData.length} chars of table data`);
// Convert to transactions
return convertTableToTransactions(combinedTableData, passLabel);
}
/**
* Create a hash of transactions for comparison
*/
function hashTransactions(transactions: ITransaction[]): string {
return transactions
.map((t) => `${t.date}|${t.amount.toFixed(2)}`)
.sort()
.join(';');
}
/**
* Check if PaddleOCR-VL service is available
*/
async function isPaddleOCRVLAvailable(): Promise<boolean> {
try {
const response = await fetch(`${PADDLEOCR_VL_URL}/health`, {
method: 'GET',
signal: AbortSignal.timeout(5000),
});
return response.ok;
} catch {
return false;
}
}
/**
* Extract with dual-VLM consensus
* Strategy:
* Pass 1 = MiniCPM-V visual extraction
* Pass 2 = PaddleOCR-VL table recognition (if available)
* Pass 3+ = MiniCPM-V visual (fallback)
*/
async function extractWithConsensus(
images: string[],
maxPasses: number = 5
): Promise<ITransaction[]> {
const results: Array<{ transactions: ITransaction[]; hash: string }> = [];
const hashCounts: Map<string, number> = new Map();
const addResult = (transactions: ITransaction[], passLabel: string): number => {
const hash = hashTransactions(transactions);
results.push({ transactions, hash });
hashCounts.set(hash, (hashCounts.get(hash) || 0) + 1);
console.log(
`[${passLabel}] Got ${transactions.length} transactions (hash: ${hash.substring(0, 20)}...)`
);
return hashCounts.get(hash)!;
};
// Check if PaddleOCR-VL is available
const paddleOCRVLAvailable = await isPaddleOCRVLAvailable();
if (paddleOCRVLAvailable) {
console.log('[Setup] PaddleOCR-VL service available - using dual-VLM consensus');
} else {
console.log('[Setup] PaddleOCR-VL not available - using MiniCPM-V only');
}
// Pass 1: MiniCPM-V visual extraction
try {
const pass1Result = await extractWithMiniCPM(images, 'Pass 1 MiniCPM-V');
addResult(pass1Result, 'Pass 1 MiniCPM-V');
} catch (err) {
console.log(`[Pass 1] Error: ${err}`);
}
// Pass 2: PaddleOCR-VL table recognition (if available)
if (paddleOCRVLAvailable) {
try {
const pass2Result = await extractWithPaddleOCRVL(images, 'Pass 2 PaddleOCR-VL');
const count = addResult(pass2Result, 'Pass 2 PaddleOCR-VL');
if (count >= 2) {
console.log('[Consensus] MiniCPM-V and PaddleOCR-VL extractions match!');
return pass2Result;
}
} catch (err) {
console.log(`[Pass 2 PaddleOCR-VL] Error: ${err}`);
}
}
// Pass 3+: Continue with MiniCPM-V visual passes
const startPass = paddleOCRVLAvailable ? 3 : 2;
for (let pass = startPass; pass <= maxPasses; pass++) {
try {
const transactions = await extractWithMiniCPM(images, `Pass ${pass} MiniCPM-V`);
const count = addResult(transactions, `Pass ${pass} MiniCPM-V`);
if (count >= 2) {
console.log(`[Consensus] Reached after ${pass} passes`);
return transactions;
}
console.log(`[Pass ${pass}] No consensus yet, trying again...`);
} catch (err) {
console.log(`[Pass ${pass}] Error: ${err}`);
}
}
// No consensus reached - return the most common result
let bestHash = '';
let bestCount = 0;
for (const [hash, count] of hashCounts) {
if (count > bestCount) {
bestCount = count;
bestHash = hash;
}
}
if (!bestHash) {
throw new Error('No valid results obtained');
}
const best = results.find((r) => r.hash === bestHash)!;
console.log(`[No consensus] Using most common result (${bestCount}/${maxPasses} passes)`);
return best.transactions;
}
/**
* Compare extracted transactions against expected
*/
function compareTransactions(
extracted: ITransaction[],
expected: ITransaction[]
): { matches: number; total: number; errors: string[] } {
const errors: string[] = [];
let matches = 0;
for (let i = 0; i < expected.length; i++) {
const exp = expected[i];
const ext = extracted[i];
if (!ext) {
errors.push(`Missing transaction ${i}: ${exp.date} ${exp.counterparty}`);
continue;
}
const dateMatch = ext.date === exp.date;
const amountMatch = Math.abs(ext.amount - exp.amount) < 0.01;
if (dateMatch && amountMatch) {
matches++;
} else {
errors.push(
`Mismatch at ${i}: expected ${exp.date}/${exp.amount}, got ${ext.date}/${ext.amount}`
);
}
}
if (extracted.length > expected.length) {
errors.push(`Extra transactions: ${extracted.length - expected.length}`);
}
return { matches, total: expected.length, errors };
}
/**
* Find all test cases (PDF + JSON pairs) in .nogit/
*/
function findTestCases(): Array<{ name: string; pdfPath: string; jsonPath: string }> {
const testDir = path.join(process.cwd(), '.nogit');
if (!fs.existsSync(testDir)) {
return [];
}
const files = fs.readdirSync(testDir);
const pdfFiles = files.filter((f: string) => f.endsWith('.pdf'));
const testCases: Array<{ name: string; pdfPath: string; jsonPath: string }> = [];
for (const pdf of pdfFiles) {
const baseName = pdf.replace('.pdf', '');
const jsonFile = `${baseName}.json`;
if (files.includes(jsonFile)) {
testCases.push({
name: baseName,
pdfPath: path.join(testDir, pdf),
jsonPath: path.join(testDir, jsonFile),
});
}
}
return testCases;
}
// Tests
tap.test('setup: ensure Docker containers are running', async () => {
console.log('\n[Setup] Checking Docker containers...\n');
// Ensure PaddleOCR-VL is running (auto-detects GPU/CPU)
const paddleOk = await ensurePaddleOcrVl();
expect(paddleOk).toBeTrue();
// Ensure MiniCPM is running
const minicpmOk = await ensureMiniCpm();
expect(minicpmOk).toBeTrue();
console.log('\n[Setup] All containers ready!\n');
});
tap.test('should have MiniCPM-V 4.5 model loaded', async () => {
const response = await fetch(`${OLLAMA_URL}/api/tags`);
const data = await response.json();
const modelNames = data.models.map((m: { name: string }) => m.name);
expect(modelNames.some((name: string) => name.includes('minicpm-v4.5'))).toBeTrue();
});
tap.test('should check PaddleOCR-VL availability', async () => {
const available = await isPaddleOCRVLAvailable();
console.log(`PaddleOCR-VL available: ${available}`);
expect(available).toBeTrue();
});
// Dynamic test for each PDF/JSON pair
const testCases = findTestCases();
for (const testCase of testCases) {
tap.test(`should extract transactions from ${testCase.name}`, async () => {
// Load expected transactions
const expected: ITransaction[] = JSON.parse(fs.readFileSync(testCase.jsonPath, 'utf-8'));
console.log(`\n=== ${testCase.name} ===`);
console.log(`Expected: ${expected.length} transactions`);
// Convert PDF to images
console.log('Converting PDF to images...');
const images = convertPdfToImages(testCase.pdfPath);
console.log(`Converted: ${images.length} pages\n`);
// Extract with dual-VLM consensus
const extracted = await extractWithConsensus(images);
console.log(`\nFinal: ${extracted.length} transactions`);
// Compare results
const result = compareTransactions(extracted, expected);
console.log(`Accuracy: ${result.matches}/${result.total}`);
if (result.errors.length > 0) {
console.log('Errors:');
result.errors.forEach((e) => console.log(` - ${e}`));
}
// Assert high accuracy
const accuracy = result.matches / result.total;
expect(accuracy).toBeGreaterThan(0.95);
expect(extracted.length).toEqual(expected.length);
});
}
export default tap.start();

View File

@@ -1,13 +1,25 @@
/**
* Bank statement extraction test using MiniCPM-V only (visual extraction)
*
* This tests MiniCPM-V's ability to extract bank transactions directly from images
* without any OCR augmentation.
*/
import { tap, expect } from '@git.zone/tstest/tapbundle'; import { tap, expect } from '@git.zone/tstest/tapbundle';
import * as fs from 'fs'; import * as fs from 'fs';
import * as path from 'path'; import * as path from 'path';
import { execSync } from 'child_process'; import { execSync } from 'child_process';
import * as os from 'os'; import * as os from 'os';
import { ensureMiniCpm } from './helpers/docker.js';
// Service URL
const OLLAMA_URL = 'http://localhost:11434'; const OLLAMA_URL = 'http://localhost:11434';
const MODEL = 'openbmb/minicpm-v4.5:q8_0';
const EXTRACT_PROMPT = `You are a bank statement parser. Extract EVERY transaction from the table. // Model
const MINICPM_MODEL = 'minicpm-v:latest';
// Prompt for MiniCPM-V visual extraction
const MINICPM_EXTRACT_PROMPT = `/nothink
You are a bank statement parser. Extract EVERY transaction from the table.
Read the Amount column carefully: Read the Amount column carefully:
- "- 21,47 €" means DEBIT, output as: -21.47 - "- 21,47 €" means DEBIT, output as: -21.47
@@ -37,7 +49,7 @@ function convertPdfToImages(pdfPath: string): string[] {
{ stdio: 'pipe' } { stdio: 'pipe' }
); );
const files = fs.readdirSync(tempDir).filter((f) => f.endsWith('.png')).sort(); const files = fs.readdirSync(tempDir).filter((f: string) => f.endsWith('.png')).sort();
const images: string[] = []; const images: string[] = [];
for (const file of files) { for (const file of files) {
@@ -53,12 +65,12 @@ function convertPdfToImages(pdfPath: string): string[] {
} }
/** /**
* Single extraction pass * Extract using MiniCPM-V via Ollama
*/ */
async function extractOnce(images: string[], passNum: number): Promise<ITransaction[]> { async function extractWithMiniCPM(images: string[], passLabel: string): Promise<ITransaction[]> {
const payload = { const payload = {
model: MODEL, model: MINICPM_MODEL,
prompt: EXTRACT_PROMPT, prompt: MINICPM_EXTRACT_PROMPT,
images, images,
stream: true, stream: true,
options: { options: {
@@ -86,7 +98,7 @@ async function extractOnce(images: string[], passNum: number): Promise<ITransact
let fullText = ''; let fullText = '';
let lineBuffer = ''; let lineBuffer = '';
console.log(`[Pass ${passNum}] Extracting...`); console.log(`[${passLabel}] Extracting with MiniCPM-V...`);
while (true) { while (true) {
const { done, value } = await reader.read(); const { done, value } = await reader.read();
@@ -102,7 +114,6 @@ async function extractOnce(images: string[], passNum: number): Promise<ITransact
fullText += json.response; fullText += json.response;
lineBuffer += json.response; lineBuffer += json.response;
// Print complete lines
if (lineBuffer.includes('\n')) { if (lineBuffer.includes('\n')) {
const parts = lineBuffer.split('\n'); const parts = lineBuffer.split('\n');
for (let i = 0; i < parts.length - 1; i++) { for (let i = 0; i < parts.length - 1; i++) {
@@ -143,31 +154,40 @@ function hashTransactions(transactions: ITransaction[]): string {
} }
/** /**
* Extract with majority voting - run until 2 passes match * Extract with consensus voting using MiniCPM-V only
*/ */
async function extractWithConsensus(images: string[], maxPasses: number = 5): Promise<ITransaction[]> { async function extractWithConsensus(
images: string[],
maxPasses: number = 5
): Promise<ITransaction[]> {
const results: Array<{ transactions: ITransaction[]; hash: string }> = []; const results: Array<{ transactions: ITransaction[]; hash: string }> = [];
const hashCounts: Map<string, number> = new Map(); const hashCounts: Map<string, number> = new Map();
for (let pass = 1; pass <= maxPasses; pass++) { const addResult = (transactions: ITransaction[], passLabel: string): number => {
const transactions = await extractOnce(images, pass);
const hash = hashTransactions(transactions); const hash = hashTransactions(transactions);
results.push({ transactions, hash }); results.push({ transactions, hash });
hashCounts.set(hash, (hashCounts.get(hash) || 0) + 1); hashCounts.set(hash, (hashCounts.get(hash) || 0) + 1);
console.log(
`[${passLabel}] Got ${transactions.length} transactions (hash: ${hash.substring(0, 20)}...)`
);
return hashCounts.get(hash)!;
};
console.log(`[Pass ${pass}] Got ${transactions.length} transactions (hash: ${hash.substring(0, 20)}...)`); console.log('[Setup] Using MiniCPM-V only');
// Check if we have consensus (2+ matching) for (let pass = 1; pass <= maxPasses; pass++) {
const count = hashCounts.get(hash)!; try {
if (count >= 2) { const transactions = await extractWithMiniCPM(images, `Pass ${pass} MiniCPM-V`);
console.log(`[Consensus] Reached after ${pass} passes (${count} matching results)`); const count = addResult(transactions, `Pass ${pass} MiniCPM-V`);
return transactions;
} if (count >= 2) {
console.log(`[Consensus] Reached after ${pass} passes`);
return transactions;
}
// After 2 passes, if no match yet, continue
if (pass >= 2) {
console.log(`[Pass ${pass}] No consensus yet, trying again...`); console.log(`[Pass ${pass}] No consensus yet, trying again...`);
} catch (err) {
console.log(`[Pass ${pass}] Error: ${err}`);
} }
} }
@@ -181,6 +201,10 @@ async function extractWithConsensus(images: string[], maxPasses: number = 5): Pr
} }
} }
if (!bestHash) {
throw new Error('No valid results obtained');
}
const best = results.find((r) => r.hash === bestHash)!; const best = results.find((r) => r.hash === bestHash)!;
console.log(`[No consensus] Using most common result (${bestCount}/${maxPasses} passes)`); console.log(`[No consensus] Using most common result (${bestCount}/${maxPasses} passes)`);
return best.transactions; return best.transactions;
@@ -234,7 +258,7 @@ function findTestCases(): Array<{ name: string; pdfPath: string; jsonPath: strin
} }
const files = fs.readdirSync(testDir); const files = fs.readdirSync(testDir);
const pdfFiles = files.filter((f) => f.endsWith('.pdf')); const pdfFiles = files.filter((f: string) => f.endsWith('.pdf'));
const testCases: Array<{ name: string; pdfPath: string; jsonPath: string }> = []; const testCases: Array<{ name: string; pdfPath: string; jsonPath: string }> = [];
for (const pdf of pdfFiles) { for (const pdf of pdfFiles) {
@@ -254,11 +278,14 @@ function findTestCases(): Array<{ name: string; pdfPath: string; jsonPath: strin
// Tests // Tests
tap.test('should connect to Ollama API', async () => { tap.test('setup: ensure Docker containers are running', async () => {
const response = await fetch(`${OLLAMA_URL}/api/tags`); console.log('\n[Setup] Checking Docker containers...\n');
expect(response.ok).toBeTrue();
const data = await response.json(); // Ensure MiniCPM is running
expect(data.models).toBeArray(); const minicpmOk = await ensureMiniCpm();
expect(minicpmOk).toBeTrue();
console.log('\n[Setup] All containers ready!\n');
}); });
tap.test('should have MiniCPM-V 4.5 model loaded', async () => { tap.test('should have MiniCPM-V 4.5 model loaded', async () => {
@@ -270,6 +297,8 @@ tap.test('should have MiniCPM-V 4.5 model loaded', async () => {
// Dynamic test for each PDF/JSON pair // Dynamic test for each PDF/JSON pair
const testCases = findTestCases(); const testCases = findTestCases();
console.log(`\nFound ${testCases.length} bank statement test cases (MiniCPM-V only)\n`);
for (const testCase of testCases) { for (const testCase of testCases) {
tap.test(`should extract transactions from ${testCase.name}`, async () => { tap.test(`should extract transactions from ${testCase.name}`, async () => {
// Load expected transactions // Load expected transactions
@@ -282,7 +311,7 @@ for (const testCase of testCases) {
const images = convertPdfToImages(testCase.pdfPath); const images = convertPdfToImages(testCase.pdfPath);
console.log(`Converted: ${images.length} pages\n`); console.log(`Converted: ${images.length} pages\n`);
// Extract with consensus voting // Extract with consensus (MiniCPM-V only)
const extracted = await extractWithConsensus(images); const extracted = await extractWithConsensus(images);
console.log(`\nFinal: ${extracted.length} transactions`); console.log(`\nFinal: ${extracted.length} transactions`);

View File

@@ -0,0 +1,346 @@
/**
* Bank statement extraction test using PaddleOCR-VL Full Pipeline
*
* This tests the complete PaddleOCR-VL pipeline for bank statements:
* 1. PP-DocLayoutV2 for layout detection
* 2. PaddleOCR-VL for recognition (tables with proper structure)
* 3. Structured Markdown output with tables
* 4. MiniCPM extracts transactions from structured tables
*
* The structured Markdown has properly formatted tables,
* making it much easier for MiniCPM to extract transaction data.
*/
import { tap, expect } from '@git.zone/tstest/tapbundle';
import * as fs from 'fs';
import * as path from 'path';
import { execSync } from 'child_process';
import * as os from 'os';
import { ensurePaddleOcrVlFull, ensureMiniCpm } from './helpers/docker.js';
const PADDLEOCR_VL_URL = 'http://localhost:8000';
const OLLAMA_URL = 'http://localhost:11434';
const MINICPM_MODEL = 'minicpm-v:latest';
interface ITransaction {
date: string;
counterparty: string;
amount: number;
}
/**
* Convert PDF to PNG images using ImageMagick
*/
function convertPdfToImages(pdfPath: string): string[] {
const tempDir = fs.mkdtempSync(path.join(os.tmpdir(), 'pdf-convert-'));
const outputPattern = path.join(tempDir, 'page-%d.png');
try {
execSync(
`convert -density 300 -quality 100 "${pdfPath}" -background white -alpha remove "${outputPattern}"`,
{ stdio: 'pipe' }
);
const files = fs.readdirSync(tempDir).filter((f: string) => f.endsWith('.png')).sort();
const images: string[] = [];
for (const file of files) {
const imagePath = path.join(tempDir, file);
const imageData = fs.readFileSync(imagePath);
images.push(imageData.toString('base64'));
}
return images;
} finally {
fs.rmSync(tempDir, { recursive: true, force: true });
}
}
/**
* Parse document using PaddleOCR-VL Full Pipeline (returns structured Markdown)
*/
async function parseDocument(imageBase64: string): Promise<string> {
const response = await fetch(`${PADDLEOCR_VL_URL}/parse`, {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({
image: imageBase64,
output_format: 'markdown',
}),
});
if (!response.ok) {
const text = await response.text();
throw new Error(`PaddleOCR-VL API error: ${response.status} - ${text}`);
}
const data = await response.json();
if (!data.success) {
throw new Error(`PaddleOCR-VL error: ${data.error}`);
}
return data.result?.markdown || '';
}
/**
* Extract transactions from structured Markdown using MiniCPM
*/
async function extractTransactionsFromMarkdown(markdown: string): Promise<ITransaction[]> {
console.log(` [Extract] Processing ${markdown.length} chars of Markdown`);
const prompt = `/nothink
Convert this bank statement to a JSON array of transactions.
Read the Amount values carefully:
- "- 21,47 €" means DEBIT, output as: -21.47
- "+ 1.000,00 €" means CREDIT, output as: 1000.00
- European format: comma = decimal point, dot = thousands
For each transaction output: {"date":"YYYY-MM-DD","counterparty":"NAME","amount":-21.47}
Return ONLY the JSON array, no explanation.
Document:
${markdown}`;
const payload = {
model: MINICPM_MODEL,
prompt,
stream: true,
options: {
num_predict: 16384,
temperature: 0.1,
},
};
const response = await fetch(`${OLLAMA_URL}/api/generate`, {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify(payload),
});
if (!response.ok) {
throw new Error(`Ollama API error: ${response.status}`);
}
const reader = response.body?.getReader();
if (!reader) {
throw new Error('No response body');
}
const decoder = new TextDecoder();
let fullText = '';
while (true) {
const { done, value } = await reader.read();
if (done) break;
const chunk = decoder.decode(value, { stream: true });
const lines = chunk.split('\n').filter((l) => l.trim());
for (const line of lines) {
try {
const json = JSON.parse(line);
if (json.response) {
fullText += json.response;
}
} catch {
// Skip invalid JSON lines
}
}
}
// Extract JSON array from response
const startIdx = fullText.indexOf('[');
const endIdx = fullText.lastIndexOf(']') + 1;
if (startIdx < 0 || endIdx <= startIdx) {
throw new Error(`No JSON array found in response: ${fullText.substring(0, 200)}`);
}
const jsonStr = fullText.substring(startIdx, endIdx);
return JSON.parse(jsonStr);
}
/**
* Extract transactions from all pages of a bank statement
*/
async function extractAllTransactions(images: string[]): Promise<ITransaction[]> {
const allTransactions: ITransaction[] = [];
for (let i = 0; i < images.length; i++) {
console.log(` Processing page ${i + 1}/${images.length}...`);
// Parse with full pipeline
const markdown = await parseDocument(images[i]);
console.log(` [Parse] Got ${markdown.split('\n').length} lines of Markdown`);
// Extract transactions
try {
const transactions = await extractTransactionsFromMarkdown(markdown);
console.log(` [Extracted] ${transactions.length} transactions`);
allTransactions.push(...transactions);
} catch (err) {
console.log(` [Error] ${err}`);
}
}
return allTransactions;
}
/**
* Compare transactions - find matching transaction in expected list
*/
function findMatchingTransaction(
tx: ITransaction,
expectedList: ITransaction[]
): ITransaction | undefined {
return expectedList.find((exp) => {
const dateMatch = tx.date === exp.date;
const amountMatch = Math.abs(tx.amount - exp.amount) < 0.02;
const counterpartyMatch =
tx.counterparty?.toLowerCase().includes(exp.counterparty?.toLowerCase().slice(0, 10)) ||
exp.counterparty?.toLowerCase().includes(tx.counterparty?.toLowerCase().slice(0, 10));
return dateMatch && amountMatch && counterpartyMatch;
});
}
/**
* Calculate extraction accuracy
*/
function calculateAccuracy(
extracted: ITransaction[],
expected: ITransaction[]
): { matched: number; total: number; accuracy: number } {
let matched = 0;
const usedExpected = new Set<number>();
for (const tx of extracted) {
for (let i = 0; i < expected.length; i++) {
if (usedExpected.has(i)) continue;
const exp = expected[i];
const dateMatch = tx.date === exp.date;
const amountMatch = Math.abs(tx.amount - exp.amount) < 0.02;
if (dateMatch && amountMatch) {
matched++;
usedExpected.add(i);
break;
}
}
}
return {
matched,
total: expected.length,
accuracy: expected.length > 0 ? (matched / expected.length) * 100 : 0,
};
}
/**
* Find all test cases (PDF + JSON pairs) in .nogit/bankstatements/
*/
function findTestCases(): Array<{ name: string; pdfPath: string; jsonPath: string }> {
const testDir = path.join(process.cwd(), '.nogit/bankstatements');
if (!fs.existsSync(testDir)) {
return [];
}
const files = fs.readdirSync(testDir);
const pdfFiles = files.filter((f) => f.endsWith('.pdf'));
const testCases: Array<{ name: string; pdfPath: string; jsonPath: string }> = [];
for (const pdf of pdfFiles) {
const baseName = pdf.replace('.pdf', '');
const jsonFile = `${baseName}.json`;
if (files.includes(jsonFile)) {
testCases.push({
name: baseName,
pdfPath: path.join(testDir, pdf),
jsonPath: path.join(testDir, jsonFile),
});
}
}
testCases.sort((a, b) => a.name.localeCompare(b.name));
return testCases;
}
// Tests
tap.test('setup: ensure Docker containers are running', async () => {
console.log('\n[Setup] Checking Docker containers...\n');
// Ensure PaddleOCR-VL Full Pipeline is running
const paddleOk = await ensurePaddleOcrVlFull();
expect(paddleOk).toBeTrue();
// Ensure MiniCPM is running (for field extraction from Markdown)
const minicpmOk = await ensureMiniCpm();
expect(minicpmOk).toBeTrue();
console.log('\n[Setup] All containers ready!\n');
});
// Dynamic test for each PDF/JSON pair
const testCases = findTestCases();
console.log(`\nFound ${testCases.length} bank statement test cases (PaddleOCR-VL Full Pipeline)\n`);
const results: Array<{ name: string; accuracy: number; matched: number; total: number }> = [];
for (const testCase of testCases) {
tap.test(`should extract bank statement: ${testCase.name}`, async () => {
// Load expected data
const expected: ITransaction[] = JSON.parse(fs.readFileSync(testCase.jsonPath, 'utf-8'));
console.log(`\n=== ${testCase.name} ===`);
console.log(`Expected: ${expected.length} transactions`);
const startTime = Date.now();
// Convert PDF to images
const images = convertPdfToImages(testCase.pdfPath);
console.log(` Pages: ${images.length}`);
// Extract all transactions
const extracted = await extractAllTransactions(images);
const endTime = Date.now();
const elapsedMs = endTime - startTime;
// Calculate accuracy
const accuracy = calculateAccuracy(extracted, expected);
results.push({
name: testCase.name,
accuracy: accuracy.accuracy,
matched: accuracy.matched,
total: accuracy.total,
});
console.log(` Extracted: ${extracted.length} transactions`);
console.log(` Matched: ${accuracy.matched}/${accuracy.total} (${accuracy.accuracy.toFixed(1)}%)`);
console.log(` Time: ${(elapsedMs / 1000).toFixed(1)}s`);
// We expect at least 50% accuracy
expect(accuracy.accuracy).toBeGreaterThan(50);
});
}
tap.test('summary', async () => {
const totalStatements = results.length;
const avgAccuracy =
results.length > 0 ? results.reduce((a, b) => a + b.accuracy, 0) / results.length : 0;
const totalMatched = results.reduce((a, b) => a + b.matched, 0);
const totalExpected = results.reduce((a, b) => a + b.total, 0);
console.log(`\n======================================================`);
console.log(` Bank Statement Extraction Summary (PaddleOCR-VL Full)`);
console.log(`======================================================`);
console.log(` Method: PaddleOCR-VL Full Pipeline -> MiniCPM`);
console.log(` Statements: ${totalStatements}`);
console.log(` Transactions: ${totalMatched}/${totalExpected} matched`);
console.log(` Avg accuracy: ${avgAccuracy.toFixed(1)}%`);
console.log(`======================================================\n`);
});
export default tap.start();

View File

@@ -0,0 +1,455 @@
/**
* Invoice extraction test using MiniCPM-V (visual) + PaddleOCR-VL (OCR augmentation)
*
* This is the combined approach that uses both models for best accuracy:
* - MiniCPM-V for visual understanding
* - PaddleOCR-VL for OCR text to augment prompts
*/
import { tap, expect } from '@git.zone/tstest/tapbundle';
import * as fs from 'fs';
import * as path from 'path';
import { execSync } from 'child_process';
import * as os from 'os';
import { ensurePaddleOcrVl, ensureMiniCpm } from './helpers/docker.js';
const OLLAMA_URL = 'http://localhost:11434';
const MODEL = 'minicpm-v:latest';
const PADDLEOCR_VL_URL = 'http://localhost:8000';
interface IInvoice {
invoice_number: string;
invoice_date: string;
vendor_name: string;
currency: string;
net_amount: number;
vat_amount: number;
total_amount: number;
}
/**
* Extract OCR text from an image using PaddleOCR-VL (OpenAI-compatible API)
*/
async function extractOcrText(imageBase64: string): Promise<string> {
try {
const response = await fetch(`${PADDLEOCR_VL_URL}/v1/chat/completions`, {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({
model: 'paddleocr-vl',
messages: [{
role: 'user',
content: [
{ type: 'image_url', image_url: { url: `data:image/png;base64,${imageBase64}` } },
{ type: 'text', text: 'OCR:' }
]
}],
temperature: 0.0,
max_tokens: 4096
}),
});
if (!response.ok) return '';
const data = await response.json();
return data.choices?.[0]?.message?.content || '';
} catch {
// PaddleOCR-VL unavailable
}
return '';
}
/**
* Build prompt with optional OCR text
*/
function buildPrompt(ocrText: string): string {
const base = `/nothink
You are an invoice parser. Extract the following fields from this invoice:
1. invoice_number: The invoice/receipt number
2. invoice_date: Date in YYYY-MM-DD format
3. vendor_name: Company that issued the invoice
4. currency: EUR, USD, etc.
5. net_amount: Amount before tax (if shown)
6. vat_amount: Tax/VAT amount (if shown, 0 if reverse charge or no tax)
7. total_amount: Final amount due
Return ONLY valid JSON in this exact format:
{"invoice_number":"XXX","invoice_date":"YYYY-MM-DD","vendor_name":"Company Name","currency":"EUR","net_amount":100.00,"vat_amount":19.00,"total_amount":119.00}
If a field is not visible, use null for strings or 0 for numbers.
No explanation, just the JSON object.`;
if (ocrText) {
// Limit OCR text to prevent context overflow
const maxOcrLength = 4000;
const truncatedOcr = ocrText.length > maxOcrLength
? ocrText.substring(0, maxOcrLength) + '\n... (truncated)'
: ocrText;
return `${base}
OCR text extracted from the invoice (use for reference):
---
${truncatedOcr}
---
Cross-reference the image with the OCR text above for accuracy.`;
}
return base;
}
/**
* Convert PDF to PNG images using ImageMagick
*/
function convertPdfToImages(pdfPath: string): string[] {
const tempDir = fs.mkdtempSync(path.join(os.tmpdir(), 'pdf-convert-'));
const outputPattern = path.join(tempDir, 'page-%d.png');
try {
execSync(
`convert -density 200 -quality 90 "${pdfPath}" -background white -alpha remove "${outputPattern}"`,
{ stdio: 'pipe' }
);
const files = fs.readdirSync(tempDir).filter((f) => f.endsWith('.png')).sort();
const images: string[] = [];
for (const file of files) {
const imagePath = path.join(tempDir, file);
const imageData = fs.readFileSync(imagePath);
images.push(imageData.toString('base64'));
}
return images;
} finally {
fs.rmSync(tempDir, { recursive: true, force: true });
}
}
/**
* Single extraction pass
*/
async function extractOnce(images: string[], passNum: number, ocrText: string = ''): Promise<IInvoice> {
const payload = {
model: MODEL,
prompt: buildPrompt(ocrText),
images,
stream: true,
options: {
num_predict: 2048,
temperature: 0.1,
},
};
const response = await fetch(`${OLLAMA_URL}/api/generate`, {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify(payload),
});
if (!response.ok) {
throw new Error(`Ollama API error: ${response.status}`);
}
const reader = response.body?.getReader();
if (!reader) {
throw new Error('No response body');
}
const decoder = new TextDecoder();
let fullText = '';
while (true) {
const { done, value } = await reader.read();
if (done) break;
const chunk = decoder.decode(value, { stream: true });
const lines = chunk.split('\n').filter((l) => l.trim());
for (const line of lines) {
try {
const json = JSON.parse(line);
if (json.response) {
fullText += json.response;
}
} catch {
// Skip invalid JSON lines
}
}
}
// Extract JSON from response
const startIdx = fullText.indexOf('{');
const endIdx = fullText.lastIndexOf('}') + 1;
if (startIdx < 0 || endIdx <= startIdx) {
throw new Error(`No JSON object found in response: ${fullText.substring(0, 200)}`);
}
const jsonStr = fullText.substring(startIdx, endIdx);
return JSON.parse(jsonStr);
}
/**
* Create a hash of invoice for comparison (using key fields)
*/
function hashInvoice(invoice: IInvoice): string {
return `${invoice.invoice_number}|${invoice.invoice_date}|${invoice.total_amount.toFixed(2)}`;
}
/**
* Extract with majority voting - run until 2 passes match
* Optimization: Run Pass 1, OCR, and Pass 2 (after OCR) in parallel
*/
async function extractWithConsensus(images: string[], invoiceName: string, maxPasses: number = 5): Promise<IInvoice> {
const results: Array<{ invoice: IInvoice; hash: string }> = [];
const hashCounts: Map<string, number> = new Map();
const addResult = (invoice: IInvoice, passLabel: string): number => {
const hash = hashInvoice(invoice);
results.push({ invoice, hash });
hashCounts.set(hash, (hashCounts.get(hash) || 0) + 1);
console.log(` [${passLabel}] ${invoice.invoice_number} | ${invoice.invoice_date} | ${invoice.total_amount} ${invoice.currency}`);
return hashCounts.get(hash)!;
};
// OPTIMIZATION: Run Pass 1 (no OCR) in parallel with OCR -> Pass 2 (with OCR)
let ocrText = '';
const pass1Promise = extractOnce(images, 1, '').catch((err) => ({ error: err }));
// OCR then immediately Pass 2
const ocrThenPass2Promise = (async () => {
ocrText = await extractOcrText(images[0]);
if (ocrText) {
console.log(` [OCR] Extracted ${ocrText.split('\n').length} text lines`);
}
return extractOnce(images, 2, ocrText).catch((err) => ({ error: err }));
})();
// Wait for both to complete
const [pass1Result, pass2Result] = await Promise.all([pass1Promise, ocrThenPass2Promise]);
// Process Pass 1 result
if ('error' in pass1Result) {
console.log(` [Pass 1] Error: ${(pass1Result as {error: unknown}).error}`);
} else {
const count = addResult(pass1Result as IInvoice, 'Pass 1');
if (count >= 2) {
console.log(` [Consensus] Reached after parallel passes`);
return pass1Result as IInvoice;
}
}
// Process Pass 2 result
if ('error' in pass2Result) {
console.log(` [Pass 2+OCR] Error: ${(pass2Result as {error: unknown}).error}`);
} else {
const count = addResult(pass2Result as IInvoice, 'Pass 2+OCR');
if (count >= 2) {
console.log(` [Consensus] Reached after parallel passes`);
return pass2Result as IInvoice;
}
}
// Continue with passes 3+ using OCR text if no consensus yet
for (let pass = 3; pass <= maxPasses; pass++) {
try {
const invoice = await extractOnce(images, pass, ocrText);
const count = addResult(invoice, `Pass ${pass}+OCR`);
if (count >= 2) {
console.log(` [Consensus] Reached after ${pass} passes`);
return invoice;
}
} catch (err) {
console.log(` [Pass ${pass}] Error: ${err}`);
}
}
// No consensus reached - return the most common result
let bestHash = '';
let bestCount = 0;
for (const [hash, count] of hashCounts) {
if (count > bestCount) {
bestCount = count;
bestHash = hash;
}
}
if (!bestHash) {
throw new Error(`No valid results for ${invoiceName}`);
}
const best = results.find((r) => r.hash === bestHash)!;
console.log(` [No consensus] Using most common result (${bestCount}/${maxPasses} passes)`);
return best.invoice;
}
/**
* Compare extracted invoice against expected
*/
function compareInvoice(
extracted: IInvoice,
expected: IInvoice
): { match: boolean; errors: string[] } {
const errors: string[] = [];
// Compare invoice number (normalize by removing spaces and case)
const extNum = extracted.invoice_number?.replace(/\s/g, '').toLowerCase() || '';
const expNum = expected.invoice_number?.replace(/\s/g, '').toLowerCase() || '';
if (extNum !== expNum) {
errors.push(`invoice_number: expected "${expected.invoice_number}", got "${extracted.invoice_number}"`);
}
// Compare date
if (extracted.invoice_date !== expected.invoice_date) {
errors.push(`invoice_date: expected "${expected.invoice_date}", got "${extracted.invoice_date}"`);
}
// Compare total amount (with tolerance)
if (Math.abs(extracted.total_amount - expected.total_amount) > 0.02) {
errors.push(`total_amount: expected ${expected.total_amount}, got ${extracted.total_amount}`);
}
// Compare currency
if (extracted.currency?.toUpperCase() !== expected.currency?.toUpperCase()) {
errors.push(`currency: expected "${expected.currency}", got "${extracted.currency}"`);
}
return { match: errors.length === 0, errors };
}
/**
* Find all test cases (PDF + JSON pairs) in .nogit/invoices/
* Priority invoices (like vodafone) run first for quick feedback
*/
function findTestCases(): Array<{ name: string; pdfPath: string; jsonPath: string }> {
const testDir = path.join(process.cwd(), '.nogit/invoices');
if (!fs.existsSync(testDir)) {
return [];
}
const files = fs.readdirSync(testDir);
const pdfFiles = files.filter((f) => f.endsWith('.pdf'));
const testCases: Array<{ name: string; pdfPath: string; jsonPath: string }> = [];
for (const pdf of pdfFiles) {
const baseName = pdf.replace('.pdf', '');
const jsonFile = `${baseName}.json`;
if (files.includes(jsonFile)) {
testCases.push({
name: baseName,
pdfPath: path.join(testDir, pdf),
jsonPath: path.join(testDir, jsonFile),
});
}
}
// Sort with priority invoices first, then alphabetically
const priorityPrefixes = ['vodafone'];
testCases.sort((a, b) => {
const aPriority = priorityPrefixes.findIndex((p) => a.name.startsWith(p));
const bPriority = priorityPrefixes.findIndex((p) => b.name.startsWith(p));
// Both have priority - sort by priority order
if (aPriority >= 0 && bPriority >= 0) return aPriority - bPriority;
// Only a has priority - a comes first
if (aPriority >= 0) return -1;
// Only b has priority - b comes first
if (bPriority >= 0) return 1;
// Neither has priority - alphabetical
return a.name.localeCompare(b.name);
});
return testCases;
}
// Tests
tap.test('setup: ensure Docker containers are running', async () => {
console.log('\n[Setup] Checking Docker containers...\n');
// Ensure PaddleOCR-VL is running (auto-detects GPU/CPU)
const paddleOk = await ensurePaddleOcrVl();
expect(paddleOk).toBeTrue();
// Ensure MiniCPM is running
const minicpmOk = await ensureMiniCpm();
expect(minicpmOk).toBeTrue();
console.log('\n[Setup] All containers ready!\n');
});
tap.test('should have MiniCPM-V 4.5 model loaded', async () => {
const response = await fetch(`${OLLAMA_URL}/api/tags`);
const data = await response.json();
const modelNames = data.models.map((m: { name: string }) => m.name);
expect(modelNames.some((name: string) => name.includes('minicpm-v4.5'))).toBeTrue();
});
// Dynamic test for each PDF/JSON pair
const testCases = findTestCases();
console.log(`\nFound ${testCases.length} invoice test cases\n`);
let passedCount = 0;
let failedCount = 0;
const processingTimes: number[] = [];
for (const testCase of testCases) {
tap.test(`should extract invoice: ${testCase.name}`, async () => {
// Load expected data
const expected: IInvoice = JSON.parse(fs.readFileSync(testCase.jsonPath, 'utf-8'));
console.log(`\n=== ${testCase.name} ===`);
console.log(`Expected: ${expected.invoice_number} | ${expected.invoice_date} | ${expected.total_amount} ${expected.currency}`);
const startTime = Date.now();
// Convert PDF to images
const images = convertPdfToImages(testCase.pdfPath);
console.log(` Pages: ${images.length}`);
// Extract with consensus voting
const extracted = await extractWithConsensus(images, testCase.name);
const endTime = Date.now();
const elapsedMs = endTime - startTime;
processingTimes.push(elapsedMs);
// Compare results
const result = compareInvoice(extracted, expected);
if (result.match) {
passedCount++;
console.log(` Result: MATCH (${(elapsedMs / 1000).toFixed(1)}s)`);
} else {
failedCount++;
console.log(` Result: MISMATCH (${(elapsedMs / 1000).toFixed(1)}s)`);
result.errors.forEach((e) => console.log(` - ${e}`));
}
// Assert match
expect(result.match).toBeTrue();
});
}
tap.test('summary', async () => {
const totalInvoices = testCases.length;
const accuracy = totalInvoices > 0 ? (passedCount / totalInvoices) * 100 : 0;
const totalTimeMs = processingTimes.reduce((a, b) => a + b, 0);
const avgTimeMs = processingTimes.length > 0 ? totalTimeMs / processingTimes.length : 0;
const avgTimeSec = avgTimeMs / 1000;
const totalTimeSec = totalTimeMs / 1000;
console.log(`\n========================================`);
console.log(` Invoice Extraction Summary`);
console.log(`========================================`);
console.log(` Passed: ${passedCount}/${totalInvoices}`);
console.log(` Failed: ${failedCount}/${totalInvoices}`);
console.log(` Accuracy: ${accuracy.toFixed(1)}%`);
console.log(`----------------------------------------`);
console.log(` Total time: ${totalTimeSec.toFixed(1)}s`);
console.log(` Avg per inv: ${avgTimeSec.toFixed(1)}s`);
console.log(`========================================\n`);
});
export default tap.start();

View File

@@ -1,12 +1,18 @@
/**
* Invoice extraction test using MiniCPM-V only (visual extraction)
*
* This tests MiniCPM-V's ability to extract invoice data directly from images
* without any OCR augmentation.
*/
import { tap, expect } from '@git.zone/tstest/tapbundle'; import { tap, expect } from '@git.zone/tstest/tapbundle';
import * as fs from 'fs'; import * as fs from 'fs';
import * as path from 'path'; import * as path from 'path';
import { execSync } from 'child_process'; import { execSync } from 'child_process';
import * as os from 'os'; import * as os from 'os';
import { ensureMiniCpm } from './helpers/docker.js';
const OLLAMA_URL = 'http://localhost:11434'; const OLLAMA_URL = 'http://localhost:11434';
const MODEL = 'openbmb/minicpm-v4.5:q8_0'; const MODEL = 'minicpm-v:latest';
const PADDLEOCR_URL = 'http://localhost:5000';
interface IInvoice { interface IInvoice {
invoice_number: string; invoice_number: string;
@@ -19,38 +25,11 @@ interface IInvoice {
} }
/** /**
* Extract OCR text from an image using PaddleOCR * Build extraction prompt (MiniCPM-V only, no OCR augmentation)
*/ */
async function extractOcrText(imageBase64: string): Promise<string> { function buildPrompt(): string {
const formData = new FormData(); return `/nothink
const imageBuffer = Buffer.from(imageBase64, 'base64'); You are an invoice parser. Extract the following fields from this invoice:
const blob = new Blob([imageBuffer], { type: 'image/png' });
formData.append('img', blob, 'image.png');
formData.append('outtype', 'json');
try {
const response = await fetch(`${PADDLEOCR_URL}/ocr`, {
method: 'POST',
body: formData,
});
if (!response.ok) return '';
const data = await response.json();
if (data.success && data.results) {
return data.results.map((r: { text: string }) => r.text).join('\n');
}
} catch {
// PaddleOCR unavailable
}
return '';
}
/**
* Build prompt with optional OCR text
*/
function buildPrompt(ocrText: string): string {
const base = `You are an invoice parser. Extract the following fields from this invoice:
1. invoice_number: The invoice/receipt number 1. invoice_number: The invoice/receipt number
2. invoice_date: Date in YYYY-MM-DD format 2. invoice_date: Date in YYYY-MM-DD format
@@ -65,18 +44,6 @@ Return ONLY valid JSON in this exact format:
If a field is not visible, use null for strings or 0 for numbers. If a field is not visible, use null for strings or 0 for numbers.
No explanation, just the JSON object.`; No explanation, just the JSON object.`;
if (ocrText) {
return `${base}
OCR text extracted from the invoice:
---
${ocrText}
---
Cross-reference the image with the OCR text above for accuracy.`;
}
return base;
} }
/** /**
@@ -108,12 +75,12 @@ function convertPdfToImages(pdfPath: string): string[] {
} }
/** /**
* Single extraction pass * Single extraction pass with MiniCPM-V
*/ */
async function extractOnce(images: string[], passNum: number, ocrText: string = ''): Promise<IInvoice> { async function extractOnce(images: string[], passNum: number): Promise<IInvoice> {
const payload = { const payload = {
model: MODEL, model: MODEL,
prompt: buildPrompt(ocrText), prompt: buildPrompt(),
images, images,
stream: true, stream: true,
options: { options: {
@@ -179,30 +146,25 @@ function hashInvoice(invoice: IInvoice): string {
} }
/** /**
* Extract with majority voting - run until 2 passes match * Extract with consensus voting using MiniCPM-V only
*/ */
async function extractWithConsensus(images: string[], invoiceName: string, maxPasses: number = 5): Promise<IInvoice> { async function extractWithConsensus(images: string[], invoiceName: string, maxPasses: number = 5): Promise<IInvoice> {
const results: Array<{ invoice: IInvoice; hash: string }> = []; const results: Array<{ invoice: IInvoice; hash: string }> = [];
const hashCounts: Map<string, number> = new Map(); const hashCounts: Map<string, number> = new Map();
// Extract OCR text from first page const addResult = (invoice: IInvoice, passLabel: string): number => {
const ocrText = await extractOcrText(images[0]); const hash = hashInvoice(invoice);
if (ocrText) { results.push({ invoice, hash });
console.log(` [OCR] Extracted ${ocrText.split('\n').length} text lines`); hashCounts.set(hash, (hashCounts.get(hash) || 0) + 1);
} console.log(` [${passLabel}] ${invoice.invoice_number} | ${invoice.invoice_date} | ${invoice.total_amount} ${invoice.currency}`);
return hashCounts.get(hash)!;
};
for (let pass = 1; pass <= maxPasses; pass++) { for (let pass = 1; pass <= maxPasses; pass++) {
try { try {
const invoice = await extractOnce(images, pass, ocrText); const invoice = await extractOnce(images, pass);
const hash = hashInvoice(invoice); const count = addResult(invoice, `Pass ${pass}`);
results.push({ invoice, hash });
hashCounts.set(hash, (hashCounts.get(hash) || 0) + 1);
console.log(` [Pass ${pass}] ${invoice.invoice_number} | ${invoice.invoice_date} | ${invoice.total_amount} ${invoice.currency}`);
// Check if we have consensus (2+ matching)
const count = hashCounts.get(hash)!;
if (count >= 2) { if (count >= 2) {
console.log(` [Consensus] Reached after ${pass} passes`); console.log(` [Consensus] Reached after ${pass} passes`);
return invoice; return invoice;
@@ -290,16 +252,22 @@ function findTestCases(): Array<{ name: string; pdfPath: string; jsonPath: strin
} }
} }
// Sort alphabetically
testCases.sort((a, b) => a.name.localeCompare(b.name));
return testCases; return testCases;
} }
// Tests // Tests
tap.test('should connect to Ollama API', async () => { tap.test('setup: ensure Docker containers are running', async () => {
const response = await fetch(`${OLLAMA_URL}/api/tags`); console.log('\n[Setup] Checking Docker containers...\n');
expect(response.ok).toBeTrue();
const data = await response.json(); // Ensure MiniCPM is running
expect(data.models).toBeArray(); const minicpmOk = await ensureMiniCpm();
expect(minicpmOk).toBeTrue();
console.log('\n[Setup] All containers ready!\n');
}); });
tap.test('should have MiniCPM-V 4.5 model loaded', async () => { tap.test('should have MiniCPM-V 4.5 model loaded', async () => {
@@ -311,7 +279,7 @@ tap.test('should have MiniCPM-V 4.5 model loaded', async () => {
// Dynamic test for each PDF/JSON pair // Dynamic test for each PDF/JSON pair
const testCases = findTestCases(); const testCases = findTestCases();
console.log(`\nFound ${testCases.length} invoice test cases\n`); console.log(`\nFound ${testCases.length} invoice test cases (MiniCPM-V only)\n`);
let passedCount = 0; let passedCount = 0;
let failedCount = 0; let failedCount = 0;
@@ -330,7 +298,7 @@ for (const testCase of testCases) {
const images = convertPdfToImages(testCase.pdfPath); const images = convertPdfToImages(testCase.pdfPath);
console.log(` Pages: ${images.length}`); console.log(` Pages: ${images.length}`);
// Extract with consensus voting // Extract with consensus voting (MiniCPM-V only)
const extracted = await extractWithConsensus(images, testCase.name); const extracted = await extractWithConsensus(images, testCase.name);
const endTime = Date.now(); const endTime = Date.now();
@@ -363,7 +331,7 @@ tap.test('summary', async () => {
const totalTimeSec = totalTimeMs / 1000; const totalTimeSec = totalTimeMs / 1000;
console.log(`\n========================================`); console.log(`\n========================================`);
console.log(` Invoice Extraction Summary`); console.log(` Invoice Extraction Summary (MiniCPM)`);
console.log(`========================================`); console.log(`========================================`);
console.log(` Passed: ${passedCount}/${totalInvoices}`); console.log(` Passed: ${passedCount}/${totalInvoices}`);
console.log(` Failed: ${failedCount}/${totalInvoices}`); console.log(` Failed: ${failedCount}/${totalInvoices}`);

View File

@@ -0,0 +1,451 @@
/**
* Invoice extraction test using PaddleOCR-VL Full Pipeline
*
* This tests the complete PaddleOCR-VL pipeline:
* 1. PP-DocLayoutV2 for layout detection
* 2. PaddleOCR-VL for recognition
* 3. Structured Markdown output
* 4. MiniCPM extracts invoice fields from structured Markdown
*
* The structured Markdown has proper tables and formatting,
* making it much easier for MiniCPM to extract invoice data.
*/
import { tap, expect } from '@git.zone/tstest/tapbundle';
import * as fs from 'fs';
import * as path from 'path';
import { execSync } from 'child_process';
import * as os from 'os';
import { ensurePaddleOcrVlFull, ensureQwen25 } from './helpers/docker.js';
const PADDLEOCR_VL_URL = 'http://localhost:8000';
const OLLAMA_URL = 'http://localhost:11434';
// Use Qwen2.5 for text-only JSON extraction (not MiniCPM which is vision-focused)
const TEXT_MODEL = 'qwen2.5:7b';
interface IInvoice {
invoice_number: string;
invoice_date: string;
vendor_name: string;
currency: string;
net_amount: number;
vat_amount: number;
total_amount: number;
}
/**
* Convert PDF to PNG images using ImageMagick
*/
function convertPdfToImages(pdfPath: string): string[] {
const tempDir = fs.mkdtempSync(path.join(os.tmpdir(), 'pdf-convert-'));
const outputPattern = path.join(tempDir, 'page-%d.png');
try {
execSync(
`convert -density 200 -quality 90 "${pdfPath}" -background white -alpha remove "${outputPattern}"`,
{ stdio: 'pipe' }
);
const files = fs.readdirSync(tempDir).filter((f) => f.endsWith('.png')).sort();
const images: string[] = [];
for (const file of files) {
const imagePath = path.join(tempDir, file);
const imageData = fs.readFileSync(imagePath);
images.push(imageData.toString('base64'));
}
return images;
} finally {
fs.rmSync(tempDir, { recursive: true, force: true });
}
}
/**
* Parse document using PaddleOCR-VL Full Pipeline (returns structured Markdown)
*/
async function parseDocument(imageBase64: string): Promise<string> {
const response = await fetch(`${PADDLEOCR_VL_URL}/parse`, {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({
image: imageBase64,
output_format: 'markdown',
}),
});
if (!response.ok) {
const text = await response.text();
throw new Error(`PaddleOCR-VL API error: ${response.status} - ${text}`);
}
const data = await response.json();
if (!data.success) {
throw new Error(`PaddleOCR-VL error: ${data.error}`);
}
return data.result?.markdown || '';
}
/**
* Extract invoice fields from structured Markdown using Qwen2.5 (text-only model)
*/
async function extractInvoiceFromMarkdown(markdown: string): Promise<IInvoice> {
// Truncate if too long
const truncated = markdown.length > 12000 ? markdown.slice(0, 12000) : markdown;
console.log(` [Extract] Processing ${truncated.length} chars of Markdown`);
const prompt = `You are an invoice data extractor. Extract the following fields from this OCR text and return ONLY a valid JSON object.
Required fields:
- invoice_number: The invoice/receipt/document number
- invoice_date: Date in YYYY-MM-DD format (convert from any format)
- vendor_name: Company that issued the invoice
- currency: EUR, USD, GBP, etc.
- net_amount: Amount before tax (number)
- vat_amount: Tax/VAT amount (number, use 0 if reverse charge or not shown)
- total_amount: Final total amount (number)
Example output format:
{"invoice_number":"INV-123","invoice_date":"2022-01-28","vendor_name":"Adobe","currency":"EUR","net_amount":24.99,"vat_amount":0,"total_amount":24.99}
Rules:
- Return ONLY the JSON object, no explanation or markdown
- Use null for missing string fields
- Use 0 for missing numeric fields
- Convert dates to YYYY-MM-DD format (e.g., "28-JAN-2022" becomes "2022-01-28")
- Extract numbers without currency symbols
OCR Text:
${truncated}
JSON:`;
const payload = {
model: TEXT_MODEL,
prompt,
stream: true,
options: {
num_predict: 512,
temperature: 0.1,
},
};
const response = await fetch(`${OLLAMA_URL}/api/generate`, {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify(payload),
});
if (!response.ok) {
throw new Error(`Ollama API error: ${response.status}`);
}
const reader = response.body?.getReader();
if (!reader) {
throw new Error('No response body');
}
const decoder = new TextDecoder();
let fullText = '';
while (true) {
const { done, value } = await reader.read();
if (done) break;
const chunk = decoder.decode(value, { stream: true });
const lines = chunk.split('\n').filter((l) => l.trim());
for (const line of lines) {
try {
const json = JSON.parse(line);
if (json.response) {
fullText += json.response;
}
} catch {
// Skip invalid JSON lines
}
}
}
// Extract JSON from response
const startIdx = fullText.indexOf('{');
const endIdx = fullText.lastIndexOf('}') + 1;
if (startIdx < 0 || endIdx <= startIdx) {
throw new Error(`No JSON object found in response: ${fullText.substring(0, 200)}`);
}
const jsonStr = fullText.substring(startIdx, endIdx);
const parsed = JSON.parse(jsonStr);
// Ensure numeric fields are actually numbers
return {
invoice_number: parsed.invoice_number || null,
invoice_date: parsed.invoice_date || null,
vendor_name: parsed.vendor_name || null,
currency: parsed.currency || 'EUR',
net_amount: parseFloat(parsed.net_amount) || 0,
vat_amount: parseFloat(parsed.vat_amount) || 0,
total_amount: parseFloat(parsed.total_amount) || 0,
};
}
/**
* Single extraction pass: Parse with PaddleOCR-VL Full, extract with Qwen2.5 (text-only)
*/
async function extractOnce(images: string[], passNum: number): Promise<IInvoice> {
// Parse document with full pipeline (PaddleOCR-VL)
const markdown = await parseDocument(images[0]);
console.log(` [Parse] Got ${markdown.split('\n').length} lines of Markdown`);
// Extract invoice fields from Markdown using text-only model (no images)
return extractInvoiceFromMarkdown(markdown);
}
/**
* Create a hash of invoice for comparison (using key fields)
*/
function hashInvoice(invoice: IInvoice): string {
// Ensure total_amount is a number
const amount = typeof invoice.total_amount === 'number'
? invoice.total_amount.toFixed(2)
: String(invoice.total_amount || 0);
return `${invoice.invoice_number}|${invoice.invoice_date}|${amount}`;
}
/**
* Extract with consensus voting
*/
async function extractWithConsensus(images: string[], invoiceName: string, maxPasses: number = 5): Promise<IInvoice> {
const results: Array<{ invoice: IInvoice; hash: string }> = [];
const hashCounts: Map<string, number> = new Map();
const addResult = (invoice: IInvoice, passLabel: string): number => {
const hash = hashInvoice(invoice);
results.push({ invoice, hash });
hashCounts.set(hash, (hashCounts.get(hash) || 0) + 1);
console.log(` [${passLabel}] ${invoice.invoice_number} | ${invoice.invoice_date} | ${invoice.total_amount} ${invoice.currency}`);
return hashCounts.get(hash)!;
};
for (let pass = 1; pass <= maxPasses; pass++) {
try {
const invoice = await extractOnce(images, pass);
const count = addResult(invoice, `Pass ${pass}`);
if (count >= 2) {
console.log(` [Consensus] Reached after ${pass} passes`);
return invoice;
}
} catch (err) {
console.log(` [Pass ${pass}] Error: ${err}`);
}
}
// No consensus reached - return the most common result
let bestHash = '';
let bestCount = 0;
for (const [hash, count] of hashCounts) {
if (count > bestCount) {
bestCount = count;
bestHash = hash;
}
}
if (!bestHash) {
throw new Error(`No valid results for ${invoiceName}`);
}
const best = results.find((r) => r.hash === bestHash)!;
console.log(` [No consensus] Using most common result (${bestCount}/${maxPasses} passes)`);
return best.invoice;
}
/**
* Normalize date to YYYY-MM-DD format
*/
function normalizeDate(dateStr: string | null): string {
if (!dateStr) return '';
// Already in correct format
if (/^\d{4}-\d{2}-\d{2}$/.test(dateStr)) {
return dateStr;
}
// Handle DD-MMM-YYYY format (e.g., "28-JUN-2022")
const monthMap: Record<string, string> = {
JAN: '01', FEB: '02', MAR: '03', APR: '04', MAY: '05', JUN: '06',
JUL: '07', AUG: '08', SEP: '09', OCT: '10', NOV: '11', DEC: '12',
};
const match = dateStr.match(/^(\d{1,2})-([A-Z]{3})-(\d{4})$/i);
if (match) {
const day = match[1].padStart(2, '0');
const month = monthMap[match[2].toUpperCase()] || '01';
const year = match[3];
return `${year}-${month}-${day}`;
}
// Handle DD/MM/YYYY or DD.MM.YYYY
const match2 = dateStr.match(/^(\d{1,2})[\/.](\d{1,2})[\/.](\d{4})$/);
if (match2) {
const day = match2[1].padStart(2, '0');
const month = match2[2].padStart(2, '0');
const year = match2[3];
return `${year}-${month}-${day}`;
}
return dateStr;
}
/**
* Compare extracted invoice against expected
*/
function compareInvoice(
extracted: IInvoice,
expected: IInvoice
): { match: boolean; errors: string[] } {
const errors: string[] = [];
// Compare invoice number (normalize by removing spaces and case)
const extNum = extracted.invoice_number?.replace(/\s/g, '').toLowerCase() || '';
const expNum = expected.invoice_number?.replace(/\s/g, '').toLowerCase() || '';
if (extNum !== expNum) {
errors.push(`invoice_number: expected "${expected.invoice_number}", got "${extracted.invoice_number}"`);
}
// Compare date (normalize format first)
const extDate = normalizeDate(extracted.invoice_date);
const expDate = normalizeDate(expected.invoice_date);
if (extDate !== expDate) {
errors.push(`invoice_date: expected "${expected.invoice_date}", got "${extracted.invoice_date}"`);
}
// Compare total amount (with tolerance)
if (Math.abs(extracted.total_amount - expected.total_amount) > 0.02) {
errors.push(`total_amount: expected ${expected.total_amount}, got ${extracted.total_amount}`);
}
// Compare currency
if (extracted.currency?.toUpperCase() !== expected.currency?.toUpperCase()) {
errors.push(`currency: expected "${expected.currency}", got "${extracted.currency}"`);
}
return { match: errors.length === 0, errors };
}
/**
* Find all test cases (PDF + JSON pairs) in .nogit/invoices/
*/
function findTestCases(): Array<{ name: string; pdfPath: string; jsonPath: string }> {
const testDir = path.join(process.cwd(), '.nogit/invoices');
if (!fs.existsSync(testDir)) {
return [];
}
const files = fs.readdirSync(testDir);
const pdfFiles = files.filter((f) => f.endsWith('.pdf'));
const testCases: Array<{ name: string; pdfPath: string; jsonPath: string }> = [];
for (const pdf of pdfFiles) {
const baseName = pdf.replace('.pdf', '');
const jsonFile = `${baseName}.json`;
if (files.includes(jsonFile)) {
testCases.push({
name: baseName,
pdfPath: path.join(testDir, pdf),
jsonPath: path.join(testDir, jsonFile),
});
}
}
// Sort alphabetically
testCases.sort((a, b) => a.name.localeCompare(b.name));
return testCases;
}
// Tests
tap.test('setup: ensure Docker containers are running', async () => {
console.log('\n[Setup] Checking Docker containers...\n');
// Ensure PaddleOCR-VL Full Pipeline is running
const paddleOk = await ensurePaddleOcrVlFull();
expect(paddleOk).toBeTrue();
// Ensure Qwen2.5 is available (for text-only JSON extraction)
const qwenOk = await ensureQwen25();
expect(qwenOk).toBeTrue();
console.log('\n[Setup] All containers ready!\n');
});
// Dynamic test for each PDF/JSON pair
const testCases = findTestCases();
console.log(`\nFound ${testCases.length} invoice test cases (PaddleOCR-VL Full Pipeline)\n`);
let passedCount = 0;
let failedCount = 0;
const processingTimes: number[] = [];
for (const testCase of testCases) {
tap.test(`should extract invoice: ${testCase.name}`, async () => {
// Load expected data
const expected: IInvoice = JSON.parse(fs.readFileSync(testCase.jsonPath, 'utf-8'));
console.log(`\n=== ${testCase.name} ===`);
console.log(`Expected: ${expected.invoice_number} | ${expected.invoice_date} | ${expected.total_amount} ${expected.currency}`);
const startTime = Date.now();
// Convert PDF to images
const images = convertPdfToImages(testCase.pdfPath);
console.log(` Pages: ${images.length}`);
// Extract with consensus voting (PaddleOCR-VL Full -> MiniCPM)
const extracted = await extractWithConsensus(images, testCase.name);
const endTime = Date.now();
const elapsedMs = endTime - startTime;
processingTimes.push(elapsedMs);
// Compare results
const result = compareInvoice(extracted, expected);
if (result.match) {
passedCount++;
console.log(` Result: MATCH (${(elapsedMs / 1000).toFixed(1)}s)`);
} else {
failedCount++;
console.log(` Result: MISMATCH (${(elapsedMs / 1000).toFixed(1)}s)`);
result.errors.forEach((e) => console.log(` - ${e}`));
}
// Assert match
expect(result.match).toBeTrue();
});
}
tap.test('summary', async () => {
const totalInvoices = testCases.length;
const accuracy = totalInvoices > 0 ? (passedCount / totalInvoices) * 100 : 0;
const totalTimeMs = processingTimes.reduce((a, b) => a + b, 0);
const avgTimeMs = processingTimes.length > 0 ? totalTimeMs / processingTimes.length : 0;
const avgTimeSec = avgTimeMs / 1000;
const totalTimeSec = totalTimeMs / 1000;
console.log(`\n======================================================`);
console.log(` Invoice Extraction Summary (PaddleOCR-VL Full)`);
console.log(`======================================================`);
console.log(` Method: PaddleOCR-VL Full Pipeline -> Qwen2.5 (text-only)`);
console.log(` Passed: ${passedCount}/${totalInvoices}`);
console.log(` Failed: ${failedCount}/${totalInvoices}`);
console.log(` Accuracy: ${accuracy.toFixed(1)}%`);
console.log(`------------------------------------------------------`);
console.log(` Total time: ${totalTimeSec.toFixed(1)}s`);
console.log(` Avg per inv: ${avgTimeSec.toFixed(1)}s`);
console.log(`======================================================\n`);
});
export default tap.start();