18 Commits

Author SHA1 Message Date
45cb87e9e7 v1.15.3
Some checks failed
Docker (tags) / security (push) Successful in 22s
Docker (tags) / test (push) Failing after 7m38s
Docker (tags) / release (push) Has been skipped
Docker (tags) / metadata (push) Has been skipped
2026-01-20 04:15:45 +00:00
74a5b37e92 fix(tests(nanonets)): allow / when normalizing invoice strings in tests 2026-01-20 04:15:45 +00:00
2bdcc74df0 v1.15.2
Some checks failed
Docker (tags) / security (push) Successful in 30s
Docker (tags) / test (push) Failing after 7m38s
Docker (tags) / release (push) Has been skipped
Docker (tags) / metadata (push) Has been skipped
2026-01-20 04:12:57 +00:00
981c031c6e fix(dev-deps): bump devDependencies @push.rocks/smartagent to ^1.6.2 and @push.rocks/smartai to ^0.13.3 2026-01-20 04:12:57 +00:00
26d2de824f v1.15.1
Some checks failed
Docker (tags) / security (push) Successful in 22s
Docker (tags) / test (push) Failing after 7m38s
Docker (tags) / release (push) Has been skipped
Docker (tags) / metadata (push) Has been skipped
2026-01-20 03:19:58 +00:00
969d21c51a fix(tests): enable progress events in invoice tests and bump @push.rocks/smartagent devDependency to ^1.5.4 2026-01-20 03:19:58 +00:00
da2b827ba3 chore: update smartagent to v1.5.2 (streaming support for native tool calling) 2026-01-20 02:55:28 +00:00
9bc1f74978 feat(test): enable native tool calling for GPT-OSS invoice extraction
- Update smartai to v0.13.2 (native tool calling support)
- Update smartagent to v1.5.1 (useNativeToolCalling option)
- Enable think: true for GPT-OSS reasoning mode in Ollama config
- Enable useNativeToolCalling: true in DualAgentOrchestrator
- Simplify driver system message (native tools don't need XML instructions)

Native tool calling uses Ollama's built-in Harmony format parser
instead of requiring XML generation, which is more efficient for GPT-OSS models.
2026-01-20 02:51:52 +00:00
cf282b2437 v1.15.0
Some checks failed
Docker (tags) / security (push) Successful in 29s
Docker (tags) / test (push) Failing after 7m38s
Docker (tags) / release (push) Has been skipped
Docker (tags) / metadata (push) Has been skipped
2026-01-20 01:17:41 +00:00
77d57e80bd feat(tests): integrate SmartAi/DualAgentOrchestrator into extraction tests and add JSON self-validation 2026-01-20 01:17:41 +00:00
b202e024a4 v1.14.3
Some checks failed
Docker (tags) / security (push) Successful in 29s
Docker (tags) / test (push) Failing after 1m46s
Docker (tags) / release (push) Has been skipped
Docker (tags) / metadata (push) Has been skipped
2026-01-20 00:55:24 +00:00
2210611f70 fix(repo): no changes detected in the diff; no files modified and no release required 2026-01-20 00:55:24 +00:00
d8bdb18841 fix(test): add JSON validation and retry logic to invoice extraction
- Add tryExtractJson function to validate JSON before accepting
- Use orchestrator.continueTask() to request correction if JSON is invalid
- Retry up to 2 times for malformed JSON responses
- Remove duplicate parseJsonToInvoice function
2026-01-20 00:45:30 +00:00
d384c1d79b feat(tests): integrate smartagent DualAgentOrchestrator with streaming support
- Update test.invoices.nanonets.ts to use DualAgentOrchestrator for JSON extraction
- Enable streaming token callback for real-time progress visibility
- Add markdown caching to avoid re-running Nanonets OCR for cached files
- Update test.bankstatements.minicpm.ts and test.invoices.minicpm.ts with streaming
- Update dependencies to @push.rocks/smartai@0.11.1 and @push.rocks/smartagent@1.2.8
2026-01-20 00:39:36 +00:00
6bd672da61 v1.14.2
Some checks failed
Docker (tags) / security (push) Successful in 28s
Docker (tags) / test (push) Failing after 40s
Docker (tags) / release (push) Has been skipped
Docker (tags) / metadata (push) Has been skipped
2026-01-19 21:28:26 +00:00
44d6dc3336 fix(readme): update README to document Nanonets-OCR2-3B (replaces Nanonets-OCR-s), adjust VRAM and context defaults, expand feature docs, and update examples/test command 2026-01-19 21:28:26 +00:00
d1ff95bd94 v1.14.1
Some checks failed
Docker (tags) / security (push) Successful in 26s
Docker (tags) / test (push) Failing after 39s
Docker (tags) / release (push) Has been skipped
Docker (tags) / metadata (push) Has been skipped
2026-01-19 21:19:37 +00:00
09770d3177 fix(extraction): improve JSON extraction prompts and model options for invoice and bank statement tests 2026-01-19 21:19:37 +00:00
9 changed files with 1965 additions and 679 deletions

View File

@@ -1,5 +1,60 @@
# Changelog
## 2026-01-20 - 1.15.3 - fix(tests(nanonets))
allow '/' when normalizing invoice strings in tests
- Adjust regex in test/test.invoices.nanonets.ts to preserve forward slashes when cleaning invoice values
- Changed pattern from [^A-Z0-9-] to [^A-Z0-9\/-] to prevent accidental removal of '/' characters in invoice identifiers
## 2026-01-20 - 1.15.2 - fix(dev-deps)
bump devDependencies @push.rocks/smartagent to ^1.6.2 and @push.rocks/smartai to ^0.13.3
- Bumped @push.rocks/smartagent from ^1.5.4 to ^1.6.2 in devDependencies
- Bumped @push.rocks/smartai from ^0.13.2 to ^0.13.3 in devDependencies
- Updated test/test.invoices.nanonets.ts JSON extraction prompt: instruct not to omit special characters in invoice_number and to use the json validate tool
- No breaking changes; only dev dependency updates and test prompt adjustments
## 2026-01-20 - 1.15.1 - fix(tests)
enable progress events in invoice tests and bump @push.rocks/smartagent devDependency to ^1.5.4
- Added an onProgress handler in test/test.invoices.nanonets.ts to log progress events (console.log(event.logMessage)) so tool calls and progress are visible during tests.
- Bumped devDependency @push.rocks/smartagent from ^1.5.2 to ^1.5.4 in package.json.
## 2026-01-20 - 1.15.0 - feat(tests)
integrate SmartAi/DualAgentOrchestrator into extraction tests and add JSON self-validation
- Integrate SmartAi and DualAgentOrchestrator into bankstatement and invoice tests to perform structured extraction with streaming
- Register and use JsonValidatorTool to validate outputs (json.validate) and enforce validation before task completion
- Add tryExtractJson parsing fallback, improved extraction prompts, retries and clearer parsing/logging
- Initialize and teardown SmartAi and orchestrator in test setup/summary, and enable onToken streaming handlers for real-time output
- Bump devDependencies: @push.rocks/smartagent to ^1.3.0 and @push.rocks/smartai to ^0.12.0
## 2026-01-20 - 1.14.3 - fix(repo)
no changes detected in the diff; no files modified and no release required
- Diff contained no changes
- No files were added, removed, or modified
- No code, dependency, or documentation updates to release
## 2026-01-19 - 1.14.2 - fix(readme)
update README to document Nanonets-OCR2-3B (replaces Nanonets-OCR-s), adjust VRAM and context defaults, expand feature docs, and update examples/test command
- Renamed Nanonets-OCR-s -> Nanonets-OCR2-3B throughout README and examples
- Updated Nanonets VRAM guidance from ~10GB to ~12-16GB and documented 30K context
- Changed documented MAX_MODEL_LEN default from 8192 to 30000
- Updated example model identifiers (model strings and curl/example snippets) to nanonets/Nanonets-OCR2-3B
- Added MiniCPM and Qwen feature bullets (multilingual, multi-image, flowchart support, expanded context notes)
- Replaced README test command from ./test-images.sh to pnpm test
## 2026-01-19 - 1.14.1 - fix(extraction)
improve JSON extraction prompts and model options for invoice and bank statement tests
- Refactor JSON extraction prompts to be sent after the document text and add explicit 'WHERE TO FIND DATA' and 'RULES' sections for clearer extraction guidance
- Change chat message flow to: send document, assistant acknowledgement, then the JSON extraction prompt (avoids concatenating large prompts into one message)
- Add model options (num_ctx: 32768, temperature: 0) to give larger context windows and deterministic JSON output
- Simplify logging to avoid printing full prompt contents; log document and prompt lengths instead
- Increase timeouts for large documents to 600000ms (10 minutes) where applicable
## 2026-01-19 - 1.14.0 - feat(docker-images)
add vLLM-based Nanonets-OCR2-3B image, Qwen3-VL Ollama image and refactor build/docs/tests to use new runtime/layout

View File

@@ -1,6 +1,6 @@
{
"name": "@host.today/ht-docker-ai",
"version": "1.14.0",
"version": "1.15.3",
"type": "module",
"private": false,
"description": "Docker images for AI vision-language models including MiniCPM-V 4.5",
@@ -14,7 +14,9 @@
},
"devDependencies": {
"@git.zone/tsrun": "^2.0.1",
"@git.zone/tstest": "^3.1.5"
"@git.zone/tstest": "^3.1.5",
"@push.rocks/smartagent": "^1.6.2",
"@push.rocks/smartai": "^0.13.3"
},
"repository": {
"type": "git",

1170
pnpm-lock.yaml generated

File diff suppressed because it is too large Load Diff

View File

@@ -2,7 +2,7 @@
Production-ready Docker images for state-of-the-art AI Vision-Language Models. Run powerful multimodal AI locally with GPU acceleration—**no cloud API keys required**.
> 🔥 **Three VLMs, one registry.** From lightweight document OCR to GPT-4o-level vision understanding—pick the right tool for your task.
> 🔥 **Three VLMs, one registry.** From high-performance document OCR to GPT-4o-level vision understanding—pick the right tool for your task.
## Issue Reporting and Security
@@ -15,7 +15,7 @@ For reporting bugs, issues, or security vulnerabilities, please visit [community
| Model | Parameters | Best For | API | Port | VRAM |
|-------|-----------|----------|-----|------|------|
| **MiniCPM-V 4.5** | 8B | General vision understanding, multi-image analysis | Ollama-compatible | 11434 | ~9GB |
| **Nanonets-OCR-s** | ~4B | Document OCR with semantic markdown output | OpenAI-compatible | 8000 | ~10GB |
| **Nanonets-OCR2-3B** | ~3B | Document OCR with semantic markdown, LaTeX, flowcharts | OpenAI-compatible | 8000 | ~12-16GB |
| **Qwen3-VL-30B** | 30B (A3B) | Advanced visual agents, code generation from images | Ollama-compatible | 11434 | ~20GB |
---
@@ -29,7 +29,7 @@ code.foss.global/host.today/ht-docker-ai:<tag>
| Tag | Model | Runtime | Port | VRAM |
|-----|-------|---------|------|------|
| `minicpm45v` / `latest` | MiniCPM-V 4.5 | Ollama | 11434 | ~9GB |
| `nanonets-ocr` | Nanonets-OCR-s | vLLM | 8000 | ~10GB |
| `nanonets-ocr` | Nanonets-OCR2-3B | vLLM | 8000 | ~12-16GB |
| `qwen3vl` | Qwen3-VL-30B-A3B | Ollama | 11434 | ~20GB |
---
@@ -38,6 +38,13 @@ code.foss.global/host.today/ht-docker-ai:<tag>
A GPT-4o level multimodal LLM from OpenBMB—handles image understanding, OCR, multi-image analysis, and visual reasoning across **30+ languages**.
### ✨ Key Features
- 🌍 **Multilingual:** 30+ languages supported
- 🖼️ **Multi-image:** Analyze multiple images in one request
- 📊 **Versatile:** Charts, documents, photos, diagrams
-**Efficient:** Runs on consumer GPUs (9GB VRAM)
### Quick Start
```bash
@@ -83,21 +90,22 @@ curl http://localhost:11434/api/chat -d '{
| Mode | VRAM Required |
|------|---------------|
| int4 quantized | 9GB |
| Full precision (bf16) | 18GB |
| int4 quantized | ~9GB |
| Full precision (bf16) | ~18GB |
---
## 🔍 Nanonets-OCR-s
## 🔍 Nanonets-OCR2-3B
A **Qwen2.5-VL-3B** model fine-tuned specifically for document OCR. Outputs structured markdown with semantic HTML tags—perfect for preserving document structure.
The **latest Nanonets document OCR model** (October 2025 release)—based on Qwen2.5-VL-3B, fine-tuned specifically for document extraction with significant improvements over the original OCR-s.
### Key Features
### Key Features
- 📝 **Semantic output:** Tables → HTML, equations → LaTeX, watermarks/page numbers → tagged
- 📝 **Semantic output:** Tables → HTML, equations → LaTeX, flowcharts → structured markup
- 🌍 **Multilingual:** Inherits Qwen's broad language support
- **Efficient:** ~10GB VRAM, runs great on consumer GPUs
- 📄 **30K context:** Handle large, multi-page documents
- 🔌 **OpenAI-compatible:** Drop-in replacement for existing pipelines
- 🎯 **Improved accuracy:** Better semantic tagging and LaTeX equation extraction vs. OCR-s
### Quick Start
@@ -116,7 +124,7 @@ docker run -d \
curl http://localhost:8000/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "nanonets/Nanonets-OCR-s",
"model": "nanonets/Nanonets-OCR2-3B",
"messages": [{
"role": "user",
"content": [
@@ -131,7 +139,7 @@ curl http://localhost:8000/v1/chat/completions \
### Output Format
Nanonets-OCR-s returns markdown with semantic tags:
Nanonets-OCR2-3B returns markdown with semantic tags:
| Element | Output Format |
|---------|---------------|
@@ -140,13 +148,14 @@ Nanonets-OCR-s returns markdown with semantic tags:
| Images | `<img>description</img>` |
| Watermarks | `<watermark>OFFICIAL COPY</watermark>` |
| Page numbers | `<page_number>14</page_number>` |
| Flowcharts | Structured markup |
### Performance
### Hardware Requirements
| Metric | Value |
|--------|-------|
| Speed | 38 seconds per page |
| VRAM | ~10GB |
| Config | VRAM |
|--------|------|
| 30K context (default) | ~12-16GB |
| Speed | ~3-8 seconds per page |
---
@@ -154,7 +163,7 @@ Nanonets-OCR-s returns markdown with semantic tags:
The **most powerful** Qwen vision model—30B parameters with 3B active (MoE architecture). Handles complex visual reasoning, code generation from screenshots, and visual agent capabilities.
### Key Features
### Key Features
- 🚀 **256K context** (expandable to 1M tokens!)
- 🤖 **Visual agent capabilities** — can plan and execute multi-step tasks
@@ -204,7 +213,6 @@ curl http://localhost:11434/api/chat -d '{
Run multiple VLMs together for maximum flexibility:
```yaml
version: '3.8'
services:
# General vision tasks
minicpm:
@@ -259,10 +267,10 @@ volumes:
| Variable | Default | Description |
|----------|---------|-------------|
| `MODEL_NAME` | `nanonets/Nanonets-OCR-s` | HuggingFace model ID |
| `MODEL_NAME` | `nanonets/Nanonets-OCR2-3B` | HuggingFace model ID |
| `HOST` | `0.0.0.0` | API bind address |
| `PORT` | `8000` | API port |
| `MAX_MODEL_LEN` | `8192` | Maximum sequence length |
| `MAX_MODEL_LEN` | `30000` | Maximum sequence length |
| `GPU_MEMORY_UTILIZATION` | `0.9` | GPU memory usage (0-1) |
---
@@ -283,7 +291,7 @@ This dual-VLM approach catches extraction errors that single models miss.
### Why Multi-Model Works
- **Different architectures:** Independent models cross-validate each other
- **Specialized strengths:** Nanonets-OCR-s excels at document structure; MiniCPM-V handles general vision
- **Specialized strengths:** Nanonets-OCR2-3B excels at document structure; MiniCPM-V handles general vision
- **Native processing:** All VLMs see original images—no intermediate structure loss
### Model Selection Guide
@@ -291,10 +299,11 @@ This dual-VLM approach catches extraction errors that single models miss.
| Task | Recommended Model |
|------|-------------------|
| General image understanding | MiniCPM-V 4.5 |
| Document OCR with structure preservation | Nanonets-OCR-s |
| Document OCR with structure preservation | Nanonets-OCR2-3B |
| Complex visual reasoning / code generation | Qwen3-VL-30B |
| Multi-image analysis | MiniCPM-V 4.5 |
| Visual agent tasks | Qwen3-VL-30B |
| Large documents (30K+ tokens) | Nanonets-OCR2-3B |
---
@@ -309,7 +318,7 @@ cd ht-docker-ai
./build-images.sh
# Run tests
./test-images.sh
pnpm test
```
---

View File

@@ -1,9 +1,10 @@
/**
* Bank statement extraction using MiniCPM-V (visual extraction)
* Bank statement extraction using MiniCPM-V via smartagent DualAgentOrchestrator
*
* JSON per-page approach:
* 1. Ask for structured JSON of all transactions per page
* 2. Consensus: extract twice, compare, retry if mismatch
* Uses vision-capable orchestrator with JsonValidatorTool for self-validation:
* 1. Process each page with the orchestrator
* 2. Driver extracts transactions and validates JSON before completing
* 3. Streaming output during extraction
*/
import { tap, expect } from '@git.zone/tstest/tapbundle';
import * as fs from 'fs';
@@ -11,6 +12,8 @@ import * as path from 'path';
import { execSync } from 'child_process';
import * as os from 'os';
import { ensureMiniCpm } from './helpers/docker.js';
import { SmartAi } from '@push.rocks/smartai';
import { DualAgentOrchestrator, JsonValidatorTool } from '@push.rocks/smartagent';
const OLLAMA_URL = 'http://localhost:11434';
const MODEL = 'openbmb/minicpm-v4.5:q8_0';
@@ -21,21 +24,9 @@ interface ITransaction {
amount: number;
}
const JSON_PROMPT = `Extract ALL transactions from this bank statement page as a JSON array.
IMPORTANT RULES:
1. Each transaction has: date, description/counterparty, and an amount
2. Amount is NEGATIVE for money going OUT (debits, payments, withdrawals)
3. Amount is POSITIVE for money coming IN (credits, deposits, refunds)
4. Date format: YYYY-MM-DD
5. Do NOT include: opening balance, closing balance, subtotals, headers, or summary rows
6. Only include actual transactions with a specific date and amount
Return ONLY this JSON format, no explanation:
[
{"date": "2021-06-01", "counterparty": "COMPANY NAME", "amount": -25.99},
{"date": "2021-06-02", "counterparty": "DEPOSIT FROM", "amount": 100.00}
]`;
// SmartAi instance and orchestrator (initialized in setup)
let smartAi: SmartAi;
let orchestrator: DualAgentOrchestrator;
/**
* Convert PDF to PNG images using ImageMagick
@@ -65,206 +56,31 @@ function convertPdfToImages(pdfPath: string): string[] {
}
}
/**
* Query for JSON extraction
*/
async function queryJson(image: string, queryId: string): Promise<string> {
console.log(` [${queryId}] Sending request to ${MODEL}...`);
const startTime = Date.now();
const EXTRACTION_PROMPT = `Extract ALL transactions from this bank statement page as a JSON array.
const response = await fetch(`${OLLAMA_URL}/api/chat`, {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({
model: MODEL,
messages: [{
role: 'user',
content: JSON_PROMPT,
images: [image],
}],
stream: false,
options: {
num_predict: 4000,
temperature: 0.1,
},
}),
});
IMPORTANT RULES:
1. Each transaction has: date, counterparty (description), and an amount
2. Amount is NEGATIVE for money going OUT (debits, payments, withdrawals)
3. Amount is POSITIVE for money coming IN (credits, deposits, refunds)
4. Date format: YYYY-MM-DD
5. Do NOT include: opening balance, closing balance, subtotals, headers, or summary rows
6. Only include actual transactions with a specific date and amount
const elapsed = ((Date.now() - startTime) / 1000).toFixed(1);
Before completing, validate your JSON output:
if (!response.ok) {
console.log(` [${queryId}] ERROR: ${response.status} (${elapsed}s)`);
throw new Error(`Ollama API error: ${response.status}`);
}
<tool_call>
<tool>json</tool>
<action>validate</action>
<params>{"jsonString": "YOUR_JSON_ARRAY_HERE"}</params>
</tool_call>
const data = await response.json();
const content = (data.message?.content || '').trim();
console.log(` [${queryId}] Response received (${elapsed}s, ${content.length} chars)`);
return content;
}
Output format (must be a valid JSON array):
[
{"date": "2021-06-01", "counterparty": "COMPANY NAME", "amount": -25.99},
{"date": "2021-06-02", "counterparty": "DEPOSIT FROM", "amount": 100.00}
]
/**
* Sanitize JSON string - fix common issues from vision model output
*/
function sanitizeJson(jsonStr: string): string {
let s = jsonStr;
// Fix +number (e.g., +93.80 -> 93.80) - JSON doesn't allow + prefix
// Handle various whitespace patterns
s = s.replace(/"amount"\s*:\s*\+/g, '"amount": ');
s = s.replace(/:\s*\+(\d)/g, ': $1');
// Fix European number format with thousands separator (e.g., 1.000.00 -> 1000.00)
// Pattern: "amount": X.XXX.XX where X.XXX is thousands and .XX is decimal
s = s.replace(/"amount"\s*:\s*(-?)(\d{1,3})\.(\d{3})\.(\d{2})\b/g, '"amount": $1$2$3.$4');
// Also handle larger numbers like 10.000.00
s = s.replace(/"amount"\s*:\s*(-?)(\d{1,3})\.(\d{3})\.(\d{3})\.(\d{2})\b/g, '"amount": $1$2$3$4.$5');
// Fix trailing commas before ] or }
s = s.replace(/,\s*([}\]])/g, '$1');
// Fix unescaped newlines inside strings (replace with space)
s = s.replace(/"([^"\\]*)\n([^"]*)"/g, '"$1 $2"');
// Fix unescaped tabs inside strings
s = s.replace(/"([^"\\]*)\t([^"]*)"/g, '"$1 $2"');
// Fix unescaped backslashes (but not already escaped ones)
s = s.replace(/\\(?!["\\/bfnrtu])/g, '\\\\');
// Fix common issues with counterparty names containing special chars
s = s.replace(/"counterparty":\s*"([^"]*)'([^"]*)"/g, '"counterparty": "$1$2"');
// Remove control characters except newlines (which we handle above)
s = s.replace(/[\x00-\x08\x0B\x0C\x0E-\x1F]/g, ' ');
return s;
}
/**
* Parse JSON response into transactions
*/
function parseJsonResponse(response: string, queryId: string): ITransaction[] {
console.log(` [${queryId}] Parsing response...`);
// Try to find JSON in markdown code block
const codeBlockMatch = response.match(/```(?:json)?\s*([\s\S]*?)```/);
let jsonStr = codeBlockMatch ? codeBlockMatch[1].trim() : response.trim();
if (codeBlockMatch) {
console.log(` [${queryId}] Found JSON in code block`);
}
// Sanitize JSON (fix +number issue)
jsonStr = sanitizeJson(jsonStr);
try {
const parsed = JSON.parse(jsonStr);
if (Array.isArray(parsed)) {
const txs = parsed.map(tx => ({
date: String(tx.date || ''),
counterparty: String(tx.counterparty || tx.description || ''),
amount: parseAmount(tx.amount),
}));
console.log(` [${queryId}] Parsed ${txs.length} transactions (direct)`);
return txs;
}
console.log(` [${queryId}] Parsed JSON is not an array`);
} catch (e) {
const errMsg = (e as Error).message;
console.log(` [${queryId}] Direct parse failed: ${errMsg}`);
// Log problematic section with context
const posMatch = errMsg.match(/position (\d+)/);
if (posMatch) {
const pos = parseInt(posMatch[1]);
const start = Math.max(0, pos - 40);
const end = Math.min(jsonStr.length, pos + 40);
const context = jsonStr.substring(start, end);
const marker = ' '.repeat(pos - start) + '^';
console.log(` [${queryId}] Context around error position ${pos}:`);
console.log(` [${queryId}] ...${context}...`);
console.log(` [${queryId}] ${marker}`);
}
// Try to find JSON array pattern
const arrayMatch = jsonStr.match(/\[[\s\S]*\]/);
if (arrayMatch) {
console.log(` [${queryId}] Found array pattern, trying to parse...`);
const sanitizedArray = sanitizeJson(arrayMatch[0]);
try {
const parsed = JSON.parse(sanitizedArray);
if (Array.isArray(parsed)) {
const txs = parsed.map(tx => ({
date: String(tx.date || ''),
counterparty: String(tx.counterparty || tx.description || ''),
amount: parseAmount(tx.amount),
}));
console.log(` [${queryId}] Parsed ${txs.length} transactions (array match)`);
return txs;
}
} catch (e2) {
const errMsg2 = (e2 as Error).message;
console.log(` [${queryId}] Array parse failed: ${errMsg2}`);
const posMatch2 = errMsg2.match(/position (\d+)/);
if (posMatch2) {
const pos2 = parseInt(posMatch2[1]);
console.log(` [${queryId}] Context around error: ...${sanitizedArray.substring(Math.max(0, pos2 - 30), pos2 + 30)}...`);
}
// Try to extract individual objects from the malformed array
console.log(` [${queryId}] Attempting object-by-object extraction...`);
const extracted = extractTransactionsFromMalformedJson(sanitizedArray, queryId);
if (extracted.length > 0) {
console.log(` [${queryId}] Recovered ${extracted.length} transactions via object extraction`);
return extracted;
}
}
} else {
console.log(` [${queryId}] No array pattern found in response`);
console.log(` [${queryId}] Raw response preview: ${response.substring(0, 200)}...`);
}
}
console.log(` [${queryId}] PARSE FAILED - returning empty array`);
return [];
}
/**
* Extract transactions from malformed JSON by parsing objects individually
*/
function extractTransactionsFromMalformedJson(jsonStr: string, queryId: string): ITransaction[] {
const transactions: ITransaction[] = [];
// Match individual transaction objects
const objectPattern = /\{\s*"date"\s*:\s*"([^"]+)"\s*,\s*"counterparty"\s*:\s*"([^"]+)"\s*,\s*"amount"\s*:\s*([+-]?\d+\.?\d*)\s*\}/g;
let match;
while ((match = objectPattern.exec(jsonStr)) !== null) {
transactions.push({
date: match[1],
counterparty: match[2],
amount: parseFloat(match[3]),
});
}
// Also try with different field orders (amount before counterparty, etc.)
if (transactions.length === 0) {
const altPattern = /\{\s*"date"\s*:\s*"([^"]+)"[^}]*"amount"\s*:\s*([+-]?\d+\.?\d*)[^}]*\}/g;
while ((match = altPattern.exec(jsonStr)) !== null) {
// Try to extract counterparty from the match
const counterpartyMatch = match[0].match(/"counterparty"\s*:\s*"([^"]+)"/);
const descMatch = match[0].match(/"description"\s*:\s*"([^"]+)"/);
transactions.push({
date: match[1],
counterparty: counterpartyMatch?.[1] || descMatch?.[1] || 'UNKNOWN',
amount: parseFloat(match[2]),
});
}
}
return transactions;
}
Only complete after validation passes. Output the final JSON array in <task_complete> tags.`;
/**
* Parse amount from various formats
@@ -284,102 +100,101 @@ function parseAmount(value: unknown): number {
}
/**
* Compare two transaction arrays for consensus
* Extract JSON from response (handles markdown code blocks and task_complete tags)
*/
function transactionArraysMatch(a: ITransaction[], b: ITransaction[]): boolean {
if (a.length !== b.length) return false;
for (let i = 0; i < a.length; i++) {
const dateMatch = a[i].date === b[i].date;
const amountMatch = Math.abs(a[i].amount - b[i].amount) < 0.01;
if (!dateMatch || !amountMatch) return false;
function extractJsonFromResponse(response: string): unknown[] | null {
// Try to find JSON in task_complete tags
const completeMatch = response.match(/<task_complete>([\s\S]*?)<\/task_complete>/);
if (completeMatch) {
const content = completeMatch[1].trim();
// Try to find JSON in the content
const codeBlockMatch = content.match(/```(?:json)?\s*([\s\S]*?)```/);
const jsonStr = codeBlockMatch ? codeBlockMatch[1].trim() : content;
try {
const parsed = JSON.parse(jsonStr);
if (Array.isArray(parsed)) return parsed;
} catch {
// Try to find JSON array pattern
const jsonMatch = jsonStr.match(/\[[\s\S]*\]/);
if (jsonMatch) {
try {
const parsed = JSON.parse(jsonMatch[0]);
if (Array.isArray(parsed)) return parsed;
} catch {
return null;
}
}
}
}
return true;
// Try to find JSON in markdown code block
const codeBlockMatch = response.match(/```(?:json)?\s*([\s\S]*?)```/);
const jsonStr = codeBlockMatch ? codeBlockMatch[1].trim() : response.trim();
try {
const parsed = JSON.parse(jsonStr);
if (Array.isArray(parsed)) return parsed;
} catch {
// Try to find JSON array pattern
const jsonMatch = jsonStr.match(/\[[\s\S]*\]/);
if (jsonMatch) {
try {
const parsed = JSON.parse(jsonMatch[0]);
if (Array.isArray(parsed)) return parsed;
} catch {
return null;
}
}
}
return null;
}
/**
* Compare two transaction arrays and log differences
* Parse JSON response into transactions
*/
function compareAndLogDifferences(txs1: ITransaction[], txs2: ITransaction[], pageNum: number): void {
if (txs1.length !== txs2.length) {
console.log(` [Page ${pageNum}] Length mismatch: Q1=${txs1.length}, Q2=${txs2.length}`);
return;
}
function parseJsonToTransactions(response: string): ITransaction[] {
const parsed = extractJsonFromResponse(response);
if (!parsed || !Array.isArray(parsed)) return [];
for (let i = 0; i < txs1.length; i++) {
const dateMatch = txs1[i].date === txs2[i].date;
const amountMatch = Math.abs(txs1[i].amount - txs2[i].amount) < 0.01;
if (!dateMatch || !amountMatch) {
console.log(` [Page ${pageNum}] Tx ${i + 1} differs:`);
console.log(` Q1: ${txs1[i].date} | ${txs1[i].amount}`);
console.log(` Q2: ${txs2[i].date} | ${txs2[i].amount}`);
}
}
return parsed.map((tx: any) => ({
date: String(tx.date || ''),
counterparty: String(tx.counterparty || tx.description || ''),
amount: parseAmount(tx.amount),
}));
}
/**
* Extract transactions from a single page with consensus
* Extract transactions from a single page using smartagent orchestrator
*/
async function extractTransactionsFromPage(image: string, pageNum: number): Promise<ITransaction[]> {
const MAX_ATTEMPTS = 5;
console.log(`\n ======== Page ${pageNum} ========`);
console.log(` [Page ${pageNum}] Starting JSON extraction...`);
for (let attempt = 1; attempt <= MAX_ATTEMPTS; attempt++) {
console.log(`\n [Page ${pageNum}] --- Attempt ${attempt}/${MAX_ATTEMPTS} ---`);
const startTime = Date.now();
// Extract twice in parallel
const q1Id = `P${pageNum}A${attempt}Q1`;
const q2Id = `P${pageNum}A${attempt}Q2`;
const result = await orchestrator.run(EXTRACTION_PROMPT, { images: [image] });
const [response1, response2] = await Promise.all([
queryJson(image, q1Id),
queryJson(image, q2Id),
]);
const elapsed = ((Date.now() - startTime) / 1000).toFixed(1);
console.log(`\n [Page ${pageNum}] Completed in ${elapsed}s (${result.iterations} iterations, status: ${result.status})`);
const txs1 = parseJsonResponse(response1, q1Id);
const txs2 = parseJsonResponse(response2, q2Id);
const transactions = parseJsonToTransactions(result.result);
console.log(` [Page ${pageNum}] Results: Q1=${txs1.length} txs, Q2=${txs2.length} txs`);
if (txs1.length > 0 && transactionArraysMatch(txs1, txs2)) {
console.log(` [Page ${pageNum}] ✓ CONSENSUS REACHED: ${txs1.length} transactions`);
console.log(` [Page ${pageNum}] Transactions:`);
for (let i = 0; i < txs1.length; i++) {
const tx = txs1[i];
console.log(` [Page ${pageNum}] Extracted ${transactions.length} transactions:`);
for (let i = 0; i < Math.min(transactions.length, 10); i++) {
const tx = transactions[i];
console.log(` ${(i + 1).toString().padStart(2)}. ${tx.date} | ${tx.counterparty.substring(0, 30).padEnd(30)} | ${tx.amount >= 0 ? '+' : ''}${tx.amount.toFixed(2)}`);
}
return txs1;
if (transactions.length > 10) {
console.log(` ... and ${transactions.length - 10} more transactions`);
}
console.log(` [Page ${pageNum}] ✗ NO CONSENSUS`);
compareAndLogDifferences(txs1, txs2, pageNum);
if (attempt < MAX_ATTEMPTS) {
console.log(` [Page ${pageNum}] Retrying...`);
}
}
// Fallback: use last response
console.log(`\n [Page ${pageNum}] === FALLBACK (no consensus after ${MAX_ATTEMPTS} attempts) ===`);
const fallbackId = `P${pageNum}FALLBACK`;
const fallbackResponse = await queryJson(image, fallbackId);
const fallback = parseJsonResponse(fallbackResponse, fallbackId);
console.log(` [Page ${pageNum}] ~ FALLBACK RESULT: ${fallback.length} transactions`);
for (let i = 0; i < fallback.length; i++) {
const tx = fallback[i];
console.log(` ${(i + 1).toString().padStart(2)}. ${tx.date} | ${tx.counterparty.substring(0, 30).padEnd(30)} | ${tx.amount >= 0 ? '+' : ''}${tx.amount.toFixed(2)}`);
}
return fallback;
return transactions;
}
/**
* Extract all transactions from bank statement
*/
async function extractTransactions(images: string[]): Promise<ITransaction[]> {
console.log(` [Vision] Processing ${images.length} page(s) with ${MODEL} (JSON consensus)`);
console.log(` [Vision] Processing ${images.length} page(s) with smartagent DualAgentOrchestrator`);
const allTransactions: ITransaction[] = [];
@@ -474,6 +289,80 @@ tap.test('setup: ensure Docker containers are running', async () => {
console.log('\n[Setup] All containers ready!\n');
});
tap.test('setup: initialize smartagent orchestrator', async () => {
console.log('[Setup] Initializing SmartAi and DualAgentOrchestrator...');
smartAi = new SmartAi({
ollama: {
baseUrl: OLLAMA_URL,
model: MODEL,
defaultOptions: {
num_ctx: 32768,
num_predict: 4000,
temperature: 0.1,
},
defaultTimeout: 300000, // 5 minutes for vision tasks
},
});
await smartAi.start();
orchestrator = new DualAgentOrchestrator({
smartAiInstance: smartAi,
defaultProvider: 'ollama',
guardianPolicyPrompt: `You are a Guardian agent overseeing bank statement extraction tasks.
APPROVE all tool calls that:
- Use the json.validate action to verify JSON output
- Are reasonable attempts to complete the extraction task
REJECT tool calls that:
- Attempt to access external resources
- Try to execute arbitrary code
- Are clearly unrelated to bank statement extraction`,
driverSystemMessage: `You are an AI assistant that extracts bank transactions from statement images.
Your task is to analyze bank statement images and extract transaction data.
You have access to a json.validate tool to verify your JSON output.
IMPORTANT: Always validate your JSON before completing the task.
## Tool Usage Format
When you need to validate JSON, output:
<tool_call>
<tool>json</tool>
<action>validate</action>
<params>{"jsonString": "YOUR_JSON_ARRAY"}</params>
</tool_call>
## Completion Format
After validation passes, complete the task:
<task_complete>
[{"date": "YYYY-MM-DD", "counterparty": "...", "amount": -123.45}, ...]
</task_complete>`,
maxIterations: 5,
maxConsecutiveRejections: 3,
onToken: (token, source) => {
if (source === 'driver') {
process.stdout.write(token);
}
},
onProgress: (event) => {
if (event.logLevel === 'error') {
console.error(event.logMessage);
}
},
});
// Register the JsonValidatorTool
orchestrator.registerTool(new JsonValidatorTool());
await orchestrator.start();
console.log('[Setup] Orchestrator initialized!\n');
});
tap.test('should have MiniCPM-V model loaded', async () => {
const response = await fetch(`${OLLAMA_URL}/api/tags`);
const data = await response.json();
@@ -482,7 +371,7 @@ tap.test('should have MiniCPM-V model loaded', async () => {
});
const testCases = findTestCases();
console.log(`\nFound ${testCases.length} bank statement test cases (MiniCPM-V)\n`);
console.log(`\nFound ${testCases.length} bank statement test cases (smartagent + MiniCPM-V)\n`);
let passedCount = 0;
let failedCount = 0;
@@ -514,7 +403,10 @@ for (const testCase of testCases) {
// Log counterparty variations (names that differ but date/amount matched)
if (result.variations.length > 0) {
console.log(` Counterparty variations (${result.variations.length}):`);
result.variations.forEach((v) => console.log(` ${v}`));
result.variations.slice(0, 5).forEach((v) => console.log(` ${v}`));
if (result.variations.length > 5) {
console.log(` ... and ${result.variations.length - 5} more variations`);
}
}
expect(result.matches).toEqual(result.total);
@@ -522,12 +414,20 @@ for (const testCase of testCases) {
});
}
tap.test('cleanup: stop orchestrator', async () => {
if (orchestrator) {
await orchestrator.stop();
}
console.log('[Cleanup] Orchestrator stopped');
});
tap.test('summary', async () => {
const total = testCases.length;
console.log(`\n======================================================`);
console.log(` Bank Statement Summary (${MODEL})`);
console.log(` Bank Statement Summary`);
console.log(` (smartagent + ${MODEL})`);
console.log(`======================================================`);
console.log(` Method: JSON per-page + consensus`);
console.log(` Method: DualAgentOrchestrator with vision`);
console.log(` Passed: ${passedCount}/${total}`);
console.log(` Failed: ${failedCount}/${total}`);
console.log(`======================================================\n`);

View File

@@ -11,7 +11,9 @@ import * as fs from 'fs';
import * as path from 'path';
import { execSync } from 'child_process';
import * as os from 'os';
import { ensureNanonetsOcr, ensureMiniCpm, removeContainer, isContainerRunning } from './helpers/docker.js';
import { ensureNanonetsOcr, ensureMiniCpm, isContainerRunning } from './helpers/docker.js';
import { SmartAi } from '@push.rocks/smartai';
import { DualAgentOrchestrator, JsonValidatorTool } from '@push.rocks/smartagent';
const NANONETS_URL = 'http://localhost:8000/v1';
const NANONETS_MODEL = 'nanonets/Nanonets-OCR2-3B';
@@ -22,6 +24,22 @@ const EXTRACTION_MODEL = 'gpt-oss:20b';
// Temp directory for storing markdown between stages
const TEMP_MD_DIR = path.join(os.tmpdir(), 'nanonets-markdown');
// SmartAi instance for Ollama with optimized settings
const smartAi = new SmartAi({
ollama: {
baseUrl: OLLAMA_URL,
model: EXTRACTION_MODEL,
defaultOptions: {
num_ctx: 32768, // Larger context for long statements + thinking
temperature: 0, // Deterministic for JSON extraction
},
defaultTimeout: 600000, // 10 minute timeout for large documents
},
});
// DualAgentOrchestrator for structured task execution
let orchestrator: DualAgentOrchestrator;
interface ITransaction {
date: string;
counterparty: string;
@@ -51,11 +69,21 @@ If there is an image in the document and image caption is not present, add a sma
Watermarks should be wrapped in brackets. Ex: <watermark>OFFICIAL COPY</watermark>.
Page numbers should be wrapped in brackets. Ex: <page_number>14</page_number>.`;
// JSON extraction prompt for GPT-OSS 20B
const JSON_EXTRACTION_PROMPT = `Extract ALL transactions from this bank statement as JSON array. Each transaction: {"date": "YYYY-MM-DD", "counterparty": "NAME", "amount": -25.99}. Amount negative for debits, positive for credits. Only include actual transactions, not balances. Return ONLY JSON array, no explanation.
// JSON extraction prompt for GPT-OSS 20B (sent AFTER the statement text is provided)
const JSON_EXTRACTION_PROMPT = `Extract ALL transactions from the bank statement. Return ONLY valid JSON array.
STATEMENT:
`;
WHERE TO FIND DATA:
- Transactions are typically in TABLES with columns: Date, Description/Counterparty, Debit, Credit, Balance
- Look for rows with actual money movements, NOT header rows or summary totals
RULES:
1. date: Convert to YYYY-MM-DD format
2. counterparty: The name/description of who the money went to/from
3. amount: NEGATIVE for debits/withdrawals, POSITIVE for credits/deposits
4. Only include actual transactions, NOT opening/closing balances
JSON array only:
[{"date":"YYYY-MM-DD","counterparty":"NAME","amount":-25.99}]`;
// Constants for smart batching
const MAX_VISUAL_TOKENS = 28000; // ~32K context minus prompt/output headroom
@@ -242,93 +270,107 @@ async function ensureExtractionModel(): Promise<boolean> {
}
/**
* Extract transactions from markdown using GPT-OSS 20B (streaming)
* Try to extract valid JSON from a response string
*/
function tryExtractJson(response: string): unknown[] | null {
// Remove thinking tags
let clean = response.replace(/<think>[\s\S]*?<\/think>/g, '').trim();
// Try task_complete tags first
const completeMatch = clean.match(/<task_complete>([\s\S]*?)<\/task_complete>/);
if (completeMatch) {
clean = completeMatch[1].trim();
}
// Try code block
const codeBlockMatch = clean.match(/```(?:json)?\s*([\s\S]*?)```/);
const jsonStr = codeBlockMatch ? codeBlockMatch[1].trim() : clean;
try {
const parsed = JSON.parse(jsonStr);
if (Array.isArray(parsed)) return parsed;
} catch {
// Try to find JSON array
const jsonMatch = jsonStr.match(/\[[\s\S]*\]/);
if (jsonMatch) {
try {
const parsed = JSON.parse(sanitizeJson(jsonMatch[0]));
if (Array.isArray(parsed)) return parsed;
} catch {
return null;
}
}
return null;
}
return null;
}
/**
* Extract transactions from markdown using smartagent DualAgentOrchestrator
* Validates JSON and retries if invalid
*/
async function extractTransactionsFromMarkdown(markdown: string, queryId: string): Promise<ITransaction[]> {
const startTime = Date.now();
const fullPrompt = JSON_EXTRACTION_PROMPT + markdown;
// Log exact prompt
console.log(`\n [${queryId}] ===== PROMPT =====`);
console.log(fullPrompt);
console.log(` [${queryId}] ===== END PROMPT (${fullPrompt.length} chars) =====\n`);
console.log(` [${queryId}] Statement: ${markdown.length} chars`);
const response = await fetch(`${OLLAMA_URL}/api/chat`, {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({
model: EXTRACTION_MODEL,
messages: [
{ role: 'user', content: 'Hi there, how are you?' },
{ role: 'assistant', content: 'Good, how can I help you today?' },
{ role: 'user', content: fullPrompt },
],
stream: true,
}),
signal: AbortSignal.timeout(600000), // 10 minute timeout
});
// Build the extraction task with document context
const taskPrompt = `Extract all transactions from this bank statement document and output ONLY the JSON array:
if (!response.ok) {
const elapsed = ((Date.now() - startTime) / 1000).toFixed(1);
console.log(` [${queryId}] ERROR: ${response.status} (${elapsed}s)`);
throw new Error(`Ollama API error: ${response.status}`);
}
${markdown}
// Stream the response
let content = '';
let thinkingContent = '';
let thinkingStarted = false;
let outputStarted = false;
const reader = response.body!.getReader();
const decoder = new TextDecoder();
${JSON_EXTRACTION_PROMPT}
Before completing, validate your JSON using the json.validate tool:
<tool_call>
<tool>json</tool>
<action>validate</action>
<params>{"jsonString": "YOUR_JSON_ARRAY_HERE"}</params>
</tool_call>
Only complete after validation passes. Output the final JSON array in <task_complete></task_complete> tags.`;
try {
while (true) {
const { done, value } = await reader.read();
if (done) break;
const chunk = decoder.decode(value, { stream: true });
// Each line is a JSON object
for (const line of chunk.split('\n').filter(l => l.trim())) {
try {
const json = JSON.parse(line);
// Stream thinking tokens
const thinking = json.message?.thinking || '';
if (thinking) {
if (!thinkingStarted) {
process.stdout.write(` [${queryId}] THINKING: `);
thinkingStarted = true;
}
process.stdout.write(thinking);
thinkingContent += thinking;
}
// Stream content tokens
const token = json.message?.content || '';
if (token) {
if (!outputStarted) {
if (thinkingStarted) process.stdout.write('\n');
process.stdout.write(` [${queryId}] OUTPUT: `);
outputStarted = true;
}
process.stdout.write(token);
content += token;
}
} catch {
// Ignore parse errors for partial chunks
}
}
}
} finally {
if (thinkingStarted || outputStarted) process.stdout.write('\n');
}
const result = await orchestrator.run(taskPrompt);
const elapsed = ((Date.now() - startTime) / 1000).toFixed(1);
console.log(` [${queryId}] Done: ${thinkingContent.length} thinking chars, ${content.length} output chars (${elapsed}s)`);
console.log(` [${queryId}] Status: ${result.status}, Iterations: ${result.iterations} (${elapsed}s)`);
return parseJsonResponse(content, queryId);
// Try to parse JSON from result
let jsonData: unknown[] | null = null;
let responseText = result.result || '';
if (result.success && responseText) {
jsonData = tryExtractJson(responseText);
}
// Fallback: try parsing from history
if (!jsonData && result.history?.length > 0) {
const lastMessage = result.history[result.history.length - 1];
if (lastMessage?.content) {
responseText = lastMessage.content;
jsonData = tryExtractJson(responseText);
}
}
if (!jsonData) {
console.log(` [${queryId}] Failed to parse JSON`);
return [];
}
// Convert to transactions
const txs = jsonData.map((tx: any) => ({
date: String(tx.date || ''),
counterparty: String(tx.counterparty || tx.description || ''),
amount: parseAmount(tx.amount),
}));
console.log(` [${queryId}] Parsed ${txs.length} transactions`);
return txs;
} catch (error) {
const elapsed = ((Date.now() - startTime) / 1000).toFixed(1);
console.log(` [${queryId}] ERROR: ${error} (${elapsed}s)`);
throw error;
}
}
/**
@@ -579,6 +621,53 @@ tap.test('Stage 2: Setup Ollama + GPT-OSS 20B', async () => {
const extractionOk = await ensureExtractionModel();
expect(extractionOk).toBeTrue();
// Initialize SmartAi and DualAgentOrchestrator
console.log(' [SmartAgent] Starting SmartAi...');
await smartAi.start();
console.log(' [SmartAgent] Creating DualAgentOrchestrator...');
orchestrator = new DualAgentOrchestrator({
smartAiInstance: smartAi,
defaultProvider: 'ollama',
guardianPolicyPrompt: `
JSON EXTRACTION POLICY:
- APPROVE all JSON extraction tasks
- APPROVE all json.validate tool calls
- This is a read-only operation - no file system or network access needed
- The task is to extract structured transaction data from document text
`,
driverSystemMessage: `You are a precise JSON extraction assistant. Your only job is to extract transaction data from bank statements.
CRITICAL RULES:
1. Output valid JSON array with the exact format requested
2. Amounts should be NEGATIVE for debits/withdrawals, POSITIVE for credits/deposits
3. IMPORTANT: Before completing, validate your JSON using the json.validate tool:
<tool_call>
<tool>json</tool>
<action>validate</action>
<params>{"jsonString": "YOUR_JSON_ARRAY"}</params>
</tool_call>
4. Only complete after validation passes
When done, wrap your JSON array in <task_complete></task_complete> tags.`,
maxIterations: 5,
// Enable streaming for real-time progress visibility
onToken: (token, source) => {
if (source === 'driver') {
process.stdout.write(token);
}
},
});
// Register JsonValidatorTool for self-validation
orchestrator.registerTool(new JsonValidatorTool());
console.log(' [SmartAgent] Starting orchestrator...');
await orchestrator.start();
console.log(' [SmartAgent] Ready for extraction');
});
let passedCount = 0;
@@ -630,11 +719,19 @@ for (const tc of testCases) {
}
tap.test('Summary', async () => {
// Cleanup orchestrator and SmartAi
if (orchestrator) {
console.log('\n [SmartAgent] Stopping orchestrator...');
await orchestrator.stop();
}
console.log(' [SmartAgent] Stopping SmartAi...');
await smartAi.stop();
console.log(`\n======================================================`);
console.log(` Bank Statement Summary (Nanonets + GPT-OSS 20B Sequential)`);
console.log(` Bank Statement Summary (Nanonets + SmartAgent)`);
console.log(`======================================================`);
console.log(` Stage 1: Nanonets-OCR-s (document -> markdown)`);
console.log(` Stage 2: GPT-OSS 20B (markdown -> JSON)`);
console.log(` Stage 2: GPT-OSS 20B + SmartAgent (markdown -> JSON)`);
console.log(` Passed: ${passedCount}/${testCases.length}`);
console.log(` Failed: ${failedCount}/${testCases.length}`);
console.log(`======================================================\n`);

View File

@@ -197,6 +197,10 @@ async function extractInvoiceFromMarkdown(markdown: string, queryId: string): Pr
{ role: 'user', content: JSON_EXTRACTION_PROMPT },
],
stream: true,
options: {
num_ctx: 32768, // Larger context for long invoices + thinking
temperature: 0, // Deterministic for JSON extraction
},
}),
signal: AbortSignal.timeout(120000), // 2 min timeout
});

View File

@@ -1,10 +1,10 @@
/**
* Invoice extraction test using MiniCPM-V (visual extraction)
* Invoice extraction test using MiniCPM-V via smartagent DualAgentOrchestrator
*
* Consensus approach:
* 1. Pass 1: Fast JSON extraction
* 2. Pass 2: Confirm with thinking enabled
* 3. If mismatch: repeat until consensus or max attempts
* Uses vision-capable orchestrator with JsonValidatorTool for self-validation:
* 1. Pass images to the orchestrator
* 2. Driver extracts invoice data and validates JSON before completing
* 3. If validation fails, driver retries within the same task
*/
import { tap, expect } from '@git.zone/tstest/tapbundle';
import * as fs from 'fs';
@@ -12,6 +12,8 @@ import * as path from 'path';
import { execSync } from 'child_process';
import * as os from 'os';
import { ensureMiniCpm } from './helpers/docker.js';
import { SmartAi } from '@push.rocks/smartai';
import { DualAgentOrchestrator, JsonValidatorTool } from '@push.rocks/smartagent';
const OLLAMA_URL = 'http://localhost:11434';
const MODEL = 'openbmb/minicpm-v4.5:q8_0';
@@ -26,6 +28,10 @@ interface IInvoice {
total_amount: number;
}
// SmartAi instance and orchestrator (initialized in setup)
let smartAi: SmartAi;
let orchestrator: DualAgentOrchestrator;
/**
* Convert PDF to PNG images using ImageMagick
*/
@@ -54,7 +60,9 @@ function convertPdfToImages(pdfPath: string): string[] {
}
}
const JSON_PROMPT = `Extract invoice data from this image. Return ONLY a JSON object with these exact fields:
const EXTRACTION_PROMPT = `Extract invoice data from the provided image(s).
IMPORTANT: You must output a valid JSON object with these exact fields:
{
"invoice_number": "the invoice number (not VAT ID, not customer ID)",
"invoice_date": "YYYY-MM-DD format",
@@ -64,67 +72,16 @@ const JSON_PROMPT = `Extract invoice data from this image. Return ONLY a JSON ob
"vat_amount": 0.00,
"total_amount": 0.00
}
Return only the JSON, no explanation.`;
/**
* Query MiniCPM-V for JSON output (fast, no thinking)
*/
async function queryJsonFast(images: string[]): Promise<string> {
const response = await fetch(`${OLLAMA_URL}/api/chat`, {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({
model: MODEL,
messages: [{
role: 'user',
content: JSON_PROMPT,
images: images,
}],
stream: false,
options: {
num_predict: 1000,
temperature: 0.1,
},
}),
});
Before completing, use the json.validate tool to verify your output is valid JSON with all required fields.
if (!response.ok) {
throw new Error(`Ollama API error: ${response.status}`);
}
<tool_call>
<tool>json</tool>
<action>validate</action>
<params>{"jsonString": "YOUR_JSON_HERE", "requiredFields": ["invoice_number", "invoice_date", "vendor_name", "currency", "net_amount", "vat_amount", "total_amount"]}</params>
</tool_call>
const data = await response.json();
return (data.message?.content || '').trim();
}
/**
* Query MiniCPM-V for JSON output with thinking enabled (slower, more accurate)
*/
async function queryJsonWithThinking(images: string[]): Promise<string> {
const response = await fetch(`${OLLAMA_URL}/api/chat`, {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({
model: MODEL,
messages: [{
role: 'user',
content: `Think carefully about this invoice image, then ${JSON_PROMPT}`,
images: images,
}],
stream: false,
options: {
num_predict: 2000,
temperature: 0.1,
},
}),
});
if (!response.ok) {
throw new Error(`Ollama API error: ${response.status}`);
}
const data = await response.json();
return (data.message?.content || '').trim();
}
Only complete the task after validation passes. Output the final JSON in <task_complete> tags.`;
/**
* Parse amount from string (handles European format)
@@ -190,9 +147,31 @@ function extractCurrency(s: string | undefined): string {
}
/**
* Extract JSON from response (handles markdown code blocks)
* Extract JSON from response (handles markdown code blocks and task_complete tags)
*/
function extractJsonFromResponse(response: string): Record<string, unknown> | null {
// Try to find JSON in task_complete tags
const completeMatch = response.match(/<task_complete>([\s\S]*?)<\/task_complete>/);
if (completeMatch) {
const content = completeMatch[1].trim();
// Try to find JSON in the content
const codeBlockMatch = content.match(/```(?:json)?\s*([\s\S]*?)```/);
const jsonStr = codeBlockMatch ? codeBlockMatch[1].trim() : content;
try {
return JSON.parse(jsonStr);
} catch {
// Try to find JSON object pattern
const jsonMatch = jsonStr.match(/\{[\s\S]*\}/);
if (jsonMatch) {
try {
return JSON.parse(jsonMatch[0]);
} catch {
return null;
}
}
}
}
// Try to find JSON in markdown code block
const codeBlockMatch = response.match(/```(?:json)?\s*([\s\S]*?)```/);
const jsonStr = codeBlockMatch ? codeBlockMatch[1].trim() : response.trim();
@@ -232,76 +211,27 @@ function parseJsonToInvoice(response: string): IInvoice | null {
}
/**
* Compare two invoices for consensus (key fields must match)
*/
function invoicesMatch(a: IInvoice, b: IInvoice): boolean {
const numMatch = a.invoice_number.toLowerCase() === b.invoice_number.toLowerCase();
const dateMatch = a.invoice_date === b.invoice_date;
const totalMatch = Math.abs(a.total_amount - b.total_amount) < 0.02;
return numMatch && dateMatch && totalMatch;
}
/**
* Extract invoice data using consensus approach:
* 1. Pass 1: Fast JSON extraction
* 2. Pass 2: Confirm with thinking enabled
* 3. If mismatch: repeat until consensus or max 5 attempts
* Extract invoice data using smartagent orchestrator with vision
*/
async function extractInvoiceFromImages(images: string[]): Promise<IInvoice> {
console.log(` [Vision] Processing ${images.length} page(s) with ${MODEL} (consensus)`);
console.log(` [Vision] Processing ${images.length} page(s) with smartagent DualAgentOrchestrator`);
const MAX_ATTEMPTS = 5;
let attempt = 0;
const startTime = Date.now();
while (attempt < MAX_ATTEMPTS) {
attempt++;
console.log(` [Attempt ${attempt}/${MAX_ATTEMPTS}]`);
const result = await orchestrator.run(EXTRACTION_PROMPT, { images });
// PASS 1: Fast JSON extraction
console.log(` [Pass 1] Fast extraction...`);
const fastResponse = await queryJsonFast(images);
const fastInvoice = parseJsonToInvoice(fastResponse);
const elapsed = ((Date.now() - startTime) / 1000).toFixed(1);
console.log(` [Vision] Completed in ${elapsed}s (${result.iterations} iterations, status: ${result.status})`);
if (!fastInvoice) {
console.log(` [Pass 1] JSON parsing failed, retrying...`);
continue;
}
console.log(` [Pass 1] Result: ${fastInvoice.invoice_number} | ${fastInvoice.invoice_date} | ${fastInvoice.total_amount} ${fastInvoice.currency}`);
const invoice = parseJsonToInvoice(result.result);
// PASS 2: Confirm with thinking
console.log(` [Pass 2] Thinking confirmation...`);
const thinkResponse = await queryJsonWithThinking(images);
const thinkInvoice = parseJsonToInvoice(thinkResponse);
if (!thinkInvoice) {
console.log(` [Pass 2] JSON parsing failed, retrying...`);
continue;
}
console.log(` [Pass 2] Result: ${thinkInvoice.invoice_number} | ${thinkInvoice.invoice_date} | ${thinkInvoice.total_amount} ${thinkInvoice.currency}`);
// Check consensus
if (invoicesMatch(fastInvoice, thinkInvoice)) {
console.log(` [Consensus] MATCH - using result`);
return thinkInvoice; // Prefer thinking result
if (invoice) {
console.log(` [Result] ${invoice.invoice_number} | ${invoice.invoice_date} | ${invoice.total_amount} ${invoice.currency}`);
return invoice;
}
console.log(` [Consensus] MISMATCH - repeating...`);
console.log(` Fast: ${fastInvoice.invoice_number} | ${fastInvoice.invoice_date} | ${fastInvoice.total_amount}`);
console.log(` Think: ${thinkInvoice.invoice_number} | ${thinkInvoice.invoice_date} | ${thinkInvoice.total_amount}`);
}
// Max attempts reached - do one final thinking pass and use that
console.log(` [Final] Max attempts reached, using final thinking pass`);
const finalResponse = await queryJsonWithThinking(images);
const finalInvoice = parseJsonToInvoice(finalResponse);
if (finalInvoice) {
console.log(` [Final] Result: ${finalInvoice.invoice_number} | ${finalInvoice.invoice_date} | ${finalInvoice.total_amount} ${finalInvoice.currency}`);
return finalInvoice;
}
// Return empty invoice if all else fails
console.log(` [Final] All parsing failed, returning empty`);
// Return empty invoice if parsing failed
console.log(` [Result] Parsing failed, returning empty invoice`);
return {
invoice_number: '',
invoice_date: '',
@@ -410,6 +340,79 @@ tap.test('setup: ensure Docker containers are running', async () => {
console.log('\n[Setup] All containers ready!\n');
});
tap.test('setup: initialize smartagent orchestrator', async () => {
console.log('[Setup] Initializing SmartAi and DualAgentOrchestrator...');
smartAi = new SmartAi({
ollama: {
baseUrl: OLLAMA_URL,
model: MODEL,
defaultOptions: {
num_ctx: 32768,
temperature: 0.1,
},
defaultTimeout: 300000, // 5 minutes for vision tasks
},
});
await smartAi.start();
orchestrator = new DualAgentOrchestrator({
smartAiInstance: smartAi,
defaultProvider: 'ollama',
guardianPolicyPrompt: `You are a Guardian agent overseeing invoice extraction tasks.
APPROVE all tool calls that:
- Use the json.validate action to verify JSON output
- Are reasonable attempts to complete the extraction task
REJECT tool calls that:
- Attempt to access external resources
- Try to execute arbitrary code
- Are clearly unrelated to invoice extraction`,
driverSystemMessage: `You are an AI assistant that extracts invoice data from images.
Your task is to analyze invoice images and extract structured data.
You have access to a json.validate tool to verify your JSON output.
IMPORTANT: Always validate your JSON before completing the task.
## Tool Usage Format
When you need to validate JSON, output:
<tool_call>
<tool>json</tool>
<action>validate</action>
<params>{"jsonString": "YOUR_JSON", "requiredFields": ["invoice_number", "invoice_date", "vendor_name", "currency", "net_amount", "vat_amount", "total_amount"]}</params>
</tool_call>
## Completion Format
After validation passes, complete the task:
<task_complete>
{"invoice_number": "...", "invoice_date": "YYYY-MM-DD", ...}
</task_complete>`,
maxIterations: 5,
maxConsecutiveRejections: 3,
onToken: (token, source) => {
if (source === 'driver') {
process.stdout.write(token);
}
},
onProgress: (event) => {
if (event.logLevel === 'error') {
console.error(event.logMessage);
}
},
});
// Register the JsonValidatorTool
orchestrator.registerTool(new JsonValidatorTool());
await orchestrator.start();
console.log('[Setup] Orchestrator initialized!\n');
});
tap.test('should have MiniCPM-V model loaded', async () => {
const response = await fetch(`${OLLAMA_URL}/api/tags`);
const data = await response.json();
@@ -418,7 +421,7 @@ tap.test('should have MiniCPM-V model loaded', async () => {
});
const testCases = findTestCases();
console.log(`\nFound ${testCases.length} invoice test cases (MiniCPM-V)\n`);
console.log(`\nFound ${testCases.length} invoice test cases (smartagent + MiniCPM-V)\n`);
let passedCount = 0;
let failedCount = 0;
@@ -455,6 +458,13 @@ for (const testCase of testCases) {
});
}
tap.test('cleanup: stop orchestrator', async () => {
if (orchestrator) {
await orchestrator.stop();
}
console.log('[Cleanup] Orchestrator stopped');
});
tap.test('summary', async () => {
const totalInvoices = testCases.length;
const accuracy = totalInvoices > 0 ? (passedCount / totalInvoices) * 100 : 0;
@@ -462,9 +472,10 @@ tap.test('summary', async () => {
const avgTimeSec = processingTimes.length > 0 ? totalTimeMs / processingTimes.length / 1000 : 0;
console.log(`\n========================================`);
console.log(` Invoice Extraction Summary (${MODEL})`);
console.log(` Invoice Extraction Summary`);
console.log(` (smartagent + ${MODEL})`);
console.log(`========================================`);
console.log(` Method: Consensus (fast + thinking)`);
console.log(` Method: DualAgentOrchestrator with vision`);
console.log(` Passed: ${passedCount}/${totalInvoices}`);
console.log(` Failed: ${failedCount}/${totalInvoices}`);
console.log(` Accuracy: ${accuracy.toFixed(1)}%`);

View File

@@ -12,6 +12,8 @@ import * as path from 'path';
import { execSync } from 'child_process';
import * as os from 'os';
import { ensureNanonetsOcr, ensureMiniCpm, isContainerRunning } from './helpers/docker.js';
import { SmartAi } from '@push.rocks/smartai';
import { DualAgentOrchestrator, JsonValidatorTool } from '@push.rocks/smartagent';
const NANONETS_URL = 'http://localhost:8000/v1';
const NANONETS_MODEL = 'nanonets/Nanonets-OCR2-3B';
@@ -19,8 +21,26 @@ const NANONETS_MODEL = 'nanonets/Nanonets-OCR2-3B';
const OLLAMA_URL = 'http://localhost:11434';
const EXTRACTION_MODEL = 'gpt-oss:20b';
// Temp directory for storing markdown between stages
const TEMP_MD_DIR = path.join(os.tmpdir(), 'nanonets-invoices-markdown');
// Persistent cache directory for storing markdown between runs
const MD_CACHE_DIR = path.join(process.cwd(), '.nogit/invoices-md');
// SmartAi instance for Ollama with optimized settings
const smartAi = new SmartAi({
ollama: {
baseUrl: OLLAMA_URL,
model: EXTRACTION_MODEL,
defaultOptions: {
num_ctx: 65536, // 64K context for long invoices + reasoning chains
temperature: 0, // Deterministic for JSON extraction
repeat_penalty: 1.3, // Penalty to prevent repetition loops
think: true, // Enable thinking mode for GPT-OSS reasoning
},
defaultTimeout: 600000, // 10 minute timeout for large documents
},
});
// DualAgentOrchestrator for structured task execution
let orchestrator: DualAgentOrchestrator;
interface IInvoice {
invoice_number: string;
@@ -54,34 +74,30 @@ If there is an image in the document and image caption is not present, add a sma
Watermarks should be wrapped in brackets. Ex: <watermark>OFFICIAL COPY</watermark>.
Page numbers should be wrapped in brackets. Ex: <page_number>14</page_number>.`;
// JSON extraction prompt for GPT-OSS 20B
const JSON_EXTRACTION_PROMPT = `You are an invoice data extractor. Below is an invoice document converted to text/markdown. Extract the key invoice fields as JSON.
// JSON extraction prompt for GPT-OSS 20B (sent AFTER the invoice text is provided)
const JSON_EXTRACTION_PROMPT = `Extract key fields from the invoice. Return ONLY valid JSON.
IMPORTANT RULES:
1. invoice_number: The unique invoice/document number (NOT VAT ID, NOT customer ID)
2. invoice_date: Format as YYYY-MM-DD
3. vendor_name: The company that issued the invoice
WHERE TO FIND DATA:
- invoice_number, invoice_date, vendor_name: Look in the HEADER section at the TOP of PAGE 1 (near "Invoice no.", "Invoice date:", "Rechnungsnummer"). Use common sense. Btw. an invoice number might start on INV* . Also be sure to not omit special chars like / - and sp on. They are part of the invoice number.
- net_amount, vat_amount, total_amount: Look in the SUMMARY section at the BOTTOM (look for "Total", "Amount due", "Gesamtbetrag")
RULES:
1. Use common sense.
2. invoice_date: Convert to YYYY-MM-DD format (e.g., "14/04/2022" → "2022-04-14")
3. vendor_name: The company issuing the invoice
4. currency: EUR, USD, or GBP
5. net_amount: Amount before tax
6. vat_amount: Tax/VAT amount
7. total_amount: Final total (gross amount)
5. net_amount: Total before tax
6. vat_amount: Tax amount
7. total_amount: Final total with tax
Return ONLY this JSON format, no explanation:
{
"invoice_number": "INV-2024-001",
"invoice_date": "2024-01-15",
"vendor_name": "Company Name",
"currency": "EUR",
"net_amount": 100.00,
"vat_amount": 19.00,
"total_amount": 119.00
}
JSON only:
{"invoice_number":"X","invoice_date":"YYYY-MM-DD","vendor_name":"X","currency":"EUR","net_amount":0,"vat_amount":0,"total_amount":0}
Double check for valid JSON syntax. use the json validate tool.
INVOICE TEXT:
`;
// Constants for smart batching
const MAX_VISUAL_TOKENS = 28000; // ~32K context minus prompt/output headroom
const PATCH_SIZE = 14; // Qwen2.5-VL uses 14x14 patches
/**
@@ -294,7 +310,7 @@ function extractInvoiceNumber(s: string | undefined): string {
const match = clean.match(pattern);
if (match) return match[1];
}
return clean.replace(/[^A-Z0-9-]/gi, '').trim() || clean;
return clean.replace(/[^A-Z0-9\/-]/gi, '').trim() || clean;
}
/**
@@ -325,16 +341,20 @@ function extractCurrency(s: string | undefined): string {
}
/**
* Extract JSON from response
* Try to extract valid JSON from a response string
*/
function extractJsonFromResponse(response: string): Record<string, unknown> | null {
let cleanResponse = response.replace(/<think>[\s\S]*?<\/think>/g, '').trim();
const codeBlockMatch = cleanResponse.match(/```(?:json)?\s*([\s\S]*?)```/);
const jsonStr = codeBlockMatch ? codeBlockMatch[1].trim() : cleanResponse;
function tryExtractJson(response: string): Record<string, unknown> | null {
// Remove thinking tags
let clean = response.replace(/<think>[\s\S]*?<\/think>/g, '').trim();
// Try code block
const codeBlockMatch = clean.match(/```(?:json)?\s*([\s\S]*?)```/);
const jsonStr = codeBlockMatch ? codeBlockMatch[1].trim() : clean;
try {
return JSON.parse(jsonStr);
} catch {
// Try to find JSON object
const jsonMatch = jsonStr.match(/\{[\s\S]*\}/);
if (jsonMatch) {
try {
@@ -348,111 +368,92 @@ function extractJsonFromResponse(response: string): Record<string, unknown> | nu
}
/**
* Parse JSON response into IInvoice
*/
function parseJsonToInvoice(response: string): IInvoice | null {
const parsed = extractJsonFromResponse(response);
if (!parsed) return null;
return {
invoice_number: extractInvoiceNumber(String(parsed.invoice_number || '')),
invoice_date: extractDate(String(parsed.invoice_date || '')),
vendor_name: String(parsed.vendor_name || '').replace(/\*\*/g, '').replace(/`/g, '').trim(),
currency: extractCurrency(String(parsed.currency || '')),
net_amount: parseAmount(parsed.net_amount as string | number),
vat_amount: parseAmount(parsed.vat_amount as string | number),
total_amount: parseAmount(parsed.total_amount as string | number),
};
}
/**
* Extract invoice from markdown using GPT-OSS 20B (streaming)
* Extract invoice from markdown using smartagent DualAgentOrchestrator
* Validates JSON and retries if invalid
*/
async function extractInvoiceFromMarkdown(markdown: string, queryId: string): Promise<IInvoice | null> {
const startTime = Date.now();
const fullPrompt = JSON_EXTRACTION_PROMPT + markdown;
const maxRetries = 2;
// Log exact prompt
console.log(`\n [${queryId}] ===== PROMPT =====`);
console.log(fullPrompt);
console.log(` [${queryId}] ===== END PROMPT (${fullPrompt.length} chars) =====\n`);
console.log(` [${queryId}] Invoice: ${markdown.length} chars`);
const response = await fetch(`${OLLAMA_URL}/api/chat`, {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({
model: EXTRACTION_MODEL,
messages: [
{ role: 'user', content: 'Hi there, how are you?' },
{ role: 'assistant', content: 'Good, how can I help you today?' },
{ role: 'user', content: fullPrompt },
],
stream: true,
}),
signal: AbortSignal.timeout(600000), // 10 minute timeout for large documents
});
// Build the extraction task with document context
const taskPrompt = `Extract the invoice data from this document and output ONLY the JSON:
if (!response.ok) {
const elapsed = ((Date.now() - startTime) / 1000).toFixed(1);
console.log(` [${queryId}] ERROR: ${response.status} (${elapsed}s)`);
throw new Error(`Ollama API error: ${response.status}`);
}
${markdown}
// Stream the response
let content = '';
let thinkingContent = '';
let thinkingStarted = false;
let outputStarted = false;
const reader = response.body!.getReader();
const decoder = new TextDecoder();
${JSON_EXTRACTION_PROMPT}`;
try {
while (true) {
const { done, value } = await reader.read();
if (done) break;
let result = await orchestrator.run(taskPrompt);
let elapsed = ((Date.now() - startTime) / 1000).toFixed(1);
console.log(` [${queryId}] Status: ${result.status}, Iterations: ${result.iterations} (${elapsed}s)`);
const chunk = decoder.decode(value, { stream: true });
// Try to parse JSON from result
let jsonData: Record<string, unknown> | null = null;
let responseText = result.result || '';
// Each line is a JSON object
for (const line of chunk.split('\n').filter(l => l.trim())) {
try {
const json = JSON.parse(line);
// Stream thinking tokens
const thinking = json.message?.thinking || '';
if (thinking) {
if (!thinkingStarted) {
process.stdout.write(` [${queryId}] THINKING: `);
thinkingStarted = true;
}
process.stdout.write(thinking);
thinkingContent += thinking;
if (result.success && responseText) {
jsonData = tryExtractJson(responseText);
}
// Stream content tokens
const token = json.message?.content || '';
if (token) {
if (!outputStarted) {
if (thinkingStarted) process.stdout.write('\n');
process.stdout.write(` [${queryId}] OUTPUT: `);
outputStarted = true;
// Fallback: try parsing from history
if (!jsonData && result.history?.length > 0) {
const lastMessage = result.history[result.history.length - 1];
if (lastMessage?.content) {
responseText = lastMessage.content;
jsonData = tryExtractJson(responseText);
}
process.stdout.write(token);
content += token;
}
} catch {
// Ignore parse errors for partial chunks
}
}
}
} finally {
if (thinkingStarted || outputStarted) process.stdout.write('\n');
}
// If JSON is invalid, retry with correction request
let retries = 0;
while (!jsonData && retries < maxRetries) {
retries++;
console.log(` [${queryId}] Invalid JSON, requesting correction (retry ${retries}/${maxRetries})...`);
result = await orchestrator.continueTask(
`Your response was not valid JSON. Please output ONLY the JSON object with no markdown, no explanation, no thinking tags. Just the raw JSON starting with { and ending with }. Format:
{"invoice_number":"X","invoice_date":"YYYY-MM-DD","vendor_name":"X","currency":"EUR","net_amount":0,"vat_amount":0,"total_amount":0}`
);
elapsed = ((Date.now() - startTime) / 1000).toFixed(1);
console.log(` [${queryId}] Retry ${retries}: ${result.status} (${elapsed}s)`);
responseText = result.result || '';
if (responseText) {
jsonData = tryExtractJson(responseText);
}
if (!jsonData && result.history?.length > 0) {
const lastMessage = result.history[result.history.length - 1];
if (lastMessage?.content) {
responseText = lastMessage.content;
jsonData = tryExtractJson(responseText);
}
}
}
if (!jsonData) {
console.log(` [${queryId}] Failed to get valid JSON after ${retries} retries`);
return null;
}
console.log(` [${queryId}] Valid JSON extracted`);
return {
invoice_number: extractInvoiceNumber(String(jsonData.invoice_number || '')),
invoice_date: extractDate(String(jsonData.invoice_date || '')),
vendor_name: String(jsonData.vendor_name || '').replace(/\*\*/g, '').replace(/`/g, '').trim(),
currency: extractCurrency(String(jsonData.currency || '')),
net_amount: parseAmount(jsonData.net_amount as string | number),
vat_amount: parseAmount(jsonData.vat_amount as string | number),
total_amount: parseAmount(jsonData.total_amount as string | number),
};
} catch (error) {
const elapsed = ((Date.now() - startTime) / 1000).toFixed(1);
console.log(` [${queryId}] Done: ${thinkingContent.length} thinking chars, ${content.length} output chars (${elapsed}s)`);
return parseJsonToInvoice(content);
console.log(` [${queryId}] ERROR: ${error} (${elapsed}s)`);
throw error;
}
}
/**
@@ -561,23 +562,45 @@ function findTestCases(): ITestCase[] {
const testCases = findTestCases();
console.log(`\nFound ${testCases.length} invoice test cases\n`);
// Ensure temp directory exists
if (!fs.existsSync(TEMP_MD_DIR)) {
fs.mkdirSync(TEMP_MD_DIR, { recursive: true });
// Ensure cache directory exists
if (!fs.existsSync(MD_CACHE_DIR)) {
fs.mkdirSync(MD_CACHE_DIR, { recursive: true });
}
// -------- STAGE 1: OCR with Nanonets --------
tap.test('Stage 1: Setup Nanonets', async () => {
tap.test('Stage 1: Convert invoices to markdown (with caching)', async () => {
console.log('\n========== STAGE 1: Nanonets OCR ==========\n');
const ok = await ensureNanonetsOcr();
expect(ok).toBeTrue();
});
tap.test('Stage 1: Convert all invoices to markdown', async () => {
console.log('\n Converting all invoice PDFs to markdown with Nanonets-OCR-s...\n');
// Check which invoices need OCR conversion
const needsConversion: ITestCase[] = [];
let cachedCount = 0;
for (const tc of testCases) {
const mdPath = path.join(MD_CACHE_DIR, `${tc.name}.md`);
if (fs.existsSync(mdPath)) {
cachedCount++;
tc.markdownPath = mdPath;
console.log(` [CACHED] ${tc.name} - using cached markdown`);
} else {
needsConversion.push(tc);
}
}
console.log(`\n Summary: ${cachedCount} cached, ${needsConversion.length} need conversion\n`);
if (needsConversion.length === 0) {
console.log(' All invoices already cached, skipping Nanonets OCR\n');
return;
}
// Start Nanonets only if there are files to convert
console.log(' Starting Nanonets for OCR conversion...\n');
const ok = await ensureNanonetsOcr();
expect(ok).toBeTrue();
// Convert only the invoices that need conversion
for (const tc of needsConversion) {
console.log(`\n === ${tc.name} ===`);
const images = convertPdfToImages(tc.pdfPath);
@@ -585,13 +608,13 @@ tap.test('Stage 1: Convert all invoices to markdown', async () => {
const markdown = await convertDocumentToMarkdown(images, tc.name);
const mdPath = path.join(TEMP_MD_DIR, `${tc.name}.md`);
const mdPath = path.join(MD_CACHE_DIR, `${tc.name}.md`);
fs.writeFileSync(mdPath, markdown);
tc.markdownPath = mdPath;
console.log(` Saved: ${mdPath}`);
}
console.log('\n Stage 1 complete: All invoices converted to markdown\n');
console.log(`\n Stage 1 complete: ${needsConversion.length} invoices converted to markdown\n`);
});
tap.test('Stage 1: Stop Nanonets', async () => {
@@ -610,6 +633,50 @@ tap.test('Stage 2: Setup Ollama + GPT-OSS 20B', async () => {
const extractionOk = await ensureExtractionModel();
expect(extractionOk).toBeTrue();
// Initialize SmartAi and DualAgentOrchestrator
console.log(' [SmartAgent] Starting SmartAi...');
await smartAi.start();
console.log(' [SmartAgent] Creating DualAgentOrchestrator with native tool calling...');
orchestrator = new DualAgentOrchestrator({
smartAiInstance: smartAi,
defaultProvider: 'ollama',
guardianPolicyPrompt: `
JSON EXTRACTION POLICY:
- APPROVE all JSON extraction tasks
- APPROVE all json.validate tool calls
- This is a read-only operation - no file system or network access needed
- The task is to extract structured data from document text
`,
driverSystemMessage: `You are a precise JSON extraction assistant. Your only job is to extract invoice data from documents.
CRITICAL RULES:
1. Output valid JSON with the exact format requested
2. If you cannot find a value, use empty string "" or 0 for numbers
3. Before completing, validate your JSON using the json_validate tool
4. Only complete after validation passes`,
maxIterations: 5,
// Enable native tool calling for GPT-OSS (uses Harmony format instead of XML)
useNativeToolCalling: true,
// Enable streaming for real-time progress visibility
onToken: (token, source) => {
if (source === 'driver') {
process.stdout.write(token);
}
},
// Enable progress events to see tool calls
onProgress: (event: { logMessage: string }) => {
console.log(event.logMessage);
},
});
// Register JsonValidatorTool for self-validation
orchestrator.registerTool(new JsonValidatorTool());
console.log(' [SmartAgent] Starting orchestrator...');
await orchestrator.start();
console.log(' [SmartAgent] Ready for extraction');
});
let passedCount = 0;
@@ -624,7 +691,7 @@ for (const tc of testCases) {
const startTime = Date.now();
const mdPath = path.join(TEMP_MD_DIR, `${tc.name}.md`);
const mdPath = path.join(MD_CACHE_DIR, `${tc.name}.md`);
if (!fs.existsSync(mdPath)) {
throw new Error(`Markdown not found: ${mdPath}. Run Stage 1 first.`);
}
@@ -654,6 +721,14 @@ for (const tc of testCases) {
}
tap.test('Summary', async () => {
// Cleanup orchestrator and SmartAi
if (orchestrator) {
console.log('\n [SmartAgent] Stopping orchestrator...');
await orchestrator.stop();
}
console.log(' [SmartAgent] Stopping SmartAi...');
await smartAi.stop();
const totalInvoices = testCases.length;
const accuracy = totalInvoices > 0 ? (passedCount / totalInvoices) * 100 : 0;
const totalTimeMs = processingTimes.reduce((a, b) => a + b, 0);
@@ -663,7 +738,7 @@ tap.test('Summary', async () => {
console.log(` Invoice Summary (Nanonets + GPT-OSS 20B)`);
console.log(`========================================`);
console.log(` Stage 1: Nanonets-OCR-s (doc -> md)`);
console.log(` Stage 2: GPT-OSS 20B (md -> JSON)`);
console.log(` Stage 2: GPT-OSS 20B + SmartAgent (md -> JSON)`);
console.log(` Passed: ${passedCount}/${totalInvoices}`);
console.log(` Failed: ${failedCount}/${totalInvoices}`);
console.log(` Accuracy: ${accuracy.toFixed(1)}%`);
@@ -671,14 +746,7 @@ tap.test('Summary', async () => {
console.log(` Total time: ${(totalTimeMs / 1000).toFixed(1)}s`);
console.log(` Avg per inv: ${avgTimeSec.toFixed(1)}s`);
console.log(`========================================\n`);
// Cleanup temp files
try {
fs.rmSync(TEMP_MD_DIR, { recursive: true, force: true });
console.log(` Cleaned up temp directory: ${TEMP_MD_DIR}\n`);
} catch {
// Ignore
}
console.log(` Cache location: ${MD_CACHE_DIR}\n`);
});
export default tap.start();