Compare commits
4 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
| 3c5cf578a5 | |||
| 82358b2d5d | |||
| acded2a165 | |||
| bec379e9ca |
67
.gitea/workflows/docker_nottags.yaml
Normal file
67
.gitea/workflows/docker_nottags.yaml
Normal file
@@ -0,0 +1,67 @@
|
||||
name: Docker (no tags)
|
||||
|
||||
on:
|
||||
push:
|
||||
tags-ignore:
|
||||
- '**'
|
||||
|
||||
env:
|
||||
IMAGE: code.foss.global/host.today/ht-docker-node:npmci
|
||||
NPMCI_COMPUTED_REPOURL: https://${{gitea.repository_owner}}:${{secrets.GITEA_TOKEN}}@gitea.lossless.digital/${{gitea.repository}}.git
|
||||
NPMCI_LOGIN_DOCKER_DOCKERREGISTRY: ${{ secrets.NPMCI_LOGIN_DOCKER_DOCKERREGISTRY }}
|
||||
|
||||
jobs:
|
||||
security:
|
||||
runs-on: ubuntu-latest
|
||||
container:
|
||||
image: ${{ env.IMAGE }}
|
||||
continue-on-error: true
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
|
||||
- name: Prepare
|
||||
run: |
|
||||
pnpm install -g pnpm
|
||||
pnpm install -g @ship.zone/npmci
|
||||
npmci npm prepare
|
||||
|
||||
- name: Audit production dependencies
|
||||
run: |
|
||||
npmci command npm config set registry https://registry.npmjs.org
|
||||
npmci command pnpm audit --audit-level=high --prod
|
||||
continue-on-error: true
|
||||
|
||||
- name: Audit development dependencies
|
||||
run: |
|
||||
npmci command npm config set registry https://registry.npmjs.org
|
||||
npmci command pnpm audit --audit-level=high --dev
|
||||
continue-on-error: true
|
||||
|
||||
test:
|
||||
needs: security
|
||||
runs-on: ubuntu-latest
|
||||
container:
|
||||
image: ${{ env.IMAGE }}
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
|
||||
- name: Prepare
|
||||
run: |
|
||||
pnpm install -g pnpm
|
||||
pnpm install -g @ship.zone/npmci
|
||||
npmci npm prepare
|
||||
|
||||
- name: Test stable
|
||||
run: |
|
||||
npmci node install stable
|
||||
npmci npm install
|
||||
npmci npm test
|
||||
continue-on-error: true
|
||||
|
||||
- name: Test build
|
||||
run: |
|
||||
npmci node install stable
|
||||
npmci npm install
|
||||
npmci command npm run build
|
||||
101
.gitea/workflows/docker_tags.yaml
Normal file
101
.gitea/workflows/docker_tags.yaml
Normal file
@@ -0,0 +1,101 @@
|
||||
name: Docker (tags)
|
||||
|
||||
on:
|
||||
push:
|
||||
tags:
|
||||
- '*'
|
||||
|
||||
env:
|
||||
IMAGE: code.foss.global/host.today/ht-docker-node:npmci
|
||||
NPMCI_COMPUTED_REPOURL: https://${{gitea.repository_owner}}:${{secrets.GITEA_TOKEN}}@gitea.lossless.digital/${{gitea.repository}}.git
|
||||
NPMCI_LOGIN_DOCKER_DOCKERREGISTRY: ${{ secrets.NPMCI_LOGIN_DOCKER_DOCKERREGISTRY }}
|
||||
|
||||
jobs:
|
||||
security:
|
||||
runs-on: ubuntu-latest
|
||||
container:
|
||||
image: ${{ env.IMAGE }}
|
||||
continue-on-error: true
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
|
||||
- name: Prepare
|
||||
run: |
|
||||
pnpm install -g pnpm
|
||||
pnpm install -g @ship.zone/npmci
|
||||
npmci npm prepare
|
||||
|
||||
- name: Audit production dependencies
|
||||
run: |
|
||||
npmci command npm config set registry https://registry.npmjs.org
|
||||
npmci command pnpm audit --audit-level=high --prod
|
||||
continue-on-error: true
|
||||
|
||||
- name: Audit development dependencies
|
||||
run: |
|
||||
npmci command npm config set registry https://registry.npmjs.org
|
||||
npmci command pnpm audit --audit-level=high --dev
|
||||
continue-on-error: true
|
||||
|
||||
test:
|
||||
needs: security
|
||||
runs-on: ubuntu-latest
|
||||
container:
|
||||
image: ${{ env.IMAGE }}
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
|
||||
- name: Prepare
|
||||
run: |
|
||||
pnpm install -g pnpm
|
||||
pnpm install -g @ship.zone/npmci
|
||||
npmci npm prepare
|
||||
|
||||
- name: Test stable
|
||||
run: |
|
||||
npmci node install stable
|
||||
npmci npm install
|
||||
npmci npm test
|
||||
continue-on-error: true
|
||||
|
||||
- name: Test build
|
||||
run: |
|
||||
npmci node install stable
|
||||
npmci npm install
|
||||
npmci command npm run build
|
||||
|
||||
release:
|
||||
needs: test
|
||||
if: github.event_name == 'push' && startsWith(github.ref, 'refs/tags/')
|
||||
runs-on: ubuntu-latest
|
||||
container:
|
||||
image: code.foss.global/host.today/ht-docker-dbase:npmci
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
|
||||
- name: Prepare
|
||||
run: |
|
||||
pnpm install -g pnpm
|
||||
pnpm install -g @ship.zone/npmci
|
||||
|
||||
- name: Release
|
||||
run: |
|
||||
npmci docker login
|
||||
npmci docker build
|
||||
npmci docker push code.foss.global
|
||||
|
||||
metadata:
|
||||
needs: test
|
||||
if: github.event_name == 'push' && startsWith(github.ref, 'refs/tags/')
|
||||
runs-on: ubuntu-latest
|
||||
container:
|
||||
image: ${{ env.IMAGE }}
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
|
||||
- name: Trigger
|
||||
run: npmci trigger
|
||||
@@ -1,6 +1,6 @@
|
||||
# PaddleOCR GPU Variant
|
||||
# OCR processing with NVIDIA GPU support using PaddlePaddle
|
||||
FROM paddlepaddle/paddle:3.0.0-gpu-cuda11.8-cudnn8.9-trt8.6
|
||||
FROM paddlepaddle/paddle:2.6.2-gpu-cuda11.7-cudnn8.4-trt8.4
|
||||
|
||||
LABEL maintainer="Task Venture Capital GmbH <hello@task.vc>"
|
||||
LABEL description="PaddleOCR PP-OCRv4 - GPU optimized"
|
||||
@@ -22,9 +22,9 @@ RUN apt-get update && apt-get install -y --no-install-recommends \
|
||||
curl \
|
||||
&& rm -rf /var/lib/apt/lists/*
|
||||
|
||||
# Install Python dependencies
|
||||
# Install Python dependencies (using stable paddleocr 2.x)
|
||||
RUN pip install --no-cache-dir \
|
||||
paddleocr \
|
||||
paddleocr==2.8.1 \
|
||||
fastapi \
|
||||
uvicorn[standard] \
|
||||
python-multipart \
|
||||
@@ -36,10 +36,8 @@ COPY image_support_files/paddleocr_server.py /app/paddleocr_server.py
|
||||
COPY image_support_files/paddleocr-entrypoint.sh /usr/local/bin/paddleocr-entrypoint.sh
|
||||
RUN chmod +x /usr/local/bin/paddleocr-entrypoint.sh
|
||||
|
||||
# Pre-download OCR models during build (PP-OCRv4)
|
||||
RUN python -c "from paddleocr import PaddleOCR; \
|
||||
ocr = PaddleOCR(use_angle_cls=True, lang='en', use_gpu=False, show_log=True); \
|
||||
print('English model downloaded')"
|
||||
# Note: OCR models will be downloaded on first run
|
||||
# This ensures compatibility across different GPU architectures
|
||||
|
||||
# Expose API port
|
||||
EXPOSE 5000
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
# PaddleOCR CPU Variant
|
||||
# OCR processing optimized for CPU-only inference
|
||||
FROM python:3.10-slim
|
||||
FROM python:3.10-slim-bookworm
|
||||
|
||||
LABEL maintainer="Task Venture Capital GmbH <hello@task.vc>"
|
||||
LABEL description="PaddleOCR PP-OCRv4 - CPU optimized"
|
||||
@@ -21,13 +21,14 @@ WORKDIR /app
|
||||
RUN apt-get update && apt-get install -y --no-install-recommends \
|
||||
libgl1-mesa-glx \
|
||||
libglib2.0-0 \
|
||||
libgomp1 \
|
||||
curl \
|
||||
&& rm -rf /var/lib/apt/lists/*
|
||||
|
||||
# Install Python dependencies (CPU version of PaddlePaddle)
|
||||
# Install Python dependencies (CPU version of PaddlePaddle - using stable 2.x versions)
|
||||
RUN pip install --no-cache-dir \
|
||||
paddlepaddle \
|
||||
paddleocr \
|
||||
paddlepaddle==2.6.2 \
|
||||
paddleocr==2.8.1 \
|
||||
fastapi \
|
||||
uvicorn[standard] \
|
||||
python-multipart \
|
||||
@@ -39,10 +40,8 @@ COPY image_support_files/paddleocr_server.py /app/paddleocr_server.py
|
||||
COPY image_support_files/paddleocr-entrypoint.sh /usr/local/bin/paddleocr-entrypoint.sh
|
||||
RUN chmod +x /usr/local/bin/paddleocr-entrypoint.sh
|
||||
|
||||
# Pre-download OCR models during build (PP-OCRv4)
|
||||
RUN python -c "from paddleocr import PaddleOCR; \
|
||||
ocr = PaddleOCR(use_angle_cls=True, lang='en', use_gpu=False, show_log=True); \
|
||||
print('English model downloaded')"
|
||||
# Note: OCR models will be downloaded on first run
|
||||
# This avoids build-time segfaults with certain CPU architectures
|
||||
|
||||
# Expose API port
|
||||
EXPOSE 5000
|
||||
|
||||
19
changelog.md
19
changelog.md
@@ -1,5 +1,24 @@
|
||||
# Changelog
|
||||
|
||||
## 2026-01-16 - 1.4.0 - feat(invoices)
|
||||
add hybrid OCR + vision invoice/document parsing with PaddleOCR, consensus voting, and prompt/test refactors
|
||||
|
||||
- Add hybrid pipeline documentation and examples (PaddleOCR + MiniCPM-V) and architecture diagram in recipes/document.md
|
||||
- Integrate PaddleOCR: new OCR extraction functions and OCR-only prompt flow in test/test.node.ts
|
||||
- Add consensus voting and parallel-pass optimization to improve reliability (multiple passes, hashing, and majority voting)
|
||||
- Refactor prompts and tests: introduce /nothink token, OCR truncation limits, separate visual and OCR-only prompts, and improved prompt building in test/test.invoices.ts
|
||||
- Update image conversion defaults (200 DPI, filename change) and add TypeScript helper functions for extraction and consensus handling
|
||||
|
||||
## 2026-01-16 - 1.3.0 - feat(paddleocr)
|
||||
add PaddleOCR OCR service (Docker images, server, tests, docs) and CI workflows
|
||||
|
||||
- Add GPU and CPU PaddleOCR Dockerfiles; pin paddlepaddle/paddle and paddleocr to stable 2.x and install libgomp1 for CPU builds
|
||||
- Avoid pre-downloading OCR models at build-time to prevent build-time segfaults; models are downloaded on first run
|
||||
- Refactor PaddleOCR FastAPI server: respect CUDA_VISIBLE_DEVICES, support per-request language, cache default language instance and create temporary instances for other languages
|
||||
- Add comprehensive tests (test.paddleocr.ts) and improve invoice extraction tests (parallelize passes, JSON OCR API usage, prioritize certain test cases)
|
||||
- Add Gitea CI workflows for tag and non-tag Docker runs and release pipeline (docker build/push, metadata trigger)
|
||||
- Update documentation (readme.hints.md) with PaddleOCR usage and add docker registry entry to npmextra.json
|
||||
|
||||
## 2026-01-16 - 1.2.0 - feat(paddleocr)
|
||||
add PaddleOCR support: Docker images, FastAPI server, entrypoint and tests
|
||||
|
||||
|
||||
@@ -26,6 +26,7 @@ logger = logging.getLogger(__name__)
|
||||
|
||||
# Environment configuration
|
||||
OCR_LANGUAGE = os.environ.get('OCR_LANGUAGE', 'en')
|
||||
# GPU is controlled via CUDA_VISIBLE_DEVICES environment variable
|
||||
USE_GPU = os.environ.get('CUDA_VISIBLE_DEVICES', '') != '-1'
|
||||
|
||||
# Initialize FastAPI app
|
||||
@@ -72,19 +73,29 @@ class HealthResponse(BaseModel):
|
||||
gpu_enabled: bool
|
||||
|
||||
|
||||
def get_ocr() -> PaddleOCR:
|
||||
def get_ocr(lang: Optional[str] = None) -> PaddleOCR:
|
||||
"""Get or initialize the OCR instance"""
|
||||
global ocr_instance
|
||||
if ocr_instance is None:
|
||||
logger.info(f"Initializing PaddleOCR with language={OCR_LANGUAGE}, use_gpu={USE_GPU}")
|
||||
ocr_instance = PaddleOCR(
|
||||
use_lang = lang or OCR_LANGUAGE
|
||||
|
||||
# Return cached instance if same language
|
||||
if ocr_instance is not None and lang is None:
|
||||
return ocr_instance
|
||||
|
||||
logger.info(f"Initializing PaddleOCR with language={use_lang}, use_gpu={USE_GPU}")
|
||||
new_ocr = PaddleOCR(
|
||||
use_angle_cls=True,
|
||||
lang=OCR_LANGUAGE,
|
||||
lang=use_lang,
|
||||
use_gpu=USE_GPU,
|
||||
show_log=False
|
||||
)
|
||||
|
||||
# Cache the default language instance
|
||||
if lang is None:
|
||||
ocr_instance = new_ocr
|
||||
|
||||
logger.info("PaddleOCR initialized successfully")
|
||||
return ocr_instance
|
||||
return new_ocr
|
||||
|
||||
|
||||
def decode_base64_image(base64_string: str) -> np.ndarray:
|
||||
@@ -176,19 +187,11 @@ async def ocr_base64(request: OCRRequest):
|
||||
image = decode_base64_image(request.image)
|
||||
|
||||
# Get OCR instance (use request language if provided)
|
||||
if request.language and request.language != OCR_LANGUAGE:
|
||||
ocr = get_ocr(request.language)
|
||||
else:
|
||||
ocr = get_ocr()
|
||||
|
||||
# If a different language is requested, create a new instance
|
||||
if request.language and request.language != OCR_LANGUAGE:
|
||||
logger.info(f"Creating OCR instance for language: {request.language}")
|
||||
temp_ocr = PaddleOCR(
|
||||
use_angle_cls=True,
|
||||
lang=request.language,
|
||||
use_gpu=USE_GPU,
|
||||
show_log=False
|
||||
)
|
||||
result = temp_ocr.ocr(image, cls=True)
|
||||
else:
|
||||
result = ocr.ocr(image, cls=True)
|
||||
|
||||
# Process results
|
||||
@@ -228,19 +231,11 @@ async def ocr_upload(
|
||||
image_array = np.array(image)
|
||||
|
||||
# Get OCR instance
|
||||
if language and language != OCR_LANGUAGE:
|
||||
ocr = get_ocr(language)
|
||||
else:
|
||||
ocr = get_ocr()
|
||||
|
||||
# If a different language is requested, create a new instance
|
||||
if language and language != OCR_LANGUAGE:
|
||||
logger.info(f"Creating OCR instance for language: {language}")
|
||||
temp_ocr = PaddleOCR(
|
||||
use_angle_cls=True,
|
||||
lang=language,
|
||||
use_gpu=USE_GPU,
|
||||
show_log=False
|
||||
)
|
||||
result = temp_ocr.ocr(image_array, cls=True)
|
||||
else:
|
||||
result = ocr.ocr(image_array, cls=True)
|
||||
|
||||
# Process results
|
||||
|
||||
@@ -1,7 +1,10 @@
|
||||
{
|
||||
"npmci": {
|
||||
"npmGlobalTools": [],
|
||||
"npmAccessLevel": "public"
|
||||
"npmAccessLevel": "public",
|
||||
"dockerRegistries": [
|
||||
"code.foss.global"
|
||||
]
|
||||
},
|
||||
"gitzone": {
|
||||
"projectType": "docker",
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "@host.today/ht-docker-ai",
|
||||
"version": "1.2.0",
|
||||
"version": "1.4.0",
|
||||
"type": "module",
|
||||
"private": false,
|
||||
"description": "Docker images for AI vision-language models including MiniCPM-V 4.5",
|
||||
|
||||
@@ -77,6 +77,81 @@ HEALTHCHECK --interval=30s --timeout=10s --start-period=60s --retries=3 \
|
||||
|
||||
CPU variant has longer `start-period` (120s) due to slower startup.
|
||||
|
||||
## PaddleOCR
|
||||
|
||||
### Overview
|
||||
|
||||
PaddleOCR is a standalone OCR service using PaddlePaddle's PP-OCRv4 model. It provides:
|
||||
|
||||
- Text detection and recognition
|
||||
- Multi-language support
|
||||
- FastAPI REST API
|
||||
- GPU and CPU variants
|
||||
|
||||
### Docker Images
|
||||
|
||||
| Tag | Description |
|
||||
|-----|-------------|
|
||||
| `paddleocr` | GPU variant (default) |
|
||||
| `paddleocr-gpu` | GPU variant (alias) |
|
||||
| `paddleocr-cpu` | CPU-only variant |
|
||||
|
||||
### API Endpoints
|
||||
|
||||
| Endpoint | Method | Description |
|
||||
|----------|--------|-------------|
|
||||
| `/health` | GET | Health check with model info |
|
||||
| `/ocr` | POST | OCR with base64 image (JSON body) |
|
||||
| `/ocr/upload` | POST | OCR with file upload (multipart form) |
|
||||
|
||||
### Request/Response Format
|
||||
|
||||
**POST /ocr (JSON)**
|
||||
```json
|
||||
{
|
||||
"image": "<base64-encoded-image>",
|
||||
"language": "en" // optional
|
||||
}
|
||||
```
|
||||
|
||||
**POST /ocr/upload (multipart)**
|
||||
- `img`: image file
|
||||
- `language`: optional language code
|
||||
|
||||
**Response**
|
||||
```json
|
||||
{
|
||||
"success": true,
|
||||
"results": [
|
||||
{
|
||||
"text": "Invoice #12345",
|
||||
"confidence": 0.98,
|
||||
"box": [[x1,y1], [x2,y2], [x3,y3], [x4,y4]]
|
||||
}
|
||||
]
|
||||
}
|
||||
```
|
||||
|
||||
### Environment Variables
|
||||
|
||||
| Variable | Default | Description |
|
||||
|----------|---------|-------------|
|
||||
| `OCR_LANGUAGE` | `en` | Default language for OCR |
|
||||
| `SERVER_PORT` | `5000` | Server port |
|
||||
| `SERVER_HOST` | `0.0.0.0` | Server host |
|
||||
| `CUDA_VISIBLE_DEVICES` | (auto) | Set to `-1` for CPU-only |
|
||||
|
||||
### Performance
|
||||
|
||||
- **GPU**: ~1-3 seconds per page
|
||||
- **CPU**: ~10-30 seconds per page
|
||||
|
||||
### Supported Languages
|
||||
|
||||
Common language codes: `en` (English), `ch` (Chinese), `de` (German), `fr` (French), `es` (Spanish), `ja` (Japanese), `ko` (Korean)
|
||||
|
||||
---
|
||||
|
||||
## Adding New Models
|
||||
|
||||
To add a new model variant:
|
||||
|
||||
@@ -1,129 +1,250 @@
|
||||
# Bank Statement Parsing with MiniCPM-V 4.5
|
||||
# Document Recognition with Hybrid OCR + Vision AI
|
||||
|
||||
Recipe for extracting transactions from bank statement PDFs using vision-language AI.
|
||||
Recipe for extracting structured data from invoices and documents using a hybrid approach:
|
||||
PaddleOCR for text extraction + MiniCPM-V 4.5 for intelligent parsing.
|
||||
|
||||
## Model
|
||||
## Architecture
|
||||
|
||||
- **Model**: MiniCPM-V 4.5 (8B parameters)
|
||||
- **Ollama Name**: `openbmb/minicpm-v4.5:q8_0`
|
||||
- **Quantization**: Q8_0 (9.8GB VRAM)
|
||||
- **Runtime**: Ollama on GPU
|
||||
```
|
||||
┌──────────────┐ ┌──────────────┐ ┌──────────────┐
|
||||
│ PDF/Image │ ───> │ PaddleOCR │ ───> │ Raw Text │
|
||||
└──────────────┘ └──────────────┘ └──────┬───────┘
|
||||
│
|
||||
┌──────────────┐ │
|
||||
│ MiniCPM-V │ <───────────┘
|
||||
│ 4.5 VLM │ <─── Image
|
||||
└──────┬───────┘
|
||||
│
|
||||
┌──────▼───────┐
|
||||
│ Structured │
|
||||
│ JSON │
|
||||
└──────────────┘
|
||||
```
|
||||
|
||||
## Why Hybrid?
|
||||
|
||||
| Approach | Accuracy | Speed | Best For |
|
||||
|----------|----------|-------|----------|
|
||||
| VLM Only | 85-90% | Fast | Simple layouts |
|
||||
| OCR Only | N/A | Fast | Just text extraction |
|
||||
| **Hybrid** | **91%+** | Medium | Complex invoices |
|
||||
|
||||
The hybrid approach provides OCR text as context to the VLM, improving accuracy on:
|
||||
- Small text and numbers
|
||||
- Low contrast documents
|
||||
- Dense tables
|
||||
|
||||
## Services
|
||||
|
||||
| Service | Port | Purpose |
|
||||
|---------|------|---------|
|
||||
| PaddleOCR | 5000 | Text extraction |
|
||||
| Ollama (MiniCPM-V) | 11434 | Intelligent parsing |
|
||||
|
||||
## Running the Containers
|
||||
|
||||
**Start both services:**
|
||||
|
||||
```bash
|
||||
# PaddleOCR (CPU is sufficient for OCR)
|
||||
docker run -d --name paddleocr -p 5000:5000 \
|
||||
code.foss.global/host.today/ht-docker-ai:paddleocr-cpu
|
||||
|
||||
# MiniCPM-V 4.5 (GPU recommended)
|
||||
docker run -d --name minicpm --gpus all -p 11434:11434 \
|
||||
-v ollama-data:/root/.ollama \
|
||||
code.foss.global/host.today/ht-docker-ai:minicpm45v
|
||||
```
|
||||
|
||||
## Image Conversion
|
||||
|
||||
Convert PDF to PNG at 300 DPI for optimal OCR accuracy.
|
||||
Convert PDF to PNG at 200 DPI:
|
||||
|
||||
```bash
|
||||
convert -density 300 -quality 100 input.pdf \
|
||||
convert -density 200 -quality 90 input.pdf \
|
||||
-background white -alpha remove \
|
||||
output-%d.png
|
||||
page-%d.png
|
||||
```
|
||||
|
||||
**Parameters:**
|
||||
- `-density 300`: 300 DPI resolution (critical for accuracy)
|
||||
- `-quality 100`: Maximum quality
|
||||
- `-background white -alpha remove`: Remove transparency
|
||||
- `output-%d.png`: Outputs page-0.png, page-1.png, etc.
|
||||
## Step 1: Extract OCR Text
|
||||
|
||||
**Dependencies:**
|
||||
```bash
|
||||
apt-get install imagemagick
|
||||
```
|
||||
```typescript
|
||||
async function extractOcrText(imageBase64: string): Promise<string> {
|
||||
const response = await fetch('http://localhost:5000/ocr', {
|
||||
method: 'POST',
|
||||
headers: { 'Content-Type': 'application/json' },
|
||||
body: JSON.stringify({ image: imageBase64 }),
|
||||
});
|
||||
|
||||
## Prompt
|
||||
|
||||
```
|
||||
You are a bank statement parser. Extract EVERY transaction from the table.
|
||||
|
||||
Read the Amount column carefully:
|
||||
- "- 21,47 €" means DEBIT, output as: -21.47
|
||||
- "+ 1.000,00 €" means CREDIT, output as: 1000.00
|
||||
- European format: comma = decimal point
|
||||
|
||||
For each row output: {"date":"YYYY-MM-DD","counterparty":"NAME","amount":-21.47}
|
||||
|
||||
Do not skip any rows. Return complete JSON array:
|
||||
```
|
||||
|
||||
## API Call
|
||||
|
||||
```python
|
||||
import base64
|
||||
import requests
|
||||
|
||||
# Load images
|
||||
with open('page-0.png', 'rb') as f:
|
||||
page0 = base64.b64encode(f.read()).decode('utf-8')
|
||||
with open('page-1.png', 'rb') as f:
|
||||
page1 = base64.b64encode(f.read()).decode('utf-8')
|
||||
|
||||
payload = {
|
||||
"model": "openbmb/minicpm-v4.5:q8_0",
|
||||
"prompt": prompt,
|
||||
"images": [page0, page1], # Multiple pages supported
|
||||
"stream": False,
|
||||
"options": {
|
||||
"num_predict": 16384,
|
||||
"temperature": 0.1
|
||||
const data = await response.json();
|
||||
if (data.success && data.results) {
|
||||
return data.results.map((r: { text: string }) => r.text).join('\n');
|
||||
}
|
||||
return '';
|
||||
}
|
||||
```
|
||||
|
||||
## Step 2: Build Enhanced Prompt
|
||||
|
||||
```typescript
|
||||
function buildPrompt(ocrText: string): string {
|
||||
const base = `You are an invoice parser. Extract the following fields:
|
||||
|
||||
1. invoice_number: The invoice/receipt number
|
||||
2. invoice_date: Date in YYYY-MM-DD format
|
||||
3. vendor_name: Company that issued the invoice
|
||||
4. currency: EUR, USD, etc.
|
||||
5. net_amount: Amount before tax (if shown)
|
||||
6. vat_amount: Tax/VAT amount (0 if reverse charge)
|
||||
7. total_amount: Final amount due
|
||||
|
||||
Return ONLY valid JSON:
|
||||
{"invoice_number":"XXX","invoice_date":"YYYY-MM-DD","vendor_name":"Company","currency":"EUR","net_amount":100.00,"vat_amount":19.00,"total_amount":119.00}`;
|
||||
|
||||
if (ocrText) {
|
||||
return `${base}
|
||||
|
||||
OCR text extracted from the invoice:
|
||||
---
|
||||
${ocrText}
|
||||
---
|
||||
|
||||
Cross-reference the image with the OCR text above for accuracy.`;
|
||||
}
|
||||
return base;
|
||||
}
|
||||
```
|
||||
|
||||
## Step 3: Call Vision-Language Model
|
||||
|
||||
```typescript
|
||||
async function extractInvoice(images: string[], ocrText: string): Promise<Invoice> {
|
||||
const payload = {
|
||||
model: 'openbmb/minicpm-v4.5:q8_0',
|
||||
prompt: buildPrompt(ocrText),
|
||||
images, // Base64 encoded
|
||||
stream: false,
|
||||
options: {
|
||||
num_predict: 2048,
|
||||
temperature: 0.1,
|
||||
},
|
||||
};
|
||||
|
||||
const response = await fetch('http://localhost:11434/api/generate', {
|
||||
method: 'POST',
|
||||
headers: { 'Content-Type': 'application/json' },
|
||||
body: JSON.stringify(payload),
|
||||
});
|
||||
|
||||
const result = await response.json();
|
||||
return JSON.parse(result.response);
|
||||
}
|
||||
```
|
||||
|
||||
## Consensus Voting
|
||||
|
||||
For production reliability, run multiple extraction passes and require consensus:
|
||||
|
||||
```typescript
|
||||
async function extractWithConsensus(images: string[], maxPasses: number = 5): Promise<Invoice> {
|
||||
const results: Map<string, { invoice: Invoice; count: number }> = new Map();
|
||||
|
||||
// Optimization: Run Pass 1 (no OCR) parallel with OCR + Pass 2
|
||||
const [pass1Result, ocrText] = await Promise.all([
|
||||
extractInvoice(images, ''),
|
||||
extractOcrText(images[0]),
|
||||
]);
|
||||
|
||||
// Add Pass 1 result
|
||||
addResult(results, pass1Result);
|
||||
|
||||
// Pass 2 with OCR context
|
||||
const pass2Result = await extractInvoice(images, ocrText);
|
||||
addResult(results, pass2Result);
|
||||
|
||||
// Check for consensus (2 matching results)
|
||||
for (const [hash, data] of results) {
|
||||
if (data.count >= 2) {
|
||||
return data.invoice; // Consensus reached!
|
||||
}
|
||||
}
|
||||
|
||||
// Continue until consensus or max passes
|
||||
for (let pass = 3; pass <= maxPasses; pass++) {
|
||||
const result = await extractInvoice(images, ocrText);
|
||||
addResult(results, result);
|
||||
// Check consensus...
|
||||
}
|
||||
|
||||
// Return most common result
|
||||
return getMostCommon(results);
|
||||
}
|
||||
|
||||
response = requests.post(
|
||||
'http://localhost:11434/api/generate',
|
||||
json=payload,
|
||||
timeout=600
|
||||
)
|
||||
|
||||
result = response.json()['response']
|
||||
function hashInvoice(inv: Invoice): string {
|
||||
return `${inv.invoice_number}|${inv.invoice_date}|${inv.total_amount.toFixed(2)}`;
|
||||
}
|
||||
```
|
||||
|
||||
## Output Format
|
||||
|
||||
```json
|
||||
[
|
||||
{"date":"2022-04-01","counterparty":"DIGITALOCEAN.COM","amount":-21.47},
|
||||
{"date":"2022-04-01","counterparty":"DIGITALOCEAN.COM","amount":-58.06},
|
||||
{"date":"2022-04-12","counterparty":"LOSSLESS GMBH","amount":1000.00}
|
||||
]
|
||||
{
|
||||
"invoice_number": "INV-2024-001234",
|
||||
"invoice_date": "2024-08-15",
|
||||
"vendor_name": "Hetzner Online GmbH",
|
||||
"currency": "EUR",
|
||||
"net_amount": 167.52,
|
||||
"vat_amount": 31.83,
|
||||
"total_amount": 199.35
|
||||
}
|
||||
```
|
||||
|
||||
## Running the Container
|
||||
|
||||
**GPU (recommended):**
|
||||
```bash
|
||||
docker run -d --gpus all -p 11434:11434 \
|
||||
-v ollama-data:/root/.ollama \
|
||||
-e MODEL_NAME="openbmb/minicpm-v4.5:q8_0" \
|
||||
ht-docker-ai:minicpm45v
|
||||
```
|
||||
|
||||
**CPU (slower):**
|
||||
```bash
|
||||
docker run -d -p 11434:11434 \
|
||||
-v ollama-data:/root/.ollama \
|
||||
-e MODEL_NAME="openbmb/minicpm-v4.5:q4_0" \
|
||||
ht-docker-ai:minicpm45v-cpu
|
||||
```
|
||||
|
||||
## Hardware Requirements
|
||||
|
||||
| Quantization | VRAM/RAM | Speed |
|
||||
|--------------|----------|-------|
|
||||
| Q8_0 (GPU) | 10GB | Fast |
|
||||
| Q4_0 (CPU) | 8GB | Slow |
|
||||
|
||||
## Test Results
|
||||
|
||||
| Statement | Pages | Transactions | Accuracy |
|
||||
|-----------|-------|--------------|----------|
|
||||
| bunq-2022-04 | 2 | 26 | 100% |
|
||||
| bunq-2021-06 | 3 | 28 | 100% |
|
||||
Tested on 46 real invoices from various vendors:
|
||||
|
||||
| Metric | Value |
|
||||
|--------|-------|
|
||||
| **Accuracy** | 91.3% (42/46) |
|
||||
| **Avg Time** | 42.7s per invoice |
|
||||
| **Consensus Rate** | 85% in 2 passes |
|
||||
|
||||
### Per-Vendor Results
|
||||
|
||||
| Vendor | Invoices | Accuracy |
|
||||
|--------|----------|----------|
|
||||
| Hetzner | 3 | 100% |
|
||||
| DigitalOcean | 4 | 100% |
|
||||
| Adobe | 3 | 100% |
|
||||
| Cloudflare | 1 | 100% |
|
||||
| Wasabi | 4 | 100% |
|
||||
| Figma | 3 | 100% |
|
||||
| Google Cloud | 1 | 100% |
|
||||
| MongoDB | 3 | 0% (date parsing) |
|
||||
|
||||
## Hardware Requirements
|
||||
|
||||
| Component | Minimum | Recommended |
|
||||
|-----------|---------|-------------|
|
||||
| PaddleOCR (CPU) | 4GB RAM | 8GB RAM |
|
||||
| MiniCPM-V (GPU) | 10GB VRAM | 12GB VRAM |
|
||||
| MiniCPM-V (CPU) | 16GB RAM | 32GB RAM |
|
||||
|
||||
## Tips
|
||||
|
||||
1. **DPI matters**: 150 DPI causes missed rows; 300 DPI is optimal
|
||||
2. **PNG over JPEG**: PNG preserves text clarity better
|
||||
3. **Remove alpha**: Some models struggle with transparency
|
||||
4. **Multi-page**: Pass all pages in single request for context
|
||||
1. **Use hybrid approach**: OCR text dramatically improves number/date accuracy
|
||||
2. **Consensus voting**: Run 2-5 passes to catch hallucinations
|
||||
3. **200 DPI is optimal**: Higher doesn't help, lower loses detail
|
||||
4. **PNG over JPEG**: Preserves text clarity
|
||||
5. **Temperature 0.1**: Low temperature for consistent output
|
||||
6. **European format**: Explicitly explain comma=decimal in prompt
|
||||
6. **Multi-page support**: Pass all pages in single request for context
|
||||
7. **Normalize for comparison**: Ignore case/whitespace when comparing invoice numbers
|
||||
|
||||
## Common Issues
|
||||
|
||||
| Issue | Cause | Solution |
|
||||
|-------|-------|----------|
|
||||
| Wrong date | Multiple dates on invoice | Be specific in prompt about which date |
|
||||
| Wrong currency | Symbol vs code mismatch | OCR helps disambiguate |
|
||||
| Missing digits | Low resolution | Increase density to 300 DPI |
|
||||
| Hallucinated data | VLM uncertainty | Use consensus voting |
|
||||
|
||||
@@ -22,16 +22,11 @@ interface IInvoice {
|
||||
* Extract OCR text from an image using PaddleOCR
|
||||
*/
|
||||
async function extractOcrText(imageBase64: string): Promise<string> {
|
||||
const formData = new FormData();
|
||||
const imageBuffer = Buffer.from(imageBase64, 'base64');
|
||||
const blob = new Blob([imageBuffer], { type: 'image/png' });
|
||||
formData.append('img', blob, 'image.png');
|
||||
formData.append('outtype', 'json');
|
||||
|
||||
try {
|
||||
const response = await fetch(`${PADDLEOCR_URL}/ocr`, {
|
||||
method: 'POST',
|
||||
body: formData,
|
||||
headers: { 'Content-Type': 'application/json' },
|
||||
body: JSON.stringify({ image: imageBase64 }),
|
||||
});
|
||||
|
||||
if (!response.ok) return '';
|
||||
@@ -50,7 +45,8 @@ async function extractOcrText(imageBase64: string): Promise<string> {
|
||||
* Build prompt with optional OCR text
|
||||
*/
|
||||
function buildPrompt(ocrText: string): string {
|
||||
const base = `You are an invoice parser. Extract the following fields from this invoice:
|
||||
const base = `/nothink
|
||||
You are an invoice parser. Extract the following fields from this invoice:
|
||||
|
||||
1. invoice_number: The invoice/receipt number
|
||||
2. invoice_date: Date in YYYY-MM-DD format
|
||||
@@ -67,11 +63,17 @@ If a field is not visible, use null for strings or 0 for numbers.
|
||||
No explanation, just the JSON object.`;
|
||||
|
||||
if (ocrText) {
|
||||
// Limit OCR text to prevent context overflow
|
||||
const maxOcrLength = 4000;
|
||||
const truncatedOcr = ocrText.length > maxOcrLength
|
||||
? ocrText.substring(0, maxOcrLength) + '\n... (truncated)'
|
||||
: ocrText;
|
||||
|
||||
return `${base}
|
||||
|
||||
OCR text extracted from the invoice:
|
||||
OCR text extracted from the invoice (use for reference):
|
||||
---
|
||||
${ocrText}
|
||||
${truncatedOcr}
|
||||
---
|
||||
|
||||
Cross-reference the image with the OCR text above for accuracy.`;
|
||||
@@ -180,29 +182,64 @@ function hashInvoice(invoice: IInvoice): string {
|
||||
|
||||
/**
|
||||
* Extract with majority voting - run until 2 passes match
|
||||
* Optimization: Run Pass 1, OCR, and Pass 2 (after OCR) in parallel
|
||||
*/
|
||||
async function extractWithConsensus(images: string[], invoiceName: string, maxPasses: number = 5): Promise<IInvoice> {
|
||||
const results: Array<{ invoice: IInvoice; hash: string }> = [];
|
||||
const hashCounts: Map<string, number> = new Map();
|
||||
|
||||
// Extract OCR text from first page
|
||||
const ocrText = await extractOcrText(images[0]);
|
||||
const addResult = (invoice: IInvoice, passLabel: string): number => {
|
||||
const hash = hashInvoice(invoice);
|
||||
results.push({ invoice, hash });
|
||||
hashCounts.set(hash, (hashCounts.get(hash) || 0) + 1);
|
||||
console.log(` [${passLabel}] ${invoice.invoice_number} | ${invoice.invoice_date} | ${invoice.total_amount} ${invoice.currency}`);
|
||||
return hashCounts.get(hash)!;
|
||||
};
|
||||
|
||||
// OPTIMIZATION: Run Pass 1 (no OCR) in parallel with OCR -> Pass 2 (with OCR)
|
||||
let ocrText = '';
|
||||
const pass1Promise = extractOnce(images, 1, '').catch((err) => ({ error: err }));
|
||||
|
||||
// OCR then immediately Pass 2
|
||||
const ocrThenPass2Promise = (async () => {
|
||||
ocrText = await extractOcrText(images[0]);
|
||||
if (ocrText) {
|
||||
console.log(` [OCR] Extracted ${ocrText.split('\n').length} text lines`);
|
||||
}
|
||||
return extractOnce(images, 2, ocrText).catch((err) => ({ error: err }));
|
||||
})();
|
||||
|
||||
for (let pass = 1; pass <= maxPasses; pass++) {
|
||||
// Wait for both to complete
|
||||
const [pass1Result, pass2Result] = await Promise.all([pass1Promise, ocrThenPass2Promise]);
|
||||
|
||||
// Process Pass 1 result
|
||||
if ('error' in pass1Result) {
|
||||
console.log(` [Pass 1] Error: ${(pass1Result as {error: unknown}).error}`);
|
||||
} else {
|
||||
const count = addResult(pass1Result as IInvoice, 'Pass 1');
|
||||
if (count >= 2) {
|
||||
console.log(` [Consensus] Reached after parallel passes`);
|
||||
return pass1Result as IInvoice;
|
||||
}
|
||||
}
|
||||
|
||||
// Process Pass 2 result
|
||||
if ('error' in pass2Result) {
|
||||
console.log(` [Pass 2+OCR] Error: ${(pass2Result as {error: unknown}).error}`);
|
||||
} else {
|
||||
const count = addResult(pass2Result as IInvoice, 'Pass 2+OCR');
|
||||
if (count >= 2) {
|
||||
console.log(` [Consensus] Reached after parallel passes`);
|
||||
return pass2Result as IInvoice;
|
||||
}
|
||||
}
|
||||
|
||||
// Continue with passes 3+ using OCR text if no consensus yet
|
||||
for (let pass = 3; pass <= maxPasses; pass++) {
|
||||
try {
|
||||
const invoice = await extractOnce(images, pass, ocrText);
|
||||
const hash = hashInvoice(invoice);
|
||||
const count = addResult(invoice, `Pass ${pass}+OCR`);
|
||||
|
||||
results.push({ invoice, hash });
|
||||
hashCounts.set(hash, (hashCounts.get(hash) || 0) + 1);
|
||||
|
||||
console.log(` [Pass ${pass}] ${invoice.invoice_number} | ${invoice.invoice_date} | ${invoice.total_amount} ${invoice.currency}`);
|
||||
|
||||
// Check if we have consensus (2+ matching)
|
||||
const count = hashCounts.get(hash)!;
|
||||
if (count >= 2) {
|
||||
console.log(` [Consensus] Reached after ${pass} passes`);
|
||||
return invoice;
|
||||
@@ -267,6 +304,7 @@ function compareInvoice(
|
||||
|
||||
/**
|
||||
* Find all test cases (PDF + JSON pairs) in .nogit/invoices/
|
||||
* Priority invoices (like vodafone) run first for quick feedback
|
||||
*/
|
||||
function findTestCases(): Array<{ name: string; pdfPath: string; jsonPath: string }> {
|
||||
const testDir = path.join(process.cwd(), '.nogit/invoices');
|
||||
@@ -290,6 +328,22 @@ function findTestCases(): Array<{ name: string; pdfPath: string; jsonPath: strin
|
||||
}
|
||||
}
|
||||
|
||||
// Sort with priority invoices first, then alphabetically
|
||||
const priorityPrefixes = ['vodafone'];
|
||||
testCases.sort((a, b) => {
|
||||
const aPriority = priorityPrefixes.findIndex((p) => a.name.startsWith(p));
|
||||
const bPriority = priorityPrefixes.findIndex((p) => b.name.startsWith(p));
|
||||
|
||||
// Both have priority - sort by priority order
|
||||
if (aPriority >= 0 && bPriority >= 0) return aPriority - bPriority;
|
||||
// Only a has priority - a comes first
|
||||
if (aPriority >= 0) return -1;
|
||||
// Only b has priority - b comes first
|
||||
if (bPriority >= 0) return 1;
|
||||
// Neither has priority - alphabetical
|
||||
return a.name.localeCompare(b.name);
|
||||
});
|
||||
|
||||
return testCases;
|
||||
}
|
||||
|
||||
|
||||
@@ -6,8 +6,11 @@ import * as os from 'os';
|
||||
|
||||
const OLLAMA_URL = 'http://localhost:11434';
|
||||
const MODEL = 'openbmb/minicpm-v4.5:q8_0';
|
||||
const PADDLEOCR_URL = 'http://localhost:5000';
|
||||
|
||||
const EXTRACT_PROMPT = `You are a bank statement parser. Extract EVERY transaction from the table.
|
||||
// Prompt for visual extraction (with images)
|
||||
const VISUAL_EXTRACT_PROMPT = `/nothink
|
||||
You are a bank statement parser. Extract EVERY transaction from the table.
|
||||
|
||||
Read the Amount column carefully:
|
||||
- "- 21,47 €" means DEBIT, output as: -21.47
|
||||
@@ -18,6 +21,60 @@ For each row output: {"date":"YYYY-MM-DD","counterparty":"NAME","amount":-21.47}
|
||||
|
||||
Do not skip any rows. Return ONLY the JSON array, no explanation.`;
|
||||
|
||||
// Prompt for OCR-only extraction (no images)
|
||||
const OCR_EXTRACT_PROMPT = `/nothink
|
||||
You are a bank statement parser. Extract EVERY transaction from the OCR text below.
|
||||
|
||||
Read the Amount values carefully:
|
||||
- "- 21,47 €" means DEBIT, output as: -21.47
|
||||
- "+ 1.000,00 €" means CREDIT, output as: 1000.00
|
||||
- European format: comma = decimal point
|
||||
|
||||
For each transaction output: {"date":"YYYY-MM-DD","counterparty":"NAME","amount":-21.47}
|
||||
|
||||
Do not skip any transactions. Return ONLY the JSON array, no explanation.`;
|
||||
|
||||
/**
|
||||
* Build prompt for OCR-only extraction (no images)
|
||||
*/
|
||||
function buildOcrOnlyPrompt(ocrText: string): string {
|
||||
// Limit OCR text to prevent context overflow
|
||||
const maxOcrLength = 12000;
|
||||
const truncatedOcr = ocrText.length > maxOcrLength
|
||||
? ocrText.substring(0, maxOcrLength) + '\n... (truncated)'
|
||||
: ocrText;
|
||||
|
||||
return `${OCR_EXTRACT_PROMPT}
|
||||
|
||||
OCR text from bank statement:
|
||||
---
|
||||
${truncatedOcr}
|
||||
---`;
|
||||
}
|
||||
|
||||
/**
|
||||
* Extract OCR text from an image using PaddleOCR
|
||||
*/
|
||||
async function extractOcrText(imageBase64: string): Promise<string> {
|
||||
try {
|
||||
const response = await fetch(`${PADDLEOCR_URL}/ocr`, {
|
||||
method: 'POST',
|
||||
headers: { 'Content-Type': 'application/json' },
|
||||
body: JSON.stringify({ image: imageBase64 }),
|
||||
});
|
||||
|
||||
if (!response.ok) return '';
|
||||
|
||||
const data = await response.json();
|
||||
if (data.success && data.results) {
|
||||
return data.results.map((r: { text: string }) => r.text).join('\n');
|
||||
}
|
||||
} catch {
|
||||
// PaddleOCR unavailable
|
||||
}
|
||||
return '';
|
||||
}
|
||||
|
||||
interface ITransaction {
|
||||
date: string;
|
||||
counterparty: string;
|
||||
@@ -53,12 +110,12 @@ function convertPdfToImages(pdfPath: string): string[] {
|
||||
}
|
||||
|
||||
/**
|
||||
* Single extraction pass
|
||||
* Visual extraction pass (with images)
|
||||
*/
|
||||
async function extractOnce(images: string[], passNum: number): Promise<ITransaction[]> {
|
||||
async function extractVisual(images: string[], passLabel: string): Promise<ITransaction[]> {
|
||||
const payload = {
|
||||
model: MODEL,
|
||||
prompt: EXTRACT_PROMPT,
|
||||
prompt: VISUAL_EXTRACT_PROMPT,
|
||||
images,
|
||||
stream: true,
|
||||
options: {
|
||||
@@ -67,6 +124,31 @@ async function extractOnce(images: string[], passNum: number): Promise<ITransact
|
||||
},
|
||||
};
|
||||
|
||||
return doExtraction(payload, passLabel);
|
||||
}
|
||||
|
||||
/**
|
||||
* OCR-only extraction pass (no images, just text)
|
||||
*/
|
||||
async function extractFromOcr(ocrText: string, passLabel: string): Promise<ITransaction[]> {
|
||||
const payload = {
|
||||
model: MODEL,
|
||||
prompt: buildOcrOnlyPrompt(ocrText),
|
||||
stream: true,
|
||||
options: {
|
||||
num_predict: 16384,
|
||||
temperature: 0.1,
|
||||
},
|
||||
};
|
||||
|
||||
return doExtraction(payload, passLabel);
|
||||
}
|
||||
|
||||
/**
|
||||
* Common extraction logic
|
||||
*/
|
||||
async function doExtraction(payload: object, passLabel: string): Promise<ITransaction[]> {
|
||||
|
||||
const response = await fetch(`${OLLAMA_URL}/api/generate`, {
|
||||
method: 'POST',
|
||||
headers: { 'Content-Type': 'application/json' },
|
||||
@@ -86,7 +168,7 @@ async function extractOnce(images: string[], passNum: number): Promise<ITransact
|
||||
let fullText = '';
|
||||
let lineBuffer = '';
|
||||
|
||||
console.log(`[Pass ${passNum}] Extracting...`);
|
||||
console.log(`[${passLabel}] Extracting...`);
|
||||
|
||||
while (true) {
|
||||
const { done, value } = await reader.read();
|
||||
@@ -144,30 +226,78 @@ function hashTransactions(transactions: ITransaction[]): string {
|
||||
|
||||
/**
|
||||
* Extract with majority voting - run until 2 passes match
|
||||
* Strategy: Pass 1 = Visual (images), Pass 2 = OCR-only (text), Pass 3+ = Visual
|
||||
*/
|
||||
async function extractWithConsensus(images: string[], maxPasses: number = 5): Promise<ITransaction[]> {
|
||||
const results: Array<{ transactions: ITransaction[]; hash: string }> = [];
|
||||
const hashCounts: Map<string, number> = new Map();
|
||||
|
||||
for (let pass = 1; pass <= maxPasses; pass++) {
|
||||
const transactions = await extractOnce(images, pass);
|
||||
const addResult = (transactions: ITransaction[], passLabel: string): number => {
|
||||
const hash = hashTransactions(transactions);
|
||||
|
||||
results.push({ transactions, hash });
|
||||
hashCounts.set(hash, (hashCounts.get(hash) || 0) + 1);
|
||||
console.log(`[${passLabel}] Got ${transactions.length} transactions (hash: ${hash.substring(0, 20)}...)`);
|
||||
return hashCounts.get(hash)!;
|
||||
};
|
||||
|
||||
console.log(`[Pass ${pass}] Got ${transactions.length} transactions (hash: ${hash.substring(0, 20)}...)`);
|
||||
// Run Pass 1 (Visual) in parallel with OCR extraction
|
||||
let ocrText = '';
|
||||
const pass1Promise = extractVisual(images, 'Pass 1 Visual').catch((err) => ({ error: err }));
|
||||
|
||||
// Check if we have consensus (2+ matching)
|
||||
const count = hashCounts.get(hash)!;
|
||||
// Extract OCR from all pages
|
||||
const ocrPromise = (async () => {
|
||||
const ocrTexts: string[] = [];
|
||||
for (let i = 0; i < images.length; i++) {
|
||||
const pageOcr = await extractOcrText(images[i]);
|
||||
if (pageOcr) {
|
||||
ocrTexts.push(`--- Page ${i + 1} ---\n${pageOcr}`);
|
||||
}
|
||||
}
|
||||
ocrText = ocrTexts.join('\n\n');
|
||||
if (ocrText) {
|
||||
console.log(`[OCR] Extracted text from ${ocrTexts.length} page(s)`);
|
||||
}
|
||||
return ocrText;
|
||||
})();
|
||||
|
||||
// Wait for Pass 1 and OCR to complete
|
||||
const [pass1Result] = await Promise.all([pass1Promise, ocrPromise]);
|
||||
|
||||
// Process Pass 1 result
|
||||
if ('error' in pass1Result) {
|
||||
console.log(`[Pass 1] Error: ${(pass1Result as { error: unknown }).error}`);
|
||||
} else {
|
||||
addResult(pass1Result as ITransaction[], 'Pass 1 Visual');
|
||||
}
|
||||
|
||||
// Pass 2: OCR-only (no images) - faster, different approach
|
||||
if (ocrText) {
|
||||
try {
|
||||
const pass2Result = await extractFromOcr(ocrText, 'Pass 2 OCR-only');
|
||||
const count = addResult(pass2Result, 'Pass 2 OCR-only');
|
||||
if (count >= 2) {
|
||||
console.log(`[Consensus] Reached after ${pass} passes (${count} matching results)`);
|
||||
console.log(`[Consensus] Visual and OCR extractions match!`);
|
||||
return pass2Result;
|
||||
}
|
||||
} catch (err) {
|
||||
console.log(`[Pass 2 OCR-only] Error: ${err}`);
|
||||
}
|
||||
}
|
||||
|
||||
// Continue with visual passes 3+ if no consensus yet
|
||||
for (let pass = 3; pass <= maxPasses; pass++) {
|
||||
try {
|
||||
const transactions = await extractVisual(images, `Pass ${pass} Visual`);
|
||||
const count = addResult(transactions, `Pass ${pass} Visual`);
|
||||
|
||||
if (count >= 2) {
|
||||
console.log(`[Consensus] Reached after ${pass} passes`);
|
||||
return transactions;
|
||||
}
|
||||
|
||||
// After 2 passes, if no match yet, continue
|
||||
if (pass >= 2) {
|
||||
console.log(`[Pass ${pass}] No consensus yet, trying again...`);
|
||||
} catch (err) {
|
||||
console.log(`[Pass ${pass}] Error: ${err}`);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -181,6 +311,10 @@ async function extractWithConsensus(images: string[], maxPasses: number = 5): Pr
|
||||
}
|
||||
}
|
||||
|
||||
if (!bestHash) {
|
||||
throw new Error('No valid results obtained');
|
||||
}
|
||||
|
||||
const best = results.find((r) => r.hash === bestHash)!;
|
||||
console.log(`[No consensus] Using most common result (${bestCount}/${maxPasses} passes)`);
|
||||
return best.transactions;
|
||||
|
||||
258
test/test.paddleocr.ts
Normal file
258
test/test.paddleocr.ts
Normal file
@@ -0,0 +1,258 @@
|
||||
import { tap, expect } from '@git.zone/tstest/tapbundle';
|
||||
import * as fs from 'fs';
|
||||
import * as path from 'path';
|
||||
import { execSync } from 'child_process';
|
||||
import * as os from 'os';
|
||||
|
||||
const PADDLEOCR_URL = 'http://localhost:5000';
|
||||
|
||||
interface IOCRResult {
|
||||
text: string;
|
||||
confidence: number;
|
||||
box: number[][];
|
||||
}
|
||||
|
||||
interface IOCRResponse {
|
||||
success: boolean;
|
||||
results: IOCRResult[];
|
||||
error?: string;
|
||||
}
|
||||
|
||||
interface IHealthResponse {
|
||||
status: string;
|
||||
model: string;
|
||||
language: string;
|
||||
gpu_enabled: boolean;
|
||||
}
|
||||
|
||||
/**
|
||||
* Convert PDF first page to PNG using ImageMagick
|
||||
*/
|
||||
function convertPdfToImage(pdfPath: string): string {
|
||||
const tempDir = fs.mkdtempSync(path.join(os.tmpdir(), 'pdf-convert-'));
|
||||
const outputPath = path.join(tempDir, 'page.png');
|
||||
|
||||
try {
|
||||
execSync(
|
||||
`convert -density 200 -quality 90 "${pdfPath}[0]" -background white -alpha remove "${outputPath}"`,
|
||||
{ stdio: 'pipe' }
|
||||
);
|
||||
|
||||
const imageData = fs.readFileSync(outputPath);
|
||||
return imageData.toString('base64');
|
||||
} finally {
|
||||
fs.rmSync(tempDir, { recursive: true, force: true });
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Create a simple test image with text using ImageMagick
|
||||
*/
|
||||
function createTestImage(text: string): string {
|
||||
const tempDir = fs.mkdtempSync(path.join(os.tmpdir(), 'test-image-'));
|
||||
const outputPath = path.join(tempDir, 'test.png');
|
||||
|
||||
try {
|
||||
execSync(
|
||||
`convert -size 400x100 xc:white -font DejaVu-Sans -pointsize 24 -fill black -gravity center -annotate 0 "${text}" "${outputPath}"`,
|
||||
{ stdio: 'pipe' }
|
||||
);
|
||||
|
||||
const imageData = fs.readFileSync(outputPath);
|
||||
return imageData.toString('base64');
|
||||
} finally {
|
||||
fs.rmSync(tempDir, { recursive: true, force: true });
|
||||
}
|
||||
}
|
||||
|
||||
// Health check test
|
||||
tap.test('should respond to health check', async () => {
|
||||
const response = await fetch(`${PADDLEOCR_URL}/health`);
|
||||
expect(response.ok).toBeTrue();
|
||||
|
||||
const data: IHealthResponse = await response.json();
|
||||
expect(data.status).toEqual('healthy');
|
||||
expect(data.model).toEqual('PP-OCRv4');
|
||||
expect(data.language).toBeTypeofString();
|
||||
expect(data.gpu_enabled).toBeTypeofBoolean();
|
||||
|
||||
console.log(`PaddleOCR Status: ${data.status}`);
|
||||
console.log(` Model: ${data.model}`);
|
||||
console.log(` Language: ${data.language}`);
|
||||
console.log(` GPU Enabled: ${data.gpu_enabled}`);
|
||||
});
|
||||
|
||||
// Base64 OCR test
|
||||
tap.test('should perform OCR on base64 image', async () => {
|
||||
// Create a test image with known text
|
||||
const testText = 'Hello World 12345';
|
||||
console.log(`Creating test image with text: "${testText}"`);
|
||||
|
||||
const imageBase64 = createTestImage(testText);
|
||||
|
||||
const response = await fetch(`${PADDLEOCR_URL}/ocr`, {
|
||||
method: 'POST',
|
||||
headers: { 'Content-Type': 'application/json' },
|
||||
body: JSON.stringify({ image: imageBase64 }),
|
||||
});
|
||||
|
||||
expect(response.ok).toBeTrue();
|
||||
|
||||
const data: IOCRResponse = await response.json();
|
||||
expect(data.success).toBeTrue();
|
||||
expect(data.results).toBeArray();
|
||||
|
||||
const extractedText = data.results.map((r) => r.text).join(' ');
|
||||
console.log(`Extracted text: "${extractedText}"`);
|
||||
|
||||
// Check that we got some text back
|
||||
expect(data.results.length).toBeGreaterThan(0);
|
||||
|
||||
// Check that at least some of the expected text was found
|
||||
const normalizedExtracted = extractedText.toLowerCase().replace(/\s+/g, '');
|
||||
const normalizedExpected = testText.toLowerCase().replace(/\s+/g, '');
|
||||
const hasPartialMatch =
|
||||
normalizedExtracted.includes('hello') ||
|
||||
normalizedExtracted.includes('world') ||
|
||||
normalizedExtracted.includes('12345');
|
||||
|
||||
expect(hasPartialMatch).toBeTrue();
|
||||
});
|
||||
|
||||
// File upload OCR test
|
||||
tap.test('should perform OCR via file upload', async () => {
|
||||
const testText = 'Invoice Number 98765';
|
||||
console.log(`Creating test image with text: "${testText}"`);
|
||||
|
||||
const imageBase64 = createTestImage(testText);
|
||||
const imageBuffer = Buffer.from(imageBase64, 'base64');
|
||||
|
||||
const formData = new FormData();
|
||||
const blob = new Blob([imageBuffer], { type: 'image/png' });
|
||||
formData.append('img', blob, 'test.png');
|
||||
|
||||
const response = await fetch(`${PADDLEOCR_URL}/ocr/upload`, {
|
||||
method: 'POST',
|
||||
body: formData,
|
||||
});
|
||||
|
||||
expect(response.ok).toBeTrue();
|
||||
|
||||
const data: IOCRResponse = await response.json();
|
||||
expect(data.success).toBeTrue();
|
||||
expect(data.results).toBeArray();
|
||||
|
||||
const extractedText = data.results.map((r) => r.text).join(' ');
|
||||
console.log(`Extracted text: "${extractedText}"`);
|
||||
|
||||
// Check that we got some text back
|
||||
expect(data.results.length).toBeGreaterThan(0);
|
||||
});
|
||||
|
||||
// OCR result structure test
|
||||
tap.test('should return proper OCR result structure', async () => {
|
||||
const testText = 'Test 123';
|
||||
const imageBase64 = createTestImage(testText);
|
||||
|
||||
const response = await fetch(`${PADDLEOCR_URL}/ocr`, {
|
||||
method: 'POST',
|
||||
headers: { 'Content-Type': 'application/json' },
|
||||
body: JSON.stringify({ image: imageBase64 }),
|
||||
});
|
||||
|
||||
const data: IOCRResponse = await response.json();
|
||||
|
||||
if (data.results.length > 0) {
|
||||
const result = data.results[0];
|
||||
|
||||
// Check result has required fields
|
||||
expect(result.text).toBeTypeofString();
|
||||
expect(result.confidence).toBeTypeofNumber();
|
||||
expect(result.box).toBeArray();
|
||||
|
||||
// Check bounding box structure (4 points, each with x,y)
|
||||
expect(result.box.length).toEqual(4);
|
||||
for (const point of result.box) {
|
||||
expect(point.length).toEqual(2);
|
||||
expect(point[0]).toBeTypeofNumber();
|
||||
expect(point[1]).toBeTypeofNumber();
|
||||
}
|
||||
|
||||
// Confidence should be between 0 and 1
|
||||
expect(result.confidence).toBeGreaterThan(0);
|
||||
expect(result.confidence).toBeLessThanOrEqual(1);
|
||||
|
||||
console.log(`Result structure valid:`);
|
||||
console.log(` Text: "${result.text}"`);
|
||||
console.log(` Confidence: ${(result.confidence * 100).toFixed(1)}%`);
|
||||
console.log(` Box: ${JSON.stringify(result.box)}`);
|
||||
}
|
||||
});
|
||||
|
||||
// Test with actual invoice if available
|
||||
const invoiceDir = path.join(process.cwd(), '.nogit/invoices');
|
||||
if (fs.existsSync(invoiceDir)) {
|
||||
const pdfFiles = fs.readdirSync(invoiceDir).filter((f) => f.endsWith('.pdf'));
|
||||
|
||||
if (pdfFiles.length > 0) {
|
||||
const testPdf = pdfFiles[0];
|
||||
tap.test(`should extract text from invoice: ${testPdf}`, async () => {
|
||||
const pdfPath = path.join(invoiceDir, testPdf);
|
||||
console.log(`Converting ${testPdf} to image...`);
|
||||
|
||||
const imageBase64 = convertPdfToImage(pdfPath);
|
||||
console.log(`Image size: ${(imageBase64.length / 1024).toFixed(1)} KB`);
|
||||
|
||||
const startTime = Date.now();
|
||||
|
||||
const response = await fetch(`${PADDLEOCR_URL}/ocr`, {
|
||||
method: 'POST',
|
||||
headers: { 'Content-Type': 'application/json' },
|
||||
body: JSON.stringify({ image: imageBase64 }),
|
||||
});
|
||||
|
||||
const endTime = Date.now();
|
||||
const elapsedMs = endTime - startTime;
|
||||
|
||||
expect(response.ok).toBeTrue();
|
||||
|
||||
const data: IOCRResponse = await response.json();
|
||||
expect(data.success).toBeTrue();
|
||||
|
||||
console.log(`OCR completed in ${(elapsedMs / 1000).toFixed(2)}s`);
|
||||
console.log(`Found ${data.results.length} text regions`);
|
||||
|
||||
// Print first 10 results
|
||||
const preview = data.results.slice(0, 10);
|
||||
console.log(`\nFirst ${preview.length} results:`);
|
||||
for (const result of preview) {
|
||||
console.log(` [${(result.confidence * 100).toFixed(0)}%] ${result.text}`);
|
||||
}
|
||||
|
||||
if (data.results.length > 10) {
|
||||
console.log(` ... and ${data.results.length - 10} more`);
|
||||
}
|
||||
|
||||
// Should find text in an invoice
|
||||
expect(data.results.length).toBeGreaterThan(5);
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
// Error handling test
|
||||
tap.test('should handle invalid base64 gracefully', async () => {
|
||||
const response = await fetch(`${PADDLEOCR_URL}/ocr`, {
|
||||
method: 'POST',
|
||||
headers: { 'Content-Type': 'application/json' },
|
||||
body: JSON.stringify({ image: 'not-valid-base64!!!' }),
|
||||
});
|
||||
|
||||
const data: IOCRResponse = await response.json();
|
||||
|
||||
// Should return success: false with error message
|
||||
expect(data.success).toBeFalse();
|
||||
expect(data.error).toBeTypeofString();
|
||||
console.log(`Error handling works: ${data.error}`);
|
||||
});
|
||||
|
||||
export default tap.start();
|
||||
Reference in New Issue
Block a user