Compare commits
4 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
| 6bd672da61 | |||
| 44d6dc3336 | |||
| d1ff95bd94 | |||
| 09770d3177 |
19
changelog.md
19
changelog.md
@@ -1,5 +1,24 @@
|
|||||||
# Changelog
|
# Changelog
|
||||||
|
|
||||||
|
## 2026-01-19 - 1.14.2 - fix(readme)
|
||||||
|
update README to document Nanonets-OCR2-3B (replaces Nanonets-OCR-s), adjust VRAM and context defaults, expand feature docs, and update examples/test command
|
||||||
|
|
||||||
|
- Renamed Nanonets-OCR-s -> Nanonets-OCR2-3B throughout README and examples
|
||||||
|
- Updated Nanonets VRAM guidance from ~10GB to ~12-16GB and documented 30K context
|
||||||
|
- Changed documented MAX_MODEL_LEN default from 8192 to 30000
|
||||||
|
- Updated example model identifiers (model strings and curl/example snippets) to nanonets/Nanonets-OCR2-3B
|
||||||
|
- Added MiniCPM and Qwen feature bullets (multilingual, multi-image, flowchart support, expanded context notes)
|
||||||
|
- Replaced README test command from ./test-images.sh to pnpm test
|
||||||
|
|
||||||
|
## 2026-01-19 - 1.14.1 - fix(extraction)
|
||||||
|
improve JSON extraction prompts and model options for invoice and bank statement tests
|
||||||
|
|
||||||
|
- Refactor JSON extraction prompts to be sent after the document text and add explicit 'WHERE TO FIND DATA' and 'RULES' sections for clearer extraction guidance
|
||||||
|
- Change chat message flow to: send document, assistant acknowledgement, then the JSON extraction prompt (avoids concatenating large prompts into one message)
|
||||||
|
- Add model options (num_ctx: 32768, temperature: 0) to give larger context windows and deterministic JSON output
|
||||||
|
- Simplify logging to avoid printing full prompt contents; log document and prompt lengths instead
|
||||||
|
- Increase timeouts for large documents to 600000ms (10 minutes) where applicable
|
||||||
|
|
||||||
## 2026-01-19 - 1.14.0 - feat(docker-images)
|
## 2026-01-19 - 1.14.0 - feat(docker-images)
|
||||||
add vLLM-based Nanonets-OCR2-3B image, Qwen3-VL Ollama image and refactor build/docs/tests to use new runtime/layout
|
add vLLM-based Nanonets-OCR2-3B image, Qwen3-VL Ollama image and refactor build/docs/tests to use new runtime/layout
|
||||||
|
|
||||||
|
|||||||
@@ -1,6 +1,6 @@
|
|||||||
{
|
{
|
||||||
"name": "@host.today/ht-docker-ai",
|
"name": "@host.today/ht-docker-ai",
|
||||||
"version": "1.14.0",
|
"version": "1.14.2",
|
||||||
"type": "module",
|
"type": "module",
|
||||||
"private": false,
|
"private": false,
|
||||||
"description": "Docker images for AI vision-language models including MiniCPM-V 4.5",
|
"description": "Docker images for AI vision-language models including MiniCPM-V 4.5",
|
||||||
|
|||||||
57
readme.md
57
readme.md
@@ -2,7 +2,7 @@
|
|||||||
|
|
||||||
Production-ready Docker images for state-of-the-art AI Vision-Language Models. Run powerful multimodal AI locally with GPU acceleration—**no cloud API keys required**.
|
Production-ready Docker images for state-of-the-art AI Vision-Language Models. Run powerful multimodal AI locally with GPU acceleration—**no cloud API keys required**.
|
||||||
|
|
||||||
> 🔥 **Three VLMs, one registry.** From lightweight document OCR to GPT-4o-level vision understanding—pick the right tool for your task.
|
> 🔥 **Three VLMs, one registry.** From high-performance document OCR to GPT-4o-level vision understanding—pick the right tool for your task.
|
||||||
|
|
||||||
## Issue Reporting and Security
|
## Issue Reporting and Security
|
||||||
|
|
||||||
@@ -15,7 +15,7 @@ For reporting bugs, issues, or security vulnerabilities, please visit [community
|
|||||||
| Model | Parameters | Best For | API | Port | VRAM |
|
| Model | Parameters | Best For | API | Port | VRAM |
|
||||||
|-------|-----------|----------|-----|------|------|
|
|-------|-----------|----------|-----|------|------|
|
||||||
| **MiniCPM-V 4.5** | 8B | General vision understanding, multi-image analysis | Ollama-compatible | 11434 | ~9GB |
|
| **MiniCPM-V 4.5** | 8B | General vision understanding, multi-image analysis | Ollama-compatible | 11434 | ~9GB |
|
||||||
| **Nanonets-OCR-s** | ~4B | Document OCR with semantic markdown output | OpenAI-compatible | 8000 | ~10GB |
|
| **Nanonets-OCR2-3B** | ~3B | Document OCR with semantic markdown, LaTeX, flowcharts | OpenAI-compatible | 8000 | ~12-16GB |
|
||||||
| **Qwen3-VL-30B** | 30B (A3B) | Advanced visual agents, code generation from images | Ollama-compatible | 11434 | ~20GB |
|
| **Qwen3-VL-30B** | 30B (A3B) | Advanced visual agents, code generation from images | Ollama-compatible | 11434 | ~20GB |
|
||||||
|
|
||||||
---
|
---
|
||||||
@@ -29,7 +29,7 @@ code.foss.global/host.today/ht-docker-ai:<tag>
|
|||||||
| Tag | Model | Runtime | Port | VRAM |
|
| Tag | Model | Runtime | Port | VRAM |
|
||||||
|-----|-------|---------|------|------|
|
|-----|-------|---------|------|------|
|
||||||
| `minicpm45v` / `latest` | MiniCPM-V 4.5 | Ollama | 11434 | ~9GB |
|
| `minicpm45v` / `latest` | MiniCPM-V 4.5 | Ollama | 11434 | ~9GB |
|
||||||
| `nanonets-ocr` | Nanonets-OCR-s | vLLM | 8000 | ~10GB |
|
| `nanonets-ocr` | Nanonets-OCR2-3B | vLLM | 8000 | ~12-16GB |
|
||||||
| `qwen3vl` | Qwen3-VL-30B-A3B | Ollama | 11434 | ~20GB |
|
| `qwen3vl` | Qwen3-VL-30B-A3B | Ollama | 11434 | ~20GB |
|
||||||
|
|
||||||
---
|
---
|
||||||
@@ -38,6 +38,13 @@ code.foss.global/host.today/ht-docker-ai:<tag>
|
|||||||
|
|
||||||
A GPT-4o level multimodal LLM from OpenBMB—handles image understanding, OCR, multi-image analysis, and visual reasoning across **30+ languages**.
|
A GPT-4o level multimodal LLM from OpenBMB—handles image understanding, OCR, multi-image analysis, and visual reasoning across **30+ languages**.
|
||||||
|
|
||||||
|
### ✨ Key Features
|
||||||
|
|
||||||
|
- 🌍 **Multilingual:** 30+ languages supported
|
||||||
|
- 🖼️ **Multi-image:** Analyze multiple images in one request
|
||||||
|
- 📊 **Versatile:** Charts, documents, photos, diagrams
|
||||||
|
- ⚡ **Efficient:** Runs on consumer GPUs (9GB VRAM)
|
||||||
|
|
||||||
### Quick Start
|
### Quick Start
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
@@ -83,21 +90,22 @@ curl http://localhost:11434/api/chat -d '{
|
|||||||
|
|
||||||
| Mode | VRAM Required |
|
| Mode | VRAM Required |
|
||||||
|------|---------------|
|
|------|---------------|
|
||||||
| int4 quantized | 9GB |
|
| int4 quantized | ~9GB |
|
||||||
| Full precision (bf16) | 18GB |
|
| Full precision (bf16) | ~18GB |
|
||||||
|
|
||||||
---
|
---
|
||||||
|
|
||||||
## 🔍 Nanonets-OCR-s
|
## 🔍 Nanonets-OCR2-3B
|
||||||
|
|
||||||
A **Qwen2.5-VL-3B** model fine-tuned specifically for document OCR. Outputs structured markdown with semantic HTML tags—perfect for preserving document structure.
|
The **latest Nanonets document OCR model** (October 2025 release)—based on Qwen2.5-VL-3B, fine-tuned specifically for document extraction with significant improvements over the original OCR-s.
|
||||||
|
|
||||||
### Key Features
|
### ✨ Key Features
|
||||||
|
|
||||||
- 📝 **Semantic output:** Tables → HTML, equations → LaTeX, watermarks/page numbers → tagged
|
- 📝 **Semantic output:** Tables → HTML, equations → LaTeX, flowcharts → structured markup
|
||||||
- 🌍 **Multilingual:** Inherits Qwen's broad language support
|
- 🌍 **Multilingual:** Inherits Qwen's broad language support
|
||||||
- ⚡ **Efficient:** ~10GB VRAM, runs great on consumer GPUs
|
- 📄 **30K context:** Handle large, multi-page documents
|
||||||
- 🔌 **OpenAI-compatible:** Drop-in replacement for existing pipelines
|
- 🔌 **OpenAI-compatible:** Drop-in replacement for existing pipelines
|
||||||
|
- 🎯 **Improved accuracy:** Better semantic tagging and LaTeX equation extraction vs. OCR-s
|
||||||
|
|
||||||
### Quick Start
|
### Quick Start
|
||||||
|
|
||||||
@@ -116,7 +124,7 @@ docker run -d \
|
|||||||
curl http://localhost:8000/v1/chat/completions \
|
curl http://localhost:8000/v1/chat/completions \
|
||||||
-H "Content-Type: application/json" \
|
-H "Content-Type: application/json" \
|
||||||
-d '{
|
-d '{
|
||||||
"model": "nanonets/Nanonets-OCR-s",
|
"model": "nanonets/Nanonets-OCR2-3B",
|
||||||
"messages": [{
|
"messages": [{
|
||||||
"role": "user",
|
"role": "user",
|
||||||
"content": [
|
"content": [
|
||||||
@@ -131,7 +139,7 @@ curl http://localhost:8000/v1/chat/completions \
|
|||||||
|
|
||||||
### Output Format
|
### Output Format
|
||||||
|
|
||||||
Nanonets-OCR-s returns markdown with semantic tags:
|
Nanonets-OCR2-3B returns markdown with semantic tags:
|
||||||
|
|
||||||
| Element | Output Format |
|
| Element | Output Format |
|
||||||
|---------|---------------|
|
|---------|---------------|
|
||||||
@@ -140,13 +148,14 @@ Nanonets-OCR-s returns markdown with semantic tags:
|
|||||||
| Images | `<img>description</img>` |
|
| Images | `<img>description</img>` |
|
||||||
| Watermarks | `<watermark>OFFICIAL COPY</watermark>` |
|
| Watermarks | `<watermark>OFFICIAL COPY</watermark>` |
|
||||||
| Page numbers | `<page_number>14</page_number>` |
|
| Page numbers | `<page_number>14</page_number>` |
|
||||||
|
| Flowcharts | Structured markup |
|
||||||
|
|
||||||
### Performance
|
### Hardware Requirements
|
||||||
|
|
||||||
| Metric | Value |
|
| Config | VRAM |
|
||||||
|--------|-------|
|
|--------|------|
|
||||||
| Speed | 3–8 seconds per page |
|
| 30K context (default) | ~12-16GB |
|
||||||
| VRAM | ~10GB |
|
| Speed | ~3-8 seconds per page |
|
||||||
|
|
||||||
---
|
---
|
||||||
|
|
||||||
@@ -154,7 +163,7 @@ Nanonets-OCR-s returns markdown with semantic tags:
|
|||||||
|
|
||||||
The **most powerful** Qwen vision model—30B parameters with 3B active (MoE architecture). Handles complex visual reasoning, code generation from screenshots, and visual agent capabilities.
|
The **most powerful** Qwen vision model—30B parameters with 3B active (MoE architecture). Handles complex visual reasoning, code generation from screenshots, and visual agent capabilities.
|
||||||
|
|
||||||
### Key Features
|
### ✨ Key Features
|
||||||
|
|
||||||
- 🚀 **256K context** (expandable to 1M tokens!)
|
- 🚀 **256K context** (expandable to 1M tokens!)
|
||||||
- 🤖 **Visual agent capabilities** — can plan and execute multi-step tasks
|
- 🤖 **Visual agent capabilities** — can plan and execute multi-step tasks
|
||||||
@@ -204,7 +213,6 @@ curl http://localhost:11434/api/chat -d '{
|
|||||||
Run multiple VLMs together for maximum flexibility:
|
Run multiple VLMs together for maximum flexibility:
|
||||||
|
|
||||||
```yaml
|
```yaml
|
||||||
version: '3.8'
|
|
||||||
services:
|
services:
|
||||||
# General vision tasks
|
# General vision tasks
|
||||||
minicpm:
|
minicpm:
|
||||||
@@ -259,10 +267,10 @@ volumes:
|
|||||||
|
|
||||||
| Variable | Default | Description |
|
| Variable | Default | Description |
|
||||||
|----------|---------|-------------|
|
|----------|---------|-------------|
|
||||||
| `MODEL_NAME` | `nanonets/Nanonets-OCR-s` | HuggingFace model ID |
|
| `MODEL_NAME` | `nanonets/Nanonets-OCR2-3B` | HuggingFace model ID |
|
||||||
| `HOST` | `0.0.0.0` | API bind address |
|
| `HOST` | `0.0.0.0` | API bind address |
|
||||||
| `PORT` | `8000` | API port |
|
| `PORT` | `8000` | API port |
|
||||||
| `MAX_MODEL_LEN` | `8192` | Maximum sequence length |
|
| `MAX_MODEL_LEN` | `30000` | Maximum sequence length |
|
||||||
| `GPU_MEMORY_UTILIZATION` | `0.9` | GPU memory usage (0-1) |
|
| `GPU_MEMORY_UTILIZATION` | `0.9` | GPU memory usage (0-1) |
|
||||||
|
|
||||||
---
|
---
|
||||||
@@ -283,7 +291,7 @@ This dual-VLM approach catches extraction errors that single models miss.
|
|||||||
### Why Multi-Model Works
|
### Why Multi-Model Works
|
||||||
|
|
||||||
- **Different architectures:** Independent models cross-validate each other
|
- **Different architectures:** Independent models cross-validate each other
|
||||||
- **Specialized strengths:** Nanonets-OCR-s excels at document structure; MiniCPM-V handles general vision
|
- **Specialized strengths:** Nanonets-OCR2-3B excels at document structure; MiniCPM-V handles general vision
|
||||||
- **Native processing:** All VLMs see original images—no intermediate structure loss
|
- **Native processing:** All VLMs see original images—no intermediate structure loss
|
||||||
|
|
||||||
### Model Selection Guide
|
### Model Selection Guide
|
||||||
@@ -291,10 +299,11 @@ This dual-VLM approach catches extraction errors that single models miss.
|
|||||||
| Task | Recommended Model |
|
| Task | Recommended Model |
|
||||||
|------|-------------------|
|
|------|-------------------|
|
||||||
| General image understanding | MiniCPM-V 4.5 |
|
| General image understanding | MiniCPM-V 4.5 |
|
||||||
| Document OCR with structure preservation | Nanonets-OCR-s |
|
| Document OCR with structure preservation | Nanonets-OCR2-3B |
|
||||||
| Complex visual reasoning / code generation | Qwen3-VL-30B |
|
| Complex visual reasoning / code generation | Qwen3-VL-30B |
|
||||||
| Multi-image analysis | MiniCPM-V 4.5 |
|
| Multi-image analysis | MiniCPM-V 4.5 |
|
||||||
| Visual agent tasks | Qwen3-VL-30B |
|
| Visual agent tasks | Qwen3-VL-30B |
|
||||||
|
| Large documents (30K+ tokens) | Nanonets-OCR2-3B |
|
||||||
|
|
||||||
---
|
---
|
||||||
|
|
||||||
@@ -309,7 +318,7 @@ cd ht-docker-ai
|
|||||||
./build-images.sh
|
./build-images.sh
|
||||||
|
|
||||||
# Run tests
|
# Run tests
|
||||||
./test-images.sh
|
pnpm test
|
||||||
```
|
```
|
||||||
|
|
||||||
---
|
---
|
||||||
|
|||||||
@@ -51,11 +51,21 @@ If there is an image in the document and image caption is not present, add a sma
|
|||||||
Watermarks should be wrapped in brackets. Ex: <watermark>OFFICIAL COPY</watermark>.
|
Watermarks should be wrapped in brackets. Ex: <watermark>OFFICIAL COPY</watermark>.
|
||||||
Page numbers should be wrapped in brackets. Ex: <page_number>14</page_number>.`;
|
Page numbers should be wrapped in brackets. Ex: <page_number>14</page_number>.`;
|
||||||
|
|
||||||
// JSON extraction prompt for GPT-OSS 20B
|
// JSON extraction prompt for GPT-OSS 20B (sent AFTER the statement text is provided)
|
||||||
const JSON_EXTRACTION_PROMPT = `Extract ALL transactions from this bank statement as JSON array. Each transaction: {"date": "YYYY-MM-DD", "counterparty": "NAME", "amount": -25.99}. Amount negative for debits, positive for credits. Only include actual transactions, not balances. Return ONLY JSON array, no explanation.
|
const JSON_EXTRACTION_PROMPT = `Extract ALL transactions from the bank statement. Return ONLY valid JSON array.
|
||||||
|
|
||||||
STATEMENT:
|
WHERE TO FIND DATA:
|
||||||
`;
|
- Transactions are typically in TABLES with columns: Date, Description/Counterparty, Debit, Credit, Balance
|
||||||
|
- Look for rows with actual money movements, NOT header rows or summary totals
|
||||||
|
|
||||||
|
RULES:
|
||||||
|
1. date: Convert to YYYY-MM-DD format
|
||||||
|
2. counterparty: The name/description of who the money went to/from
|
||||||
|
3. amount: NEGATIVE for debits/withdrawals, POSITIVE for credits/deposits
|
||||||
|
4. Only include actual transactions, NOT opening/closing balances
|
||||||
|
|
||||||
|
JSON array only:
|
||||||
|
[{"date":"YYYY-MM-DD","counterparty":"NAME","amount":-25.99}]`;
|
||||||
|
|
||||||
// Constants for smart batching
|
// Constants for smart batching
|
||||||
const MAX_VISUAL_TOKENS = 28000; // ~32K context minus prompt/output headroom
|
const MAX_VISUAL_TOKENS = 28000; // ~32K context minus prompt/output headroom
|
||||||
@@ -246,12 +256,8 @@ async function ensureExtractionModel(): Promise<boolean> {
|
|||||||
*/
|
*/
|
||||||
async function extractTransactionsFromMarkdown(markdown: string, queryId: string): Promise<ITransaction[]> {
|
async function extractTransactionsFromMarkdown(markdown: string, queryId: string): Promise<ITransaction[]> {
|
||||||
const startTime = Date.now();
|
const startTime = Date.now();
|
||||||
const fullPrompt = JSON_EXTRACTION_PROMPT + markdown;
|
|
||||||
|
|
||||||
// Log exact prompt
|
console.log(` [${queryId}] Statement: ${markdown.length} chars, Prompt: ${JSON_EXTRACTION_PROMPT.length} chars`);
|
||||||
console.log(`\n [${queryId}] ===== PROMPT =====`);
|
|
||||||
console.log(fullPrompt);
|
|
||||||
console.log(` [${queryId}] ===== END PROMPT (${fullPrompt.length} chars) =====\n`);
|
|
||||||
|
|
||||||
const response = await fetch(`${OLLAMA_URL}/api/chat`, {
|
const response = await fetch(`${OLLAMA_URL}/api/chat`, {
|
||||||
method: 'POST',
|
method: 'POST',
|
||||||
@@ -261,9 +267,15 @@ async function extractTransactionsFromMarkdown(markdown: string, queryId: string
|
|||||||
messages: [
|
messages: [
|
||||||
{ role: 'user', content: 'Hi there, how are you?' },
|
{ role: 'user', content: 'Hi there, how are you?' },
|
||||||
{ role: 'assistant', content: 'Good, how can I help you today?' },
|
{ role: 'assistant', content: 'Good, how can I help you today?' },
|
||||||
{ role: 'user', content: fullPrompt },
|
{ role: 'user', content: `Here is a bank statement document:\n\n${markdown}` },
|
||||||
|
{ role: 'assistant', content: 'I have read the bank statement document you provided. I can see all the transaction data. What would you like me to do with it?' },
|
||||||
|
{ role: 'user', content: JSON_EXTRACTION_PROMPT },
|
||||||
],
|
],
|
||||||
stream: true,
|
stream: true,
|
||||||
|
options: {
|
||||||
|
num_ctx: 32768, // Larger context for long statements + thinking
|
||||||
|
temperature: 0, // Deterministic for JSON extraction
|
||||||
|
},
|
||||||
}),
|
}),
|
||||||
signal: AbortSignal.timeout(600000), // 10 minute timeout
|
signal: AbortSignal.timeout(600000), // 10 minute timeout
|
||||||
});
|
});
|
||||||
|
|||||||
@@ -197,6 +197,10 @@ async function extractInvoiceFromMarkdown(markdown: string, queryId: string): Pr
|
|||||||
{ role: 'user', content: JSON_EXTRACTION_PROMPT },
|
{ role: 'user', content: JSON_EXTRACTION_PROMPT },
|
||||||
],
|
],
|
||||||
stream: true,
|
stream: true,
|
||||||
|
options: {
|
||||||
|
num_ctx: 32768, // Larger context for long invoices + thinking
|
||||||
|
temperature: 0, // Deterministic for JSON extraction
|
||||||
|
},
|
||||||
}),
|
}),
|
||||||
signal: AbortSignal.timeout(120000), // 2 min timeout
|
signal: AbortSignal.timeout(120000), // 2 min timeout
|
||||||
});
|
});
|
||||||
|
|||||||
@@ -54,31 +54,24 @@ If there is an image in the document and image caption is not present, add a sma
|
|||||||
Watermarks should be wrapped in brackets. Ex: <watermark>OFFICIAL COPY</watermark>.
|
Watermarks should be wrapped in brackets. Ex: <watermark>OFFICIAL COPY</watermark>.
|
||||||
Page numbers should be wrapped in brackets. Ex: <page_number>14</page_number>.`;
|
Page numbers should be wrapped in brackets. Ex: <page_number>14</page_number>.`;
|
||||||
|
|
||||||
// JSON extraction prompt for GPT-OSS 20B
|
// JSON extraction prompt for GPT-OSS 20B (sent AFTER the invoice text is provided)
|
||||||
const JSON_EXTRACTION_PROMPT = `You are an invoice data extractor. Below is an invoice document converted to text/markdown. Extract the key invoice fields as JSON.
|
const JSON_EXTRACTION_PROMPT = `Extract key fields from the invoice. Return ONLY valid JSON.
|
||||||
|
|
||||||
IMPORTANT RULES:
|
WHERE TO FIND DATA:
|
||||||
1. invoice_number: The unique invoice/document number (NOT VAT ID, NOT customer ID)
|
- invoice_number, invoice_date, vendor_name: Look in the HEADER section at the TOP of PAGE 1 (near "Invoice no.", "Invoice date:", "Rechnungsnummer")
|
||||||
2. invoice_date: Format as YYYY-MM-DD
|
- net_amount, vat_amount, total_amount: Look in the SUMMARY section at the BOTTOM (look for "Total", "Amount due", "Gesamtbetrag")
|
||||||
3. vendor_name: The company that issued the invoice
|
|
||||||
|
RULES:
|
||||||
|
1. invoice_number: Extract ONLY the value (e.g., "R0015632540"), NOT the label "Invoice no."
|
||||||
|
2. invoice_date: Convert to YYYY-MM-DD format (e.g., "14/04/2022" → "2022-04-14")
|
||||||
|
3. vendor_name: The company issuing the invoice
|
||||||
4. currency: EUR, USD, or GBP
|
4. currency: EUR, USD, or GBP
|
||||||
5. net_amount: Amount before tax
|
5. net_amount: Total before tax
|
||||||
6. vat_amount: Tax/VAT amount
|
6. vat_amount: Tax amount
|
||||||
7. total_amount: Final total (gross amount)
|
7. total_amount: Final total with tax
|
||||||
|
|
||||||
Return ONLY this JSON format, no explanation:
|
JSON only:
|
||||||
{
|
{"invoice_number":"X","invoice_date":"YYYY-MM-DD","vendor_name":"X","currency":"EUR","net_amount":0,"vat_amount":0,"total_amount":0}`;
|
||||||
"invoice_number": "INV-2024-001",
|
|
||||||
"invoice_date": "2024-01-15",
|
|
||||||
"vendor_name": "Company Name",
|
|
||||||
"currency": "EUR",
|
|
||||||
"net_amount": 100.00,
|
|
||||||
"vat_amount": 19.00,
|
|
||||||
"total_amount": 119.00
|
|
||||||
}
|
|
||||||
|
|
||||||
INVOICE TEXT:
|
|
||||||
`;
|
|
||||||
|
|
||||||
// Constants for smart batching
|
// Constants for smart batching
|
||||||
const MAX_VISUAL_TOKENS = 28000; // ~32K context minus prompt/output headroom
|
const MAX_VISUAL_TOKENS = 28000; // ~32K context minus prompt/output headroom
|
||||||
@@ -370,12 +363,8 @@ function parseJsonToInvoice(response: string): IInvoice | null {
|
|||||||
*/
|
*/
|
||||||
async function extractInvoiceFromMarkdown(markdown: string, queryId: string): Promise<IInvoice | null> {
|
async function extractInvoiceFromMarkdown(markdown: string, queryId: string): Promise<IInvoice | null> {
|
||||||
const startTime = Date.now();
|
const startTime = Date.now();
|
||||||
const fullPrompt = JSON_EXTRACTION_PROMPT + markdown;
|
|
||||||
|
|
||||||
// Log exact prompt
|
console.log(` [${queryId}] Invoice: ${markdown.length} chars, Prompt: ${JSON_EXTRACTION_PROMPT.length} chars`);
|
||||||
console.log(`\n [${queryId}] ===== PROMPT =====`);
|
|
||||||
console.log(fullPrompt);
|
|
||||||
console.log(` [${queryId}] ===== END PROMPT (${fullPrompt.length} chars) =====\n`);
|
|
||||||
|
|
||||||
const response = await fetch(`${OLLAMA_URL}/api/chat`, {
|
const response = await fetch(`${OLLAMA_URL}/api/chat`, {
|
||||||
method: 'POST',
|
method: 'POST',
|
||||||
@@ -385,9 +374,15 @@ async function extractInvoiceFromMarkdown(markdown: string, queryId: string): Pr
|
|||||||
messages: [
|
messages: [
|
||||||
{ role: 'user', content: 'Hi there, how are you?' },
|
{ role: 'user', content: 'Hi there, how are you?' },
|
||||||
{ role: 'assistant', content: 'Good, how can I help you today?' },
|
{ role: 'assistant', content: 'Good, how can I help you today?' },
|
||||||
{ role: 'user', content: fullPrompt },
|
{ role: 'user', content: `Here is an invoice document:\n\n${markdown}` },
|
||||||
|
{ role: 'assistant', content: 'I have read the invoice document you provided. I can see all the text content. What would you like me to do with it?' },
|
||||||
|
{ role: 'user', content: JSON_EXTRACTION_PROMPT },
|
||||||
],
|
],
|
||||||
stream: true,
|
stream: true,
|
||||||
|
options: {
|
||||||
|
num_ctx: 32768, // Larger context for long invoices + thinking
|
||||||
|
temperature: 0, // Deterministic for JSON extraction
|
||||||
|
},
|
||||||
}),
|
}),
|
||||||
signal: AbortSignal.timeout(600000), // 10 minute timeout for large documents
|
signal: AbortSignal.timeout(600000), // 10 minute timeout for large documents
|
||||||
});
|
});
|
||||||
|
|||||||
Reference in New Issue
Block a user