Compare commits
2 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
| acded2a165 | |||
| bec379e9ca |
67
.gitea/workflows/docker_nottags.yaml
Normal file
67
.gitea/workflows/docker_nottags.yaml
Normal file
@@ -0,0 +1,67 @@
|
||||
name: Docker (no tags)
|
||||
|
||||
on:
|
||||
push:
|
||||
tags-ignore:
|
||||
- '**'
|
||||
|
||||
env:
|
||||
IMAGE: code.foss.global/host.today/ht-docker-node:npmci
|
||||
NPMCI_COMPUTED_REPOURL: https://${{gitea.repository_owner}}:${{secrets.GITEA_TOKEN}}@gitea.lossless.digital/${{gitea.repository}}.git
|
||||
NPMCI_LOGIN_DOCKER_DOCKERREGISTRY: ${{ secrets.NPMCI_LOGIN_DOCKER_DOCKERREGISTRY }}
|
||||
|
||||
jobs:
|
||||
security:
|
||||
runs-on: ubuntu-latest
|
||||
container:
|
||||
image: ${{ env.IMAGE }}
|
||||
continue-on-error: true
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
|
||||
- name: Prepare
|
||||
run: |
|
||||
pnpm install -g pnpm
|
||||
pnpm install -g @ship.zone/npmci
|
||||
npmci npm prepare
|
||||
|
||||
- name: Audit production dependencies
|
||||
run: |
|
||||
npmci command npm config set registry https://registry.npmjs.org
|
||||
npmci command pnpm audit --audit-level=high --prod
|
||||
continue-on-error: true
|
||||
|
||||
- name: Audit development dependencies
|
||||
run: |
|
||||
npmci command npm config set registry https://registry.npmjs.org
|
||||
npmci command pnpm audit --audit-level=high --dev
|
||||
continue-on-error: true
|
||||
|
||||
test:
|
||||
needs: security
|
||||
runs-on: ubuntu-latest
|
||||
container:
|
||||
image: ${{ env.IMAGE }}
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
|
||||
- name: Prepare
|
||||
run: |
|
||||
pnpm install -g pnpm
|
||||
pnpm install -g @ship.zone/npmci
|
||||
npmci npm prepare
|
||||
|
||||
- name: Test stable
|
||||
run: |
|
||||
npmci node install stable
|
||||
npmci npm install
|
||||
npmci npm test
|
||||
continue-on-error: true
|
||||
|
||||
- name: Test build
|
||||
run: |
|
||||
npmci node install stable
|
||||
npmci npm install
|
||||
npmci command npm run build
|
||||
101
.gitea/workflows/docker_tags.yaml
Normal file
101
.gitea/workflows/docker_tags.yaml
Normal file
@@ -0,0 +1,101 @@
|
||||
name: Docker (tags)
|
||||
|
||||
on:
|
||||
push:
|
||||
tags:
|
||||
- '*'
|
||||
|
||||
env:
|
||||
IMAGE: code.foss.global/host.today/ht-docker-node:npmci
|
||||
NPMCI_COMPUTED_REPOURL: https://${{gitea.repository_owner}}:${{secrets.GITEA_TOKEN}}@gitea.lossless.digital/${{gitea.repository}}.git
|
||||
NPMCI_LOGIN_DOCKER_DOCKERREGISTRY: ${{ secrets.NPMCI_LOGIN_DOCKER_DOCKERREGISTRY }}
|
||||
|
||||
jobs:
|
||||
security:
|
||||
runs-on: ubuntu-latest
|
||||
container:
|
||||
image: ${{ env.IMAGE }}
|
||||
continue-on-error: true
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
|
||||
- name: Prepare
|
||||
run: |
|
||||
pnpm install -g pnpm
|
||||
pnpm install -g @ship.zone/npmci
|
||||
npmci npm prepare
|
||||
|
||||
- name: Audit production dependencies
|
||||
run: |
|
||||
npmci command npm config set registry https://registry.npmjs.org
|
||||
npmci command pnpm audit --audit-level=high --prod
|
||||
continue-on-error: true
|
||||
|
||||
- name: Audit development dependencies
|
||||
run: |
|
||||
npmci command npm config set registry https://registry.npmjs.org
|
||||
npmci command pnpm audit --audit-level=high --dev
|
||||
continue-on-error: true
|
||||
|
||||
test:
|
||||
needs: security
|
||||
runs-on: ubuntu-latest
|
||||
container:
|
||||
image: ${{ env.IMAGE }}
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
|
||||
- name: Prepare
|
||||
run: |
|
||||
pnpm install -g pnpm
|
||||
pnpm install -g @ship.zone/npmci
|
||||
npmci npm prepare
|
||||
|
||||
- name: Test stable
|
||||
run: |
|
||||
npmci node install stable
|
||||
npmci npm install
|
||||
npmci npm test
|
||||
continue-on-error: true
|
||||
|
||||
- name: Test build
|
||||
run: |
|
||||
npmci node install stable
|
||||
npmci npm install
|
||||
npmci command npm run build
|
||||
|
||||
release:
|
||||
needs: test
|
||||
if: github.event_name == 'push' && startsWith(github.ref, 'refs/tags/')
|
||||
runs-on: ubuntu-latest
|
||||
container:
|
||||
image: code.foss.global/host.today/ht-docker-dbase:npmci
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
|
||||
- name: Prepare
|
||||
run: |
|
||||
pnpm install -g pnpm
|
||||
pnpm install -g @ship.zone/npmci
|
||||
|
||||
- name: Release
|
||||
run: |
|
||||
npmci docker login
|
||||
npmci docker build
|
||||
npmci docker push code.foss.global
|
||||
|
||||
metadata:
|
||||
needs: test
|
||||
if: github.event_name == 'push' && startsWith(github.ref, 'refs/tags/')
|
||||
runs-on: ubuntu-latest
|
||||
container:
|
||||
image: ${{ env.IMAGE }}
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
|
||||
- name: Trigger
|
||||
run: npmci trigger
|
||||
@@ -1,6 +1,6 @@
|
||||
# PaddleOCR GPU Variant
|
||||
# OCR processing with NVIDIA GPU support using PaddlePaddle
|
||||
FROM paddlepaddle/paddle:3.0.0-gpu-cuda11.8-cudnn8.9-trt8.6
|
||||
FROM paddlepaddle/paddle:2.6.2-gpu-cuda11.7-cudnn8.4-trt8.4
|
||||
|
||||
LABEL maintainer="Task Venture Capital GmbH <hello@task.vc>"
|
||||
LABEL description="PaddleOCR PP-OCRv4 - GPU optimized"
|
||||
@@ -22,9 +22,9 @@ RUN apt-get update && apt-get install -y --no-install-recommends \
|
||||
curl \
|
||||
&& rm -rf /var/lib/apt/lists/*
|
||||
|
||||
# Install Python dependencies
|
||||
# Install Python dependencies (using stable paddleocr 2.x)
|
||||
RUN pip install --no-cache-dir \
|
||||
paddleocr \
|
||||
paddleocr==2.8.1 \
|
||||
fastapi \
|
||||
uvicorn[standard] \
|
||||
python-multipart \
|
||||
@@ -36,10 +36,8 @@ COPY image_support_files/paddleocr_server.py /app/paddleocr_server.py
|
||||
COPY image_support_files/paddleocr-entrypoint.sh /usr/local/bin/paddleocr-entrypoint.sh
|
||||
RUN chmod +x /usr/local/bin/paddleocr-entrypoint.sh
|
||||
|
||||
# Pre-download OCR models during build (PP-OCRv4)
|
||||
RUN python -c "from paddleocr import PaddleOCR; \
|
||||
ocr = PaddleOCR(use_angle_cls=True, lang='en', use_gpu=False, show_log=True); \
|
||||
print('English model downloaded')"
|
||||
# Note: OCR models will be downloaded on first run
|
||||
# This ensures compatibility across different GPU architectures
|
||||
|
||||
# Expose API port
|
||||
EXPOSE 5000
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
# PaddleOCR CPU Variant
|
||||
# OCR processing optimized for CPU-only inference
|
||||
FROM python:3.10-slim
|
||||
FROM python:3.10-slim-bookworm
|
||||
|
||||
LABEL maintainer="Task Venture Capital GmbH <hello@task.vc>"
|
||||
LABEL description="PaddleOCR PP-OCRv4 - CPU optimized"
|
||||
@@ -21,13 +21,14 @@ WORKDIR /app
|
||||
RUN apt-get update && apt-get install -y --no-install-recommends \
|
||||
libgl1-mesa-glx \
|
||||
libglib2.0-0 \
|
||||
libgomp1 \
|
||||
curl \
|
||||
&& rm -rf /var/lib/apt/lists/*
|
||||
|
||||
# Install Python dependencies (CPU version of PaddlePaddle)
|
||||
# Install Python dependencies (CPU version of PaddlePaddle - using stable 2.x versions)
|
||||
RUN pip install --no-cache-dir \
|
||||
paddlepaddle \
|
||||
paddleocr \
|
||||
paddlepaddle==2.6.2 \
|
||||
paddleocr==2.8.1 \
|
||||
fastapi \
|
||||
uvicorn[standard] \
|
||||
python-multipart \
|
||||
@@ -39,10 +40,8 @@ COPY image_support_files/paddleocr_server.py /app/paddleocr_server.py
|
||||
COPY image_support_files/paddleocr-entrypoint.sh /usr/local/bin/paddleocr-entrypoint.sh
|
||||
RUN chmod +x /usr/local/bin/paddleocr-entrypoint.sh
|
||||
|
||||
# Pre-download OCR models during build (PP-OCRv4)
|
||||
RUN python -c "from paddleocr import PaddleOCR; \
|
||||
ocr = PaddleOCR(use_angle_cls=True, lang='en', use_gpu=False, show_log=True); \
|
||||
print('English model downloaded')"
|
||||
# Note: OCR models will be downloaded on first run
|
||||
# This avoids build-time segfaults with certain CPU architectures
|
||||
|
||||
# Expose API port
|
||||
EXPOSE 5000
|
||||
|
||||
10
changelog.md
10
changelog.md
@@ -1,5 +1,15 @@
|
||||
# Changelog
|
||||
|
||||
## 2026-01-16 - 1.3.0 - feat(paddleocr)
|
||||
add PaddleOCR OCR service (Docker images, server, tests, docs) and CI workflows
|
||||
|
||||
- Add GPU and CPU PaddleOCR Dockerfiles; pin paddlepaddle/paddle and paddleocr to stable 2.x and install libgomp1 for CPU builds
|
||||
- Avoid pre-downloading OCR models at build-time to prevent build-time segfaults; models are downloaded on first run
|
||||
- Refactor PaddleOCR FastAPI server: respect CUDA_VISIBLE_DEVICES, support per-request language, cache default language instance and create temporary instances for other languages
|
||||
- Add comprehensive tests (test.paddleocr.ts) and improve invoice extraction tests (parallelize passes, JSON OCR API usage, prioritize certain test cases)
|
||||
- Add Gitea CI workflows for tag and non-tag Docker runs and release pipeline (docker build/push, metadata trigger)
|
||||
- Update documentation (readme.hints.md) with PaddleOCR usage and add docker registry entry to npmextra.json
|
||||
|
||||
## 2026-01-16 - 1.2.0 - feat(paddleocr)
|
||||
add PaddleOCR support: Docker images, FastAPI server, entrypoint and tests
|
||||
|
||||
|
||||
@@ -26,6 +26,7 @@ logger = logging.getLogger(__name__)
|
||||
|
||||
# Environment configuration
|
||||
OCR_LANGUAGE = os.environ.get('OCR_LANGUAGE', 'en')
|
||||
# GPU is controlled via CUDA_VISIBLE_DEVICES environment variable
|
||||
USE_GPU = os.environ.get('CUDA_VISIBLE_DEVICES', '') != '-1'
|
||||
|
||||
# Initialize FastAPI app
|
||||
@@ -72,19 +73,29 @@ class HealthResponse(BaseModel):
|
||||
gpu_enabled: bool
|
||||
|
||||
|
||||
def get_ocr() -> PaddleOCR:
|
||||
def get_ocr(lang: Optional[str] = None) -> PaddleOCR:
|
||||
"""Get or initialize the OCR instance"""
|
||||
global ocr_instance
|
||||
if ocr_instance is None:
|
||||
logger.info(f"Initializing PaddleOCR with language={OCR_LANGUAGE}, use_gpu={USE_GPU}")
|
||||
ocr_instance = PaddleOCR(
|
||||
use_lang = lang or OCR_LANGUAGE
|
||||
|
||||
# Return cached instance if same language
|
||||
if ocr_instance is not None and lang is None:
|
||||
return ocr_instance
|
||||
|
||||
logger.info(f"Initializing PaddleOCR with language={use_lang}, use_gpu={USE_GPU}")
|
||||
new_ocr = PaddleOCR(
|
||||
use_angle_cls=True,
|
||||
lang=OCR_LANGUAGE,
|
||||
lang=use_lang,
|
||||
use_gpu=USE_GPU,
|
||||
show_log=False
|
||||
)
|
||||
|
||||
# Cache the default language instance
|
||||
if lang is None:
|
||||
ocr_instance = new_ocr
|
||||
|
||||
logger.info("PaddleOCR initialized successfully")
|
||||
return ocr_instance
|
||||
return new_ocr
|
||||
|
||||
|
||||
def decode_base64_image(base64_string: str) -> np.ndarray:
|
||||
@@ -176,19 +187,11 @@ async def ocr_base64(request: OCRRequest):
|
||||
image = decode_base64_image(request.image)
|
||||
|
||||
# Get OCR instance (use request language if provided)
|
||||
if request.language and request.language != OCR_LANGUAGE:
|
||||
ocr = get_ocr(request.language)
|
||||
else:
|
||||
ocr = get_ocr()
|
||||
|
||||
# If a different language is requested, create a new instance
|
||||
if request.language and request.language != OCR_LANGUAGE:
|
||||
logger.info(f"Creating OCR instance for language: {request.language}")
|
||||
temp_ocr = PaddleOCR(
|
||||
use_angle_cls=True,
|
||||
lang=request.language,
|
||||
use_gpu=USE_GPU,
|
||||
show_log=False
|
||||
)
|
||||
result = temp_ocr.ocr(image, cls=True)
|
||||
else:
|
||||
result = ocr.ocr(image, cls=True)
|
||||
|
||||
# Process results
|
||||
@@ -228,19 +231,11 @@ async def ocr_upload(
|
||||
image_array = np.array(image)
|
||||
|
||||
# Get OCR instance
|
||||
if language and language != OCR_LANGUAGE:
|
||||
ocr = get_ocr(language)
|
||||
else:
|
||||
ocr = get_ocr()
|
||||
|
||||
# If a different language is requested, create a new instance
|
||||
if language and language != OCR_LANGUAGE:
|
||||
logger.info(f"Creating OCR instance for language: {language}")
|
||||
temp_ocr = PaddleOCR(
|
||||
use_angle_cls=True,
|
||||
lang=language,
|
||||
use_gpu=USE_GPU,
|
||||
show_log=False
|
||||
)
|
||||
result = temp_ocr.ocr(image_array, cls=True)
|
||||
else:
|
||||
result = ocr.ocr(image_array, cls=True)
|
||||
|
||||
# Process results
|
||||
|
||||
@@ -1,7 +1,10 @@
|
||||
{
|
||||
"npmci": {
|
||||
"npmGlobalTools": [],
|
||||
"npmAccessLevel": "public"
|
||||
"npmAccessLevel": "public",
|
||||
"dockerRegistries": [
|
||||
"code.foss.global"
|
||||
]
|
||||
},
|
||||
"gitzone": {
|
||||
"projectType": "docker",
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "@host.today/ht-docker-ai",
|
||||
"version": "1.2.0",
|
||||
"version": "1.3.0",
|
||||
"type": "module",
|
||||
"private": false,
|
||||
"description": "Docker images for AI vision-language models including MiniCPM-V 4.5",
|
||||
|
||||
@@ -77,6 +77,81 @@ HEALTHCHECK --interval=30s --timeout=10s --start-period=60s --retries=3 \
|
||||
|
||||
CPU variant has longer `start-period` (120s) due to slower startup.
|
||||
|
||||
## PaddleOCR
|
||||
|
||||
### Overview
|
||||
|
||||
PaddleOCR is a standalone OCR service using PaddlePaddle's PP-OCRv4 model. It provides:
|
||||
|
||||
- Text detection and recognition
|
||||
- Multi-language support
|
||||
- FastAPI REST API
|
||||
- GPU and CPU variants
|
||||
|
||||
### Docker Images
|
||||
|
||||
| Tag | Description |
|
||||
|-----|-------------|
|
||||
| `paddleocr` | GPU variant (default) |
|
||||
| `paddleocr-gpu` | GPU variant (alias) |
|
||||
| `paddleocr-cpu` | CPU-only variant |
|
||||
|
||||
### API Endpoints
|
||||
|
||||
| Endpoint | Method | Description |
|
||||
|----------|--------|-------------|
|
||||
| `/health` | GET | Health check with model info |
|
||||
| `/ocr` | POST | OCR with base64 image (JSON body) |
|
||||
| `/ocr/upload` | POST | OCR with file upload (multipart form) |
|
||||
|
||||
### Request/Response Format
|
||||
|
||||
**POST /ocr (JSON)**
|
||||
```json
|
||||
{
|
||||
"image": "<base64-encoded-image>",
|
||||
"language": "en" // optional
|
||||
}
|
||||
```
|
||||
|
||||
**POST /ocr/upload (multipart)**
|
||||
- `img`: image file
|
||||
- `language`: optional language code
|
||||
|
||||
**Response**
|
||||
```json
|
||||
{
|
||||
"success": true,
|
||||
"results": [
|
||||
{
|
||||
"text": "Invoice #12345",
|
||||
"confidence": 0.98,
|
||||
"box": [[x1,y1], [x2,y2], [x3,y3], [x4,y4]]
|
||||
}
|
||||
]
|
||||
}
|
||||
```
|
||||
|
||||
### Environment Variables
|
||||
|
||||
| Variable | Default | Description |
|
||||
|----------|---------|-------------|
|
||||
| `OCR_LANGUAGE` | `en` | Default language for OCR |
|
||||
| `SERVER_PORT` | `5000` | Server port |
|
||||
| `SERVER_HOST` | `0.0.0.0` | Server host |
|
||||
| `CUDA_VISIBLE_DEVICES` | (auto) | Set to `-1` for CPU-only |
|
||||
|
||||
### Performance
|
||||
|
||||
- **GPU**: ~1-3 seconds per page
|
||||
- **CPU**: ~10-30 seconds per page
|
||||
|
||||
### Supported Languages
|
||||
|
||||
Common language codes: `en` (English), `ch` (Chinese), `de` (German), `fr` (French), `es` (Spanish), `ja` (Japanese), `ko` (Korean)
|
||||
|
||||
---
|
||||
|
||||
## Adding New Models
|
||||
|
||||
To add a new model variant:
|
||||
|
||||
@@ -22,16 +22,11 @@ interface IInvoice {
|
||||
* Extract OCR text from an image using PaddleOCR
|
||||
*/
|
||||
async function extractOcrText(imageBase64: string): Promise<string> {
|
||||
const formData = new FormData();
|
||||
const imageBuffer = Buffer.from(imageBase64, 'base64');
|
||||
const blob = new Blob([imageBuffer], { type: 'image/png' });
|
||||
formData.append('img', blob, 'image.png');
|
||||
formData.append('outtype', 'json');
|
||||
|
||||
try {
|
||||
const response = await fetch(`${PADDLEOCR_URL}/ocr`, {
|
||||
method: 'POST',
|
||||
body: formData,
|
||||
headers: { 'Content-Type': 'application/json' },
|
||||
body: JSON.stringify({ image: imageBase64 }),
|
||||
});
|
||||
|
||||
if (!response.ok) return '';
|
||||
@@ -180,29 +175,64 @@ function hashInvoice(invoice: IInvoice): string {
|
||||
|
||||
/**
|
||||
* Extract with majority voting - run until 2 passes match
|
||||
* Optimization: Run Pass 1, OCR, and Pass 2 (after OCR) in parallel
|
||||
*/
|
||||
async function extractWithConsensus(images: string[], invoiceName: string, maxPasses: number = 5): Promise<IInvoice> {
|
||||
const results: Array<{ invoice: IInvoice; hash: string }> = [];
|
||||
const hashCounts: Map<string, number> = new Map();
|
||||
|
||||
// Extract OCR text from first page
|
||||
const ocrText = await extractOcrText(images[0]);
|
||||
const addResult = (invoice: IInvoice, passLabel: string): number => {
|
||||
const hash = hashInvoice(invoice);
|
||||
results.push({ invoice, hash });
|
||||
hashCounts.set(hash, (hashCounts.get(hash) || 0) + 1);
|
||||
console.log(` [${passLabel}] ${invoice.invoice_number} | ${invoice.invoice_date} | ${invoice.total_amount} ${invoice.currency}`);
|
||||
return hashCounts.get(hash)!;
|
||||
};
|
||||
|
||||
// OPTIMIZATION: Run Pass 1 (no OCR) in parallel with OCR -> Pass 2 (with OCR)
|
||||
let ocrText = '';
|
||||
const pass1Promise = extractOnce(images, 1, '').catch((err) => ({ error: err }));
|
||||
|
||||
// OCR then immediately Pass 2
|
||||
const ocrThenPass2Promise = (async () => {
|
||||
ocrText = await extractOcrText(images[0]);
|
||||
if (ocrText) {
|
||||
console.log(` [OCR] Extracted ${ocrText.split('\n').length} text lines`);
|
||||
}
|
||||
return extractOnce(images, 2, ocrText).catch((err) => ({ error: err }));
|
||||
})();
|
||||
|
||||
for (let pass = 1; pass <= maxPasses; pass++) {
|
||||
// Wait for both to complete
|
||||
const [pass1Result, pass2Result] = await Promise.all([pass1Promise, ocrThenPass2Promise]);
|
||||
|
||||
// Process Pass 1 result
|
||||
if ('error' in pass1Result) {
|
||||
console.log(` [Pass 1] Error: ${(pass1Result as {error: unknown}).error}`);
|
||||
} else {
|
||||
const count = addResult(pass1Result as IInvoice, 'Pass 1');
|
||||
if (count >= 2) {
|
||||
console.log(` [Consensus] Reached after parallel passes`);
|
||||
return pass1Result as IInvoice;
|
||||
}
|
||||
}
|
||||
|
||||
// Process Pass 2 result
|
||||
if ('error' in pass2Result) {
|
||||
console.log(` [Pass 2+OCR] Error: ${(pass2Result as {error: unknown}).error}`);
|
||||
} else {
|
||||
const count = addResult(pass2Result as IInvoice, 'Pass 2+OCR');
|
||||
if (count >= 2) {
|
||||
console.log(` [Consensus] Reached after parallel passes`);
|
||||
return pass2Result as IInvoice;
|
||||
}
|
||||
}
|
||||
|
||||
// Continue with passes 3+ using OCR text if no consensus yet
|
||||
for (let pass = 3; pass <= maxPasses; pass++) {
|
||||
try {
|
||||
const invoice = await extractOnce(images, pass, ocrText);
|
||||
const hash = hashInvoice(invoice);
|
||||
const count = addResult(invoice, `Pass ${pass}+OCR`);
|
||||
|
||||
results.push({ invoice, hash });
|
||||
hashCounts.set(hash, (hashCounts.get(hash) || 0) + 1);
|
||||
|
||||
console.log(` [Pass ${pass}] ${invoice.invoice_number} | ${invoice.invoice_date} | ${invoice.total_amount} ${invoice.currency}`);
|
||||
|
||||
// Check if we have consensus (2+ matching)
|
||||
const count = hashCounts.get(hash)!;
|
||||
if (count >= 2) {
|
||||
console.log(` [Consensus] Reached after ${pass} passes`);
|
||||
return invoice;
|
||||
@@ -267,6 +297,7 @@ function compareInvoice(
|
||||
|
||||
/**
|
||||
* Find all test cases (PDF + JSON pairs) in .nogit/invoices/
|
||||
* Priority invoices (like vodafone) run first for quick feedback
|
||||
*/
|
||||
function findTestCases(): Array<{ name: string; pdfPath: string; jsonPath: string }> {
|
||||
const testDir = path.join(process.cwd(), '.nogit/invoices');
|
||||
@@ -290,6 +321,22 @@ function findTestCases(): Array<{ name: string; pdfPath: string; jsonPath: strin
|
||||
}
|
||||
}
|
||||
|
||||
// Sort with priority invoices first, then alphabetically
|
||||
const priorityPrefixes = ['vodafone'];
|
||||
testCases.sort((a, b) => {
|
||||
const aPriority = priorityPrefixes.findIndex((p) => a.name.startsWith(p));
|
||||
const bPriority = priorityPrefixes.findIndex((p) => b.name.startsWith(p));
|
||||
|
||||
// Both have priority - sort by priority order
|
||||
if (aPriority >= 0 && bPriority >= 0) return aPriority - bPriority;
|
||||
// Only a has priority - a comes first
|
||||
if (aPriority >= 0) return -1;
|
||||
// Only b has priority - b comes first
|
||||
if (bPriority >= 0) return 1;
|
||||
// Neither has priority - alphabetical
|
||||
return a.name.localeCompare(b.name);
|
||||
});
|
||||
|
||||
return testCases;
|
||||
}
|
||||
|
||||
|
||||
258
test/test.paddleocr.ts
Normal file
258
test/test.paddleocr.ts
Normal file
@@ -0,0 +1,258 @@
|
||||
import { tap, expect } from '@git.zone/tstest/tapbundle';
|
||||
import * as fs from 'fs';
|
||||
import * as path from 'path';
|
||||
import { execSync } from 'child_process';
|
||||
import * as os from 'os';
|
||||
|
||||
const PADDLEOCR_URL = 'http://localhost:5000';
|
||||
|
||||
interface IOCRResult {
|
||||
text: string;
|
||||
confidence: number;
|
||||
box: number[][];
|
||||
}
|
||||
|
||||
interface IOCRResponse {
|
||||
success: boolean;
|
||||
results: IOCRResult[];
|
||||
error?: string;
|
||||
}
|
||||
|
||||
interface IHealthResponse {
|
||||
status: string;
|
||||
model: string;
|
||||
language: string;
|
||||
gpu_enabled: boolean;
|
||||
}
|
||||
|
||||
/**
|
||||
* Convert PDF first page to PNG using ImageMagick
|
||||
*/
|
||||
function convertPdfToImage(pdfPath: string): string {
|
||||
const tempDir = fs.mkdtempSync(path.join(os.tmpdir(), 'pdf-convert-'));
|
||||
const outputPath = path.join(tempDir, 'page.png');
|
||||
|
||||
try {
|
||||
execSync(
|
||||
`convert -density 200 -quality 90 "${pdfPath}[0]" -background white -alpha remove "${outputPath}"`,
|
||||
{ stdio: 'pipe' }
|
||||
);
|
||||
|
||||
const imageData = fs.readFileSync(outputPath);
|
||||
return imageData.toString('base64');
|
||||
} finally {
|
||||
fs.rmSync(tempDir, { recursive: true, force: true });
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Create a simple test image with text using ImageMagick
|
||||
*/
|
||||
function createTestImage(text: string): string {
|
||||
const tempDir = fs.mkdtempSync(path.join(os.tmpdir(), 'test-image-'));
|
||||
const outputPath = path.join(tempDir, 'test.png');
|
||||
|
||||
try {
|
||||
execSync(
|
||||
`convert -size 400x100 xc:white -font DejaVu-Sans -pointsize 24 -fill black -gravity center -annotate 0 "${text}" "${outputPath}"`,
|
||||
{ stdio: 'pipe' }
|
||||
);
|
||||
|
||||
const imageData = fs.readFileSync(outputPath);
|
||||
return imageData.toString('base64');
|
||||
} finally {
|
||||
fs.rmSync(tempDir, { recursive: true, force: true });
|
||||
}
|
||||
}
|
||||
|
||||
// Health check test
|
||||
tap.test('should respond to health check', async () => {
|
||||
const response = await fetch(`${PADDLEOCR_URL}/health`);
|
||||
expect(response.ok).toBeTrue();
|
||||
|
||||
const data: IHealthResponse = await response.json();
|
||||
expect(data.status).toEqual('healthy');
|
||||
expect(data.model).toEqual('PP-OCRv4');
|
||||
expect(data.language).toBeTypeofString();
|
||||
expect(data.gpu_enabled).toBeTypeofBoolean();
|
||||
|
||||
console.log(`PaddleOCR Status: ${data.status}`);
|
||||
console.log(` Model: ${data.model}`);
|
||||
console.log(` Language: ${data.language}`);
|
||||
console.log(` GPU Enabled: ${data.gpu_enabled}`);
|
||||
});
|
||||
|
||||
// Base64 OCR test
|
||||
tap.test('should perform OCR on base64 image', async () => {
|
||||
// Create a test image with known text
|
||||
const testText = 'Hello World 12345';
|
||||
console.log(`Creating test image with text: "${testText}"`);
|
||||
|
||||
const imageBase64 = createTestImage(testText);
|
||||
|
||||
const response = await fetch(`${PADDLEOCR_URL}/ocr`, {
|
||||
method: 'POST',
|
||||
headers: { 'Content-Type': 'application/json' },
|
||||
body: JSON.stringify({ image: imageBase64 }),
|
||||
});
|
||||
|
||||
expect(response.ok).toBeTrue();
|
||||
|
||||
const data: IOCRResponse = await response.json();
|
||||
expect(data.success).toBeTrue();
|
||||
expect(data.results).toBeArray();
|
||||
|
||||
const extractedText = data.results.map((r) => r.text).join(' ');
|
||||
console.log(`Extracted text: "${extractedText}"`);
|
||||
|
||||
// Check that we got some text back
|
||||
expect(data.results.length).toBeGreaterThan(0);
|
||||
|
||||
// Check that at least some of the expected text was found
|
||||
const normalizedExtracted = extractedText.toLowerCase().replace(/\s+/g, '');
|
||||
const normalizedExpected = testText.toLowerCase().replace(/\s+/g, '');
|
||||
const hasPartialMatch =
|
||||
normalizedExtracted.includes('hello') ||
|
||||
normalizedExtracted.includes('world') ||
|
||||
normalizedExtracted.includes('12345');
|
||||
|
||||
expect(hasPartialMatch).toBeTrue();
|
||||
});
|
||||
|
||||
// File upload OCR test
|
||||
tap.test('should perform OCR via file upload', async () => {
|
||||
const testText = 'Invoice Number 98765';
|
||||
console.log(`Creating test image with text: "${testText}"`);
|
||||
|
||||
const imageBase64 = createTestImage(testText);
|
||||
const imageBuffer = Buffer.from(imageBase64, 'base64');
|
||||
|
||||
const formData = new FormData();
|
||||
const blob = new Blob([imageBuffer], { type: 'image/png' });
|
||||
formData.append('img', blob, 'test.png');
|
||||
|
||||
const response = await fetch(`${PADDLEOCR_URL}/ocr/upload`, {
|
||||
method: 'POST',
|
||||
body: formData,
|
||||
});
|
||||
|
||||
expect(response.ok).toBeTrue();
|
||||
|
||||
const data: IOCRResponse = await response.json();
|
||||
expect(data.success).toBeTrue();
|
||||
expect(data.results).toBeArray();
|
||||
|
||||
const extractedText = data.results.map((r) => r.text).join(' ');
|
||||
console.log(`Extracted text: "${extractedText}"`);
|
||||
|
||||
// Check that we got some text back
|
||||
expect(data.results.length).toBeGreaterThan(0);
|
||||
});
|
||||
|
||||
// OCR result structure test
|
||||
tap.test('should return proper OCR result structure', async () => {
|
||||
const testText = 'Test 123';
|
||||
const imageBase64 = createTestImage(testText);
|
||||
|
||||
const response = await fetch(`${PADDLEOCR_URL}/ocr`, {
|
||||
method: 'POST',
|
||||
headers: { 'Content-Type': 'application/json' },
|
||||
body: JSON.stringify({ image: imageBase64 }),
|
||||
});
|
||||
|
||||
const data: IOCRResponse = await response.json();
|
||||
|
||||
if (data.results.length > 0) {
|
||||
const result = data.results[0];
|
||||
|
||||
// Check result has required fields
|
||||
expect(result.text).toBeTypeofString();
|
||||
expect(result.confidence).toBeTypeofNumber();
|
||||
expect(result.box).toBeArray();
|
||||
|
||||
// Check bounding box structure (4 points, each with x,y)
|
||||
expect(result.box.length).toEqual(4);
|
||||
for (const point of result.box) {
|
||||
expect(point.length).toEqual(2);
|
||||
expect(point[0]).toBeTypeofNumber();
|
||||
expect(point[1]).toBeTypeofNumber();
|
||||
}
|
||||
|
||||
// Confidence should be between 0 and 1
|
||||
expect(result.confidence).toBeGreaterThan(0);
|
||||
expect(result.confidence).toBeLessThanOrEqual(1);
|
||||
|
||||
console.log(`Result structure valid:`);
|
||||
console.log(` Text: "${result.text}"`);
|
||||
console.log(` Confidence: ${(result.confidence * 100).toFixed(1)}%`);
|
||||
console.log(` Box: ${JSON.stringify(result.box)}`);
|
||||
}
|
||||
});
|
||||
|
||||
// Test with actual invoice if available
|
||||
const invoiceDir = path.join(process.cwd(), '.nogit/invoices');
|
||||
if (fs.existsSync(invoiceDir)) {
|
||||
const pdfFiles = fs.readdirSync(invoiceDir).filter((f) => f.endsWith('.pdf'));
|
||||
|
||||
if (pdfFiles.length > 0) {
|
||||
const testPdf = pdfFiles[0];
|
||||
tap.test(`should extract text from invoice: ${testPdf}`, async () => {
|
||||
const pdfPath = path.join(invoiceDir, testPdf);
|
||||
console.log(`Converting ${testPdf} to image...`);
|
||||
|
||||
const imageBase64 = convertPdfToImage(pdfPath);
|
||||
console.log(`Image size: ${(imageBase64.length / 1024).toFixed(1)} KB`);
|
||||
|
||||
const startTime = Date.now();
|
||||
|
||||
const response = await fetch(`${PADDLEOCR_URL}/ocr`, {
|
||||
method: 'POST',
|
||||
headers: { 'Content-Type': 'application/json' },
|
||||
body: JSON.stringify({ image: imageBase64 }),
|
||||
});
|
||||
|
||||
const endTime = Date.now();
|
||||
const elapsedMs = endTime - startTime;
|
||||
|
||||
expect(response.ok).toBeTrue();
|
||||
|
||||
const data: IOCRResponse = await response.json();
|
||||
expect(data.success).toBeTrue();
|
||||
|
||||
console.log(`OCR completed in ${(elapsedMs / 1000).toFixed(2)}s`);
|
||||
console.log(`Found ${data.results.length} text regions`);
|
||||
|
||||
// Print first 10 results
|
||||
const preview = data.results.slice(0, 10);
|
||||
console.log(`\nFirst ${preview.length} results:`);
|
||||
for (const result of preview) {
|
||||
console.log(` [${(result.confidence * 100).toFixed(0)}%] ${result.text}`);
|
||||
}
|
||||
|
||||
if (data.results.length > 10) {
|
||||
console.log(` ... and ${data.results.length - 10} more`);
|
||||
}
|
||||
|
||||
// Should find text in an invoice
|
||||
expect(data.results.length).toBeGreaterThan(5);
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
// Error handling test
|
||||
tap.test('should handle invalid base64 gracefully', async () => {
|
||||
const response = await fetch(`${PADDLEOCR_URL}/ocr`, {
|
||||
method: 'POST',
|
||||
headers: { 'Content-Type': 'application/json' },
|
||||
body: JSON.stringify({ image: 'not-valid-base64!!!' }),
|
||||
});
|
||||
|
||||
const data: IOCRResponse = await response.json();
|
||||
|
||||
// Should return success: false with error message
|
||||
expect(data.success).toBeFalse();
|
||||
expect(data.error).toBeTypeofString();
|
||||
console.log(`Error handling works: ${data.error}`);
|
||||
});
|
||||
|
||||
export default tap.start();
|
||||
Reference in New Issue
Block a user