Compare commits
9 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
| ab288380f1 | |||
| 30c73b24c1 | |||
| 311e7a8fd4 | |||
| 80e6866442 | |||
| addae20cbd | |||
| 0482c35b69 | |||
| 15ac1fcf67 | |||
| 3c5cf578a5 | |||
| 82358b2d5d |
@@ -1,49 +0,0 @@
|
|||||||
# PaddleOCR GPU Variant
|
|
||||||
# OCR processing with NVIDIA GPU support using PaddlePaddle
|
|
||||||
FROM paddlepaddle/paddle:2.6.2-gpu-cuda11.7-cudnn8.4-trt8.4
|
|
||||||
|
|
||||||
LABEL maintainer="Task Venture Capital GmbH <hello@task.vc>"
|
|
||||||
LABEL description="PaddleOCR PP-OCRv4 - GPU optimized"
|
|
||||||
LABEL org.opencontainers.image.source="https://code.foss.global/host.today/ht-docker-ai"
|
|
||||||
|
|
||||||
# Environment configuration
|
|
||||||
ENV OCR_LANGUAGE="en"
|
|
||||||
ENV SERVER_PORT="5000"
|
|
||||||
ENV SERVER_HOST="0.0.0.0"
|
|
||||||
ENV PYTHONUNBUFFERED=1
|
|
||||||
|
|
||||||
# Set working directory
|
|
||||||
WORKDIR /app
|
|
||||||
|
|
||||||
# Install system dependencies
|
|
||||||
RUN apt-get update && apt-get install -y --no-install-recommends \
|
|
||||||
libgl1-mesa-glx \
|
|
||||||
libglib2.0-0 \
|
|
||||||
curl \
|
|
||||||
&& rm -rf /var/lib/apt/lists/*
|
|
||||||
|
|
||||||
# Install Python dependencies (using stable paddleocr 2.x)
|
|
||||||
RUN pip install --no-cache-dir \
|
|
||||||
paddleocr==2.8.1 \
|
|
||||||
fastapi \
|
|
||||||
uvicorn[standard] \
|
|
||||||
python-multipart \
|
|
||||||
opencv-python-headless \
|
|
||||||
pillow
|
|
||||||
|
|
||||||
# Copy server files
|
|
||||||
COPY image_support_files/paddleocr_server.py /app/paddleocr_server.py
|
|
||||||
COPY image_support_files/paddleocr-entrypoint.sh /usr/local/bin/paddleocr-entrypoint.sh
|
|
||||||
RUN chmod +x /usr/local/bin/paddleocr-entrypoint.sh
|
|
||||||
|
|
||||||
# Note: OCR models will be downloaded on first run
|
|
||||||
# This ensures compatibility across different GPU architectures
|
|
||||||
|
|
||||||
# Expose API port
|
|
||||||
EXPOSE 5000
|
|
||||||
|
|
||||||
# Health check
|
|
||||||
HEALTHCHECK --interval=30s --timeout=10s --start-period=60s --retries=3 \
|
|
||||||
CMD curl -f http://localhost:5000/health || exit 1
|
|
||||||
|
|
||||||
ENTRYPOINT ["/usr/local/bin/paddleocr-entrypoint.sh"]
|
|
||||||
@@ -1,53 +0,0 @@
|
|||||||
# PaddleOCR CPU Variant
|
|
||||||
# OCR processing optimized for CPU-only inference
|
|
||||||
FROM python:3.10-slim-bookworm
|
|
||||||
|
|
||||||
LABEL maintainer="Task Venture Capital GmbH <hello@task.vc>"
|
|
||||||
LABEL description="PaddleOCR PP-OCRv4 - CPU optimized"
|
|
||||||
LABEL org.opencontainers.image.source="https://code.foss.global/host.today/ht-docker-ai"
|
|
||||||
|
|
||||||
# Environment configuration for CPU-only mode
|
|
||||||
ENV OCR_LANGUAGE="en"
|
|
||||||
ENV SERVER_PORT="5000"
|
|
||||||
ENV SERVER_HOST="0.0.0.0"
|
|
||||||
ENV PYTHONUNBUFFERED=1
|
|
||||||
# Disable GPU usage for CPU-only variant
|
|
||||||
ENV CUDA_VISIBLE_DEVICES="-1"
|
|
||||||
|
|
||||||
# Set working directory
|
|
||||||
WORKDIR /app
|
|
||||||
|
|
||||||
# Install system dependencies
|
|
||||||
RUN apt-get update && apt-get install -y --no-install-recommends \
|
|
||||||
libgl1-mesa-glx \
|
|
||||||
libglib2.0-0 \
|
|
||||||
libgomp1 \
|
|
||||||
curl \
|
|
||||||
&& rm -rf /var/lib/apt/lists/*
|
|
||||||
|
|
||||||
# Install Python dependencies (CPU version of PaddlePaddle - using stable 2.x versions)
|
|
||||||
RUN pip install --no-cache-dir \
|
|
||||||
paddlepaddle==2.6.2 \
|
|
||||||
paddleocr==2.8.1 \
|
|
||||||
fastapi \
|
|
||||||
uvicorn[standard] \
|
|
||||||
python-multipart \
|
|
||||||
opencv-python-headless \
|
|
||||||
pillow
|
|
||||||
|
|
||||||
# Copy server files
|
|
||||||
COPY image_support_files/paddleocr_server.py /app/paddleocr_server.py
|
|
||||||
COPY image_support_files/paddleocr-entrypoint.sh /usr/local/bin/paddleocr-entrypoint.sh
|
|
||||||
RUN chmod +x /usr/local/bin/paddleocr-entrypoint.sh
|
|
||||||
|
|
||||||
# Note: OCR models will be downloaded on first run
|
|
||||||
# This avoids build-time segfaults with certain CPU architectures
|
|
||||||
|
|
||||||
# Expose API port
|
|
||||||
EXPOSE 5000
|
|
||||||
|
|
||||||
# Health check (longer start-period for CPU variant)
|
|
||||||
HEALTHCHECK --interval=30s --timeout=10s --start-period=120s --retries=3 \
|
|
||||||
CMD curl -f http://localhost:5000/health || exit 1
|
|
||||||
|
|
||||||
ENTRYPOINT ["/usr/local/bin/paddleocr-entrypoint.sh"]
|
|
||||||
70
Dockerfile_paddleocr_vl
Normal file
70
Dockerfile_paddleocr_vl
Normal file
@@ -0,0 +1,70 @@
|
|||||||
|
# PaddleOCR-VL GPU Variant
|
||||||
|
# Vision-Language Model for document parsing using vLLM
|
||||||
|
FROM nvidia/cuda:12.4.0-devel-ubuntu22.04
|
||||||
|
|
||||||
|
LABEL maintainer="Task Venture Capital GmbH <hello@task.vc>"
|
||||||
|
LABEL description="PaddleOCR-VL 0.9B - Vision-Language Model for document parsing"
|
||||||
|
LABEL org.opencontainers.image.source="https://code.foss.global/host.today/ht-docker-ai"
|
||||||
|
|
||||||
|
# Environment configuration
|
||||||
|
ENV DEBIAN_FRONTEND=noninteractive
|
||||||
|
ENV PYTHONUNBUFFERED=1
|
||||||
|
ENV HF_HOME=/root/.cache/huggingface
|
||||||
|
ENV VLLM_WORKER_MULTIPROC_METHOD=spawn
|
||||||
|
|
||||||
|
# Set working directory
|
||||||
|
WORKDIR /app
|
||||||
|
|
||||||
|
# Install system dependencies
|
||||||
|
RUN apt-get update && apt-get install -y --no-install-recommends \
|
||||||
|
python3.11 \
|
||||||
|
python3.11-venv \
|
||||||
|
python3.11-dev \
|
||||||
|
python3-pip \
|
||||||
|
git \
|
||||||
|
curl \
|
||||||
|
build-essential \
|
||||||
|
&& rm -rf /var/lib/apt/lists/* \
|
||||||
|
&& update-alternatives --install /usr/bin/python python /usr/bin/python3.11 1 \
|
||||||
|
&& update-alternatives --install /usr/bin/python3 python3 /usr/bin/python3.11 1
|
||||||
|
|
||||||
|
# Create and activate virtual environment
|
||||||
|
RUN python -m venv /opt/venv
|
||||||
|
ENV PATH="/opt/venv/bin:$PATH"
|
||||||
|
|
||||||
|
# Install PyTorch with CUDA support
|
||||||
|
RUN pip install --no-cache-dir --upgrade pip && \
|
||||||
|
pip install --no-cache-dir \
|
||||||
|
torch==2.5.1 \
|
||||||
|
torchvision \
|
||||||
|
--index-url https://download.pytorch.org/whl/cu124
|
||||||
|
|
||||||
|
# Install vLLM 0.11.1 (first stable release with PaddleOCR-VL support)
|
||||||
|
RUN pip install --no-cache-dir \
|
||||||
|
vllm==0.11.1 \
|
||||||
|
--extra-index-url https://download.pytorch.org/whl/cu124
|
||||||
|
|
||||||
|
# Install additional dependencies
|
||||||
|
RUN pip install --no-cache-dir \
|
||||||
|
transformers \
|
||||||
|
accelerate \
|
||||||
|
safetensors \
|
||||||
|
pillow \
|
||||||
|
fastapi \
|
||||||
|
uvicorn[standard] \
|
||||||
|
python-multipart \
|
||||||
|
openai \
|
||||||
|
httpx
|
||||||
|
|
||||||
|
# Copy entrypoint script
|
||||||
|
COPY image_support_files/paddleocr-vl-entrypoint.sh /usr/local/bin/paddleocr-vl-entrypoint.sh
|
||||||
|
RUN chmod +x /usr/local/bin/paddleocr-vl-entrypoint.sh
|
||||||
|
|
||||||
|
# Expose vLLM API port
|
||||||
|
EXPOSE 8000
|
||||||
|
|
||||||
|
# Health check
|
||||||
|
HEALTHCHECK --interval=30s --timeout=10s --start-period=300s --retries=3 \
|
||||||
|
CMD curl -f http://localhost:8000/health || exit 1
|
||||||
|
|
||||||
|
ENTRYPOINT ["/usr/local/bin/paddleocr-vl-entrypoint.sh"]
|
||||||
57
Dockerfile_paddleocr_vl_cpu
Normal file
57
Dockerfile_paddleocr_vl_cpu
Normal file
@@ -0,0 +1,57 @@
|
|||||||
|
# PaddleOCR-VL CPU Variant
|
||||||
|
# Vision-Language Model for document parsing using transformers (slower, no GPU required)
|
||||||
|
FROM python:3.11-slim-bookworm
|
||||||
|
|
||||||
|
LABEL maintainer="Task Venture Capital GmbH <hello@task.vc>"
|
||||||
|
LABEL description="PaddleOCR-VL 0.9B CPU - Vision-Language Model for document parsing"
|
||||||
|
LABEL org.opencontainers.image.source="https://code.foss.global/host.today/ht-docker-ai"
|
||||||
|
|
||||||
|
# Environment configuration
|
||||||
|
ENV PYTHONUNBUFFERED=1
|
||||||
|
ENV HF_HOME=/root/.cache/huggingface
|
||||||
|
ENV CUDA_VISIBLE_DEVICES=""
|
||||||
|
ENV SERVER_PORT=8000
|
||||||
|
ENV SERVER_HOST=0.0.0.0
|
||||||
|
|
||||||
|
# Set working directory
|
||||||
|
WORKDIR /app
|
||||||
|
|
||||||
|
# Install system dependencies
|
||||||
|
RUN apt-get update && apt-get install -y --no-install-recommends \
|
||||||
|
libgl1-mesa-glx \
|
||||||
|
libglib2.0-0 \
|
||||||
|
libgomp1 \
|
||||||
|
curl \
|
||||||
|
git \
|
||||||
|
&& rm -rf /var/lib/apt/lists/*
|
||||||
|
|
||||||
|
# Install Python dependencies
|
||||||
|
RUN pip install --no-cache-dir --upgrade pip && \
|
||||||
|
pip install --no-cache-dir \
|
||||||
|
torch==2.5.1 torchvision==0.20.1 --index-url https://download.pytorch.org/whl/cpu && \
|
||||||
|
pip install --no-cache-dir \
|
||||||
|
transformers \
|
||||||
|
accelerate \
|
||||||
|
safetensors \
|
||||||
|
pillow \
|
||||||
|
fastapi \
|
||||||
|
uvicorn[standard] \
|
||||||
|
python-multipart \
|
||||||
|
httpx \
|
||||||
|
protobuf \
|
||||||
|
sentencepiece \
|
||||||
|
einops
|
||||||
|
|
||||||
|
# Copy server files
|
||||||
|
COPY image_support_files/paddleocr_vl_server.py /app/paddleocr_vl_server.py
|
||||||
|
COPY image_support_files/paddleocr-vl-cpu-entrypoint.sh /usr/local/bin/paddleocr-vl-cpu-entrypoint.sh
|
||||||
|
RUN chmod +x /usr/local/bin/paddleocr-vl-cpu-entrypoint.sh
|
||||||
|
|
||||||
|
# Expose API port
|
||||||
|
EXPOSE 8000
|
||||||
|
|
||||||
|
# Health check (longer start-period for CPU + model download)
|
||||||
|
HEALTHCHECK --interval=30s --timeout=10s --start-period=600s --retries=3 \
|
||||||
|
CMD curl -f http://localhost:8000/health || exit 1
|
||||||
|
|
||||||
|
ENTRYPOINT ["/usr/local/bin/paddleocr-vl-cpu-entrypoint.sh"]
|
||||||
90
Dockerfile_paddleocr_vl_full
Normal file
90
Dockerfile_paddleocr_vl_full
Normal file
@@ -0,0 +1,90 @@
|
|||||||
|
# PaddleOCR-VL Full Pipeline (PP-DocLayoutV2 + PaddleOCR-VL + Structured Output)
|
||||||
|
# Self-contained GPU image with complete document parsing pipeline
|
||||||
|
FROM nvidia/cuda:12.4.0-devel-ubuntu22.04
|
||||||
|
|
||||||
|
LABEL maintainer="Task Venture Capital GmbH <hello@task.vc>"
|
||||||
|
LABEL description="PaddleOCR-VL Full Pipeline - Layout Detection + VL Recognition + JSON/Markdown Output"
|
||||||
|
LABEL org.opencontainers.image.source="https://code.foss.global/host.today/ht-docker-ai"
|
||||||
|
|
||||||
|
# Environment configuration
|
||||||
|
ENV DEBIAN_FRONTEND=noninteractive
|
||||||
|
ENV PYTHONUNBUFFERED=1
|
||||||
|
ENV HF_HOME=/root/.cache/huggingface
|
||||||
|
ENV PADDLEOCR_HOME=/root/.paddleocr
|
||||||
|
ENV SERVER_PORT=8000
|
||||||
|
ENV SERVER_HOST=0.0.0.0
|
||||||
|
ENV VLM_PORT=8080
|
||||||
|
|
||||||
|
# Set working directory
|
||||||
|
WORKDIR /app
|
||||||
|
|
||||||
|
# Install system dependencies
|
||||||
|
RUN apt-get update && apt-get install -y --no-install-recommends \
|
||||||
|
python3.11 \
|
||||||
|
python3.11-venv \
|
||||||
|
python3.11-dev \
|
||||||
|
python3-pip \
|
||||||
|
libgl1-mesa-glx \
|
||||||
|
libglib2.0-0 \
|
||||||
|
libgomp1 \
|
||||||
|
libsm6 \
|
||||||
|
libxext6 \
|
||||||
|
libxrender1 \
|
||||||
|
curl \
|
||||||
|
git \
|
||||||
|
wget \
|
||||||
|
&& rm -rf /var/lib/apt/lists/* \
|
||||||
|
&& update-alternatives --install /usr/bin/python python /usr/bin/python3.11 1 \
|
||||||
|
&& update-alternatives --install /usr/bin/python3 python3 /usr/bin/python3.11 1
|
||||||
|
|
||||||
|
# Create and activate virtual environment
|
||||||
|
RUN python -m venv /opt/venv
|
||||||
|
ENV PATH="/opt/venv/bin:$PATH"
|
||||||
|
|
||||||
|
# Upgrade pip
|
||||||
|
RUN pip install --no-cache-dir --upgrade pip setuptools wheel
|
||||||
|
|
||||||
|
# Install PaddlePaddle GPU (CUDA 12.x)
|
||||||
|
RUN pip install --no-cache-dir \
|
||||||
|
paddlepaddle-gpu==3.2.1 \
|
||||||
|
--extra-index-url https://www.paddlepaddle.org.cn/packages/stable/cu126/
|
||||||
|
|
||||||
|
# Install PaddleOCR with doc-parser (includes PP-DocLayoutV2)
|
||||||
|
RUN pip install --no-cache-dir \
|
||||||
|
"paddleocr[doc-parser]" \
|
||||||
|
safetensors
|
||||||
|
|
||||||
|
# Install PyTorch with CUDA support
|
||||||
|
RUN pip install --no-cache-dir \
|
||||||
|
torch==2.5.1 \
|
||||||
|
torchvision \
|
||||||
|
--index-url https://download.pytorch.org/whl/cu124
|
||||||
|
|
||||||
|
# Install transformers for PaddleOCR-VL inference (no vLLM - use local inference)
|
||||||
|
# PaddleOCR-VL requires transformers>=4.55.0 for use_kernel_forward_from_hub
|
||||||
|
RUN pip install --no-cache-dir \
|
||||||
|
transformers>=4.55.0 \
|
||||||
|
accelerate \
|
||||||
|
hf-kernels
|
||||||
|
|
||||||
|
# Install our API server dependencies
|
||||||
|
RUN pip install --no-cache-dir \
|
||||||
|
fastapi \
|
||||||
|
uvicorn[standard] \
|
||||||
|
python-multipart \
|
||||||
|
httpx \
|
||||||
|
pillow
|
||||||
|
|
||||||
|
# Copy server files
|
||||||
|
COPY image_support_files/paddleocr_vl_full_server.py /app/server.py
|
||||||
|
COPY image_support_files/paddleocr_vl_full_entrypoint.sh /usr/local/bin/entrypoint.sh
|
||||||
|
RUN chmod +x /usr/local/bin/entrypoint.sh
|
||||||
|
|
||||||
|
# Expose ports (8000 = API, 8080 = internal VLM server)
|
||||||
|
EXPOSE 8000
|
||||||
|
|
||||||
|
# Health check
|
||||||
|
HEALTHCHECK --interval=30s --timeout=10s --start-period=600s --retries=3 \
|
||||||
|
CMD curl -f http://localhost:8000/health || exit 1
|
||||||
|
|
||||||
|
ENTRYPOINT ["/usr/local/bin/entrypoint.sh"]
|
||||||
71
Dockerfile_paddleocr_vl_gpu
Normal file
71
Dockerfile_paddleocr_vl_gpu
Normal file
@@ -0,0 +1,71 @@
|
|||||||
|
# PaddleOCR-VL GPU Variant (Transformers-based, not vLLM)
|
||||||
|
# Vision-Language Model for document parsing using transformers with CUDA
|
||||||
|
FROM nvidia/cuda:12.4.0-runtime-ubuntu22.04
|
||||||
|
|
||||||
|
LABEL maintainer="Task Venture Capital GmbH <hello@task.vc>"
|
||||||
|
LABEL description="PaddleOCR-VL 0.9B GPU - Vision-Language Model using transformers"
|
||||||
|
LABEL org.opencontainers.image.source="https://code.foss.global/host.today/ht-docker-ai"
|
||||||
|
|
||||||
|
# Environment configuration
|
||||||
|
ENV DEBIAN_FRONTEND=noninteractive
|
||||||
|
ENV PYTHONUNBUFFERED=1
|
||||||
|
ENV HF_HOME=/root/.cache/huggingface
|
||||||
|
ENV SERVER_PORT=8000
|
||||||
|
ENV SERVER_HOST=0.0.0.0
|
||||||
|
|
||||||
|
# Set working directory
|
||||||
|
WORKDIR /app
|
||||||
|
|
||||||
|
# Install system dependencies
|
||||||
|
RUN apt-get update && apt-get install -y --no-install-recommends \
|
||||||
|
python3.11 \
|
||||||
|
python3.11-venv \
|
||||||
|
python3.11-dev \
|
||||||
|
python3-pip \
|
||||||
|
libgl1-mesa-glx \
|
||||||
|
libglib2.0-0 \
|
||||||
|
libgomp1 \
|
||||||
|
curl \
|
||||||
|
git \
|
||||||
|
&& rm -rf /var/lib/apt/lists/* \
|
||||||
|
&& update-alternatives --install /usr/bin/python python /usr/bin/python3.11 1 \
|
||||||
|
&& update-alternatives --install /usr/bin/python3 python3 /usr/bin/python3.11 1
|
||||||
|
|
||||||
|
# Create and activate virtual environment
|
||||||
|
RUN python -m venv /opt/venv
|
||||||
|
ENV PATH="/opt/venv/bin:$PATH"
|
||||||
|
|
||||||
|
# Install PyTorch with CUDA support
|
||||||
|
RUN pip install --no-cache-dir --upgrade pip && \
|
||||||
|
pip install --no-cache-dir \
|
||||||
|
torch==2.5.1 \
|
||||||
|
torchvision \
|
||||||
|
--index-url https://download.pytorch.org/whl/cu124
|
||||||
|
|
||||||
|
# Install Python dependencies (transformers-based, not vLLM)
|
||||||
|
RUN pip install --no-cache-dir \
|
||||||
|
transformers \
|
||||||
|
accelerate \
|
||||||
|
safetensors \
|
||||||
|
pillow \
|
||||||
|
fastapi \
|
||||||
|
uvicorn[standard] \
|
||||||
|
python-multipart \
|
||||||
|
httpx \
|
||||||
|
protobuf \
|
||||||
|
sentencepiece \
|
||||||
|
einops
|
||||||
|
|
||||||
|
# Copy server files (same as CPU variant - it auto-detects CUDA)
|
||||||
|
COPY image_support_files/paddleocr_vl_server.py /app/paddleocr_vl_server.py
|
||||||
|
COPY image_support_files/paddleocr-vl-cpu-entrypoint.sh /usr/local/bin/paddleocr-vl-entrypoint.sh
|
||||||
|
RUN chmod +x /usr/local/bin/paddleocr-vl-entrypoint.sh
|
||||||
|
|
||||||
|
# Expose API port
|
||||||
|
EXPOSE 8000
|
||||||
|
|
||||||
|
# Health check
|
||||||
|
HEALTHCHECK --interval=30s --timeout=10s --start-period=300s --retries=3 \
|
||||||
|
CMD curl -f http://localhost:8000/health || exit 1
|
||||||
|
|
||||||
|
ENTRYPOINT ["/usr/local/bin/paddleocr-vl-entrypoint.sh"]
|
||||||
@@ -29,19 +29,19 @@ docker build \
|
|||||||
-t ${REGISTRY}/${NAMESPACE}/${IMAGE_NAME}:minicpm45v-cpu \
|
-t ${REGISTRY}/${NAMESPACE}/${IMAGE_NAME}:minicpm45v-cpu \
|
||||||
.
|
.
|
||||||
|
|
||||||
# Build PaddleOCR GPU variant
|
# Build PaddleOCR-VL GPU variant (vLLM)
|
||||||
echo -e "${GREEN}Building PaddleOCR GPU variant...${NC}"
|
echo -e "${GREEN}Building PaddleOCR-VL GPU variant (vLLM)...${NC}"
|
||||||
docker build \
|
docker build \
|
||||||
-f Dockerfile_paddleocr \
|
-f Dockerfile_paddleocr_vl \
|
||||||
-t ${REGISTRY}/${NAMESPACE}/${IMAGE_NAME}:paddleocr \
|
-t ${REGISTRY}/${NAMESPACE}/${IMAGE_NAME}:paddleocr-vl \
|
||||||
-t ${REGISTRY}/${NAMESPACE}/${IMAGE_NAME}:paddleocr-gpu \
|
-t ${REGISTRY}/${NAMESPACE}/${IMAGE_NAME}:paddleocr-vl-gpu \
|
||||||
.
|
.
|
||||||
|
|
||||||
# Build PaddleOCR CPU variant
|
# Build PaddleOCR-VL CPU variant
|
||||||
echo -e "${GREEN}Building PaddleOCR CPU variant...${NC}"
|
echo -e "${GREEN}Building PaddleOCR-VL CPU variant...${NC}"
|
||||||
docker build \
|
docker build \
|
||||||
-f Dockerfile_paddleocr_cpu \
|
-f Dockerfile_paddleocr_vl_cpu \
|
||||||
-t ${REGISTRY}/${NAMESPACE}/${IMAGE_NAME}:paddleocr-cpu \
|
-t ${REGISTRY}/${NAMESPACE}/${IMAGE_NAME}:paddleocr-vl-cpu \
|
||||||
.
|
.
|
||||||
|
|
||||||
echo -e "${GREEN}All images built successfully!${NC}"
|
echo -e "${GREEN}All images built successfully!${NC}"
|
||||||
@@ -52,7 +52,7 @@ echo " - ${REGISTRY}/${NAMESPACE}/${IMAGE_NAME}:minicpm45v (GPU)"
|
|||||||
echo " - ${REGISTRY}/${NAMESPACE}/${IMAGE_NAME}:minicpm45v-cpu (CPU)"
|
echo " - ${REGISTRY}/${NAMESPACE}/${IMAGE_NAME}:minicpm45v-cpu (CPU)"
|
||||||
echo " - ${REGISTRY}/${NAMESPACE}/${IMAGE_NAME}:latest (GPU)"
|
echo " - ${REGISTRY}/${NAMESPACE}/${IMAGE_NAME}:latest (GPU)"
|
||||||
echo ""
|
echo ""
|
||||||
echo " PaddleOCR:"
|
echo " PaddleOCR-VL (Vision-Language Model):"
|
||||||
echo " - ${REGISTRY}/${NAMESPACE}/${IMAGE_NAME}:paddleocr (GPU)"
|
echo " - ${REGISTRY}/${NAMESPACE}/${IMAGE_NAME}:paddleocr-vl (GPU/vLLM)"
|
||||||
echo " - ${REGISTRY}/${NAMESPACE}/${IMAGE_NAME}:paddleocr-gpu (GPU)"
|
echo " - ${REGISTRY}/${NAMESPACE}/${IMAGE_NAME}:paddleocr-vl-gpu (GPU/vLLM)"
|
||||||
echo " - ${REGISTRY}/${NAMESPACE}/${IMAGE_NAME}:paddleocr-cpu (CPU)"
|
echo " - ${REGISTRY}/${NAMESPACE}/${IMAGE_NAME}:paddleocr-vl-cpu (CPU)"
|
||||||
|
|||||||
39
changelog.md
39
changelog.md
@@ -1,5 +1,44 @@
|
|||||||
# Changelog
|
# Changelog
|
||||||
|
|
||||||
|
## 2026-01-17 - 1.7.0 - feat(tests)
|
||||||
|
use Qwen2.5 (Ollama) for invoice extraction tests and add helpers for model management; normalize dates and coerce numeric fields
|
||||||
|
|
||||||
|
- Added ensureOllamaModel and ensureQwen25 test helpers to pull/check Ollama models via localhost:11434
|
||||||
|
- Updated invoices test to use qwen2.5:7b instead of MiniCPM and removed image payload from the text-only extraction step
|
||||||
|
- Increased Markdown truncate limit from 8000 to 12000 and reduced model num_predict from 2048 to 512
|
||||||
|
- Rewrote extraction prompt to require strict JSON output and added post-processing to parse/convert numeric fields
|
||||||
|
- Added normalizeDate and improved compareInvoice to normalize dates and handle numeric formatting/tolerance
|
||||||
|
- Updated test setup to ensure Qwen2.5 is available and adjusted logging/messages to reflect the Qwen2.5-based workflow
|
||||||
|
|
||||||
|
## 2026-01-17 - 1.6.0 - feat(paddleocr-vl)
|
||||||
|
add PaddleOCR-VL full pipeline Docker image and API server, plus integration tests and docker helpers
|
||||||
|
|
||||||
|
- Add Dockerfile_paddleocr_vl_full and entrypoint script to build a GPU-enabled image with PP-DocLayoutV2 + PaddleOCR-VL and a FastAPI server
|
||||||
|
- Introduce image_support_files/paddleocr_vl_full_server.py implementing the full pipeline API (/parse, OpenAI-compatible /v1/chat/completions) and a /formats endpoint
|
||||||
|
- Improve image handling: decode_image supports data URLs, HTTP(S), raw base64 and file paths; add optimize_image_resolution to auto-scale images into the recommended 1080-2048px range
|
||||||
|
- Add test helpers (test/helpers/docker.ts) to build/start/health-check Docker images and new ensurePaddleOcrVlFull workflow
|
||||||
|
- Add comprehensive integration tests for bank statements and invoices (MiniCPM and PaddleOCR-VL variants) and update tests to ensure required containers are running before tests
|
||||||
|
- Switch MiniCPM model references to 'minicpm-v:latest' and increase health/timeout expectations for the full pipeline
|
||||||
|
|
||||||
|
## 2026-01-17 - 1.5.0 - feat(paddleocr-vl)
|
||||||
|
add PaddleOCR-VL GPU Dockerfile, pin vllm, update CPU image deps, and improve entrypoint and tests
|
||||||
|
|
||||||
|
- Add a new GPU Dockerfile for PaddleOCR-VL (transformers-based) with CUDA support, healthcheck, and entrypoint.
|
||||||
|
- Pin vllm to 0.11.1 in Dockerfile_paddleocr_vl to use the first stable release with PaddleOCR-VL support.
|
||||||
|
- Update CPU image: add torchvision==0.20.1 and extra Python deps (protobuf, sentencepiece, einops) required by the transformers-based server.
|
||||||
|
- Rewrite paddleocr-vl-entrypoint.sh to build vllm args array, add MAX_MODEL_LEN and ENFORCE_EAGER env vars, include --limit-mm-per-prompt and optional --enforce-eager, and switch to exec vllm with constructed args.
|
||||||
|
- Update tests to use the OpenAI-compatible PaddleOCR-VL chat completions API (/v1/chat/completions) with image+text message payload and model 'paddleocr-vl'.
|
||||||
|
- Add @types/node to package.json dependencies and tidy devDependencies ordering.
|
||||||
|
|
||||||
|
## 2026-01-16 - 1.4.0 - feat(invoices)
|
||||||
|
add hybrid OCR + vision invoice/document parsing with PaddleOCR, consensus voting, and prompt/test refactors
|
||||||
|
|
||||||
|
- Add hybrid pipeline documentation and examples (PaddleOCR + MiniCPM-V) and architecture diagram in recipes/document.md
|
||||||
|
- Integrate PaddleOCR: new OCR extraction functions and OCR-only prompt flow in test/test.node.ts
|
||||||
|
- Add consensus voting and parallel-pass optimization to improve reliability (multiple passes, hashing, and majority voting)
|
||||||
|
- Refactor prompts and tests: introduce /nothink token, OCR truncation limits, separate visual and OCR-only prompts, and improved prompt building in test/test.invoices.ts
|
||||||
|
- Update image conversion defaults (200 DPI, filename change) and add TypeScript helper functions for extraction and consensus handling
|
||||||
|
|
||||||
## 2026-01-16 - 1.3.0 - feat(paddleocr)
|
## 2026-01-16 - 1.3.0 - feat(paddleocr)
|
||||||
add PaddleOCR OCR service (Docker images, server, tests, docs) and CI workflows
|
add PaddleOCR OCR service (Docker images, server, tests, docs) and CI workflows
|
||||||
|
|
||||||
|
|||||||
@@ -1,25 +0,0 @@
|
|||||||
#!/bin/bash
|
|
||||||
set -e
|
|
||||||
|
|
||||||
# Configuration from environment
|
|
||||||
OCR_LANGUAGE="${OCR_LANGUAGE:-en}"
|
|
||||||
SERVER_PORT="${SERVER_PORT:-5000}"
|
|
||||||
SERVER_HOST="${SERVER_HOST:-0.0.0.0}"
|
|
||||||
|
|
||||||
echo "Starting PaddleOCR Server..."
|
|
||||||
echo " Language: ${OCR_LANGUAGE}"
|
|
||||||
echo " Host: ${SERVER_HOST}"
|
|
||||||
echo " Port: ${SERVER_PORT}"
|
|
||||||
|
|
||||||
# Check GPU availability
|
|
||||||
if [ "${CUDA_VISIBLE_DEVICES}" = "-1" ]; then
|
|
||||||
echo " GPU: Disabled (CPU mode)"
|
|
||||||
else
|
|
||||||
echo " GPU: Enabled"
|
|
||||||
fi
|
|
||||||
|
|
||||||
# Start the FastAPI server with uvicorn
|
|
||||||
exec python -m uvicorn paddleocr_server:app \
|
|
||||||
--host "${SERVER_HOST}" \
|
|
||||||
--port "${SERVER_PORT}" \
|
|
||||||
--workers 1
|
|
||||||
19
image_support_files/paddleocr-vl-cpu-entrypoint.sh
Normal file
19
image_support_files/paddleocr-vl-cpu-entrypoint.sh
Normal file
@@ -0,0 +1,19 @@
|
|||||||
|
#!/bin/bash
|
||||||
|
set -e
|
||||||
|
|
||||||
|
echo "==================================="
|
||||||
|
echo "PaddleOCR-VL Server (CPU)"
|
||||||
|
echo "==================================="
|
||||||
|
|
||||||
|
HOST="${SERVER_HOST:-0.0.0.0}"
|
||||||
|
PORT="${SERVER_PORT:-8000}"
|
||||||
|
|
||||||
|
echo "Host: ${HOST}"
|
||||||
|
echo "Port: ${PORT}"
|
||||||
|
echo "Device: CPU (no GPU)"
|
||||||
|
echo ""
|
||||||
|
|
||||||
|
echo "Starting PaddleOCR-VL CPU server..."
|
||||||
|
echo "==================================="
|
||||||
|
|
||||||
|
exec python /app/paddleocr_vl_server.py
|
||||||
59
image_support_files/paddleocr-vl-entrypoint.sh
Normal file
59
image_support_files/paddleocr-vl-entrypoint.sh
Normal file
@@ -0,0 +1,59 @@
|
|||||||
|
#!/bin/bash
|
||||||
|
set -e
|
||||||
|
|
||||||
|
echo "==================================="
|
||||||
|
echo "PaddleOCR-VL Server"
|
||||||
|
echo "==================================="
|
||||||
|
|
||||||
|
# Configuration
|
||||||
|
MODEL_NAME="${MODEL_NAME:-PaddlePaddle/PaddleOCR-VL}"
|
||||||
|
HOST="${HOST:-0.0.0.0}"
|
||||||
|
PORT="${PORT:-8000}"
|
||||||
|
MAX_BATCHED_TOKENS="${MAX_BATCHED_TOKENS:-16384}"
|
||||||
|
GPU_MEMORY_UTILIZATION="${GPU_MEMORY_UTILIZATION:-0.9}"
|
||||||
|
MAX_MODEL_LEN="${MAX_MODEL_LEN:-8192}"
|
||||||
|
ENFORCE_EAGER="${ENFORCE_EAGER:-false}"
|
||||||
|
|
||||||
|
echo "Model: ${MODEL_NAME}"
|
||||||
|
echo "Host: ${HOST}"
|
||||||
|
echo "Port: ${PORT}"
|
||||||
|
echo "Max batched tokens: ${MAX_BATCHED_TOKENS}"
|
||||||
|
echo "GPU memory utilization: ${GPU_MEMORY_UTILIZATION}"
|
||||||
|
echo "Max model length: ${MAX_MODEL_LEN}"
|
||||||
|
echo "Enforce eager: ${ENFORCE_EAGER}"
|
||||||
|
echo ""
|
||||||
|
|
||||||
|
# Check GPU availability
|
||||||
|
if command -v nvidia-smi &> /dev/null; then
|
||||||
|
echo "GPU Information:"
|
||||||
|
nvidia-smi --query-gpu=name,memory.total,memory.free --format=csv
|
||||||
|
echo ""
|
||||||
|
else
|
||||||
|
echo "WARNING: nvidia-smi not found. GPU may not be available."
|
||||||
|
fi
|
||||||
|
|
||||||
|
echo "Starting vLLM server..."
|
||||||
|
echo "==================================="
|
||||||
|
|
||||||
|
# Build vLLM command
|
||||||
|
VLLM_ARGS=(
|
||||||
|
serve "${MODEL_NAME}"
|
||||||
|
--trust-remote-code
|
||||||
|
--host "${HOST}"
|
||||||
|
--port "${PORT}"
|
||||||
|
--max-num-batched-tokens "${MAX_BATCHED_TOKENS}"
|
||||||
|
--gpu-memory-utilization "${GPU_MEMORY_UTILIZATION}"
|
||||||
|
--max-model-len "${MAX_MODEL_LEN}"
|
||||||
|
--no-enable-prefix-caching
|
||||||
|
--mm-processor-cache-gb 0
|
||||||
|
--served-model-name "paddleocr-vl"
|
||||||
|
--limit-mm-per-prompt '{"image": 1}'
|
||||||
|
)
|
||||||
|
|
||||||
|
# Add enforce-eager if enabled (disables CUDA graphs, saves memory)
|
||||||
|
if [ "${ENFORCE_EAGER}" = "true" ]; then
|
||||||
|
VLLM_ARGS+=(--enforce-eager)
|
||||||
|
fi
|
||||||
|
|
||||||
|
# Start vLLM server with PaddleOCR-VL
|
||||||
|
exec vllm "${VLLM_ARGS[@]}"
|
||||||
@@ -1,253 +0,0 @@
|
|||||||
#!/usr/bin/env python3
|
|
||||||
"""
|
|
||||||
PaddleOCR FastAPI Server
|
|
||||||
Provides REST API for OCR operations using PaddleOCR
|
|
||||||
"""
|
|
||||||
|
|
||||||
import os
|
|
||||||
import io
|
|
||||||
import base64
|
|
||||||
import logging
|
|
||||||
from typing import Optional, List, Any
|
|
||||||
|
|
||||||
from fastapi import FastAPI, File, UploadFile, Form, HTTPException
|
|
||||||
from fastapi.responses import JSONResponse
|
|
||||||
from pydantic import BaseModel
|
|
||||||
import numpy as np
|
|
||||||
from PIL import Image
|
|
||||||
from paddleocr import PaddleOCR
|
|
||||||
|
|
||||||
# Configure logging
|
|
||||||
logging.basicConfig(
|
|
||||||
level=logging.INFO,
|
|
||||||
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
|
||||||
)
|
|
||||||
logger = logging.getLogger(__name__)
|
|
||||||
|
|
||||||
# Environment configuration
|
|
||||||
OCR_LANGUAGE = os.environ.get('OCR_LANGUAGE', 'en')
|
|
||||||
# GPU is controlled via CUDA_VISIBLE_DEVICES environment variable
|
|
||||||
USE_GPU = os.environ.get('CUDA_VISIBLE_DEVICES', '') != '-1'
|
|
||||||
|
|
||||||
# Initialize FastAPI app
|
|
||||||
app = FastAPI(
|
|
||||||
title="PaddleOCR Server",
|
|
||||||
description="REST API for OCR operations using PaddleOCR PP-OCRv4",
|
|
||||||
version="1.0.0"
|
|
||||||
)
|
|
||||||
|
|
||||||
# Global OCR instance
|
|
||||||
ocr_instance: Optional[PaddleOCR] = None
|
|
||||||
|
|
||||||
|
|
||||||
class OCRRequest(BaseModel):
|
|
||||||
"""Request model for base64 image OCR"""
|
|
||||||
image: str
|
|
||||||
language: Optional[str] = None
|
|
||||||
|
|
||||||
|
|
||||||
class BoundingBox(BaseModel):
|
|
||||||
"""Bounding box for detected text"""
|
|
||||||
points: List[List[float]]
|
|
||||||
|
|
||||||
|
|
||||||
class OCRResult(BaseModel):
|
|
||||||
"""Single OCR detection result"""
|
|
||||||
text: str
|
|
||||||
confidence: float
|
|
||||||
box: List[List[float]]
|
|
||||||
|
|
||||||
|
|
||||||
class OCRResponse(BaseModel):
|
|
||||||
"""OCR response model"""
|
|
||||||
success: bool
|
|
||||||
results: List[OCRResult]
|
|
||||||
error: Optional[str] = None
|
|
||||||
|
|
||||||
|
|
||||||
class HealthResponse(BaseModel):
|
|
||||||
"""Health check response"""
|
|
||||||
status: str
|
|
||||||
model: str
|
|
||||||
language: str
|
|
||||||
gpu_enabled: bool
|
|
||||||
|
|
||||||
|
|
||||||
def get_ocr(lang: Optional[str] = None) -> PaddleOCR:
|
|
||||||
"""Get or initialize the OCR instance"""
|
|
||||||
global ocr_instance
|
|
||||||
use_lang = lang or OCR_LANGUAGE
|
|
||||||
|
|
||||||
# Return cached instance if same language
|
|
||||||
if ocr_instance is not None and lang is None:
|
|
||||||
return ocr_instance
|
|
||||||
|
|
||||||
logger.info(f"Initializing PaddleOCR with language={use_lang}, use_gpu={USE_GPU}")
|
|
||||||
new_ocr = PaddleOCR(
|
|
||||||
use_angle_cls=True,
|
|
||||||
lang=use_lang,
|
|
||||||
use_gpu=USE_GPU,
|
|
||||||
show_log=False
|
|
||||||
)
|
|
||||||
|
|
||||||
# Cache the default language instance
|
|
||||||
if lang is None:
|
|
||||||
ocr_instance = new_ocr
|
|
||||||
|
|
||||||
logger.info("PaddleOCR initialized successfully")
|
|
||||||
return new_ocr
|
|
||||||
|
|
||||||
|
|
||||||
def decode_base64_image(base64_string: str) -> np.ndarray:
|
|
||||||
"""Decode base64 string to numpy array"""
|
|
||||||
# Remove data URL prefix if present
|
|
||||||
if ',' in base64_string:
|
|
||||||
base64_string = base64_string.split(',')[1]
|
|
||||||
|
|
||||||
image_data = base64.b64decode(base64_string)
|
|
||||||
image = Image.open(io.BytesIO(image_data))
|
|
||||||
|
|
||||||
# Convert to RGB if necessary
|
|
||||||
if image.mode != 'RGB':
|
|
||||||
image = image.convert('RGB')
|
|
||||||
|
|
||||||
return np.array(image)
|
|
||||||
|
|
||||||
|
|
||||||
def process_ocr_result(result: Any) -> List[OCRResult]:
|
|
||||||
"""Process PaddleOCR result into structured format"""
|
|
||||||
results = []
|
|
||||||
|
|
||||||
if result is None or len(result) == 0:
|
|
||||||
return results
|
|
||||||
|
|
||||||
# PaddleOCR returns list of results per image
|
|
||||||
# Each result is a list of [box, (text, confidence)]
|
|
||||||
for line in result[0] if result[0] else []:
|
|
||||||
if line is None:
|
|
||||||
continue
|
|
||||||
|
|
||||||
box = line[0] # [[x1,y1], [x2,y2], [x3,y3], [x4,y4]]
|
|
||||||
text_info = line[1] # (text, confidence)
|
|
||||||
|
|
||||||
results.append(OCRResult(
|
|
||||||
text=text_info[0],
|
|
||||||
confidence=float(text_info[1]),
|
|
||||||
box=[[float(p[0]), float(p[1])] for p in box]
|
|
||||||
))
|
|
||||||
|
|
||||||
return results
|
|
||||||
|
|
||||||
|
|
||||||
@app.on_event("startup")
|
|
||||||
async def startup_event():
|
|
||||||
"""Pre-warm the OCR model on startup"""
|
|
||||||
logger.info("Pre-warming OCR model...")
|
|
||||||
try:
|
|
||||||
ocr = get_ocr()
|
|
||||||
# Create a small test image to warm up the model
|
|
||||||
test_image = np.zeros((100, 100, 3), dtype=np.uint8)
|
|
||||||
test_image.fill(255) # White image
|
|
||||||
ocr.ocr(test_image, cls=True)
|
|
||||||
logger.info("OCR model pre-warmed successfully")
|
|
||||||
except Exception as e:
|
|
||||||
logger.error(f"Failed to pre-warm OCR model: {e}")
|
|
||||||
|
|
||||||
|
|
||||||
@app.get("/health", response_model=HealthResponse)
|
|
||||||
async def health_check():
|
|
||||||
"""Health check endpoint"""
|
|
||||||
try:
|
|
||||||
# Ensure OCR is initialized
|
|
||||||
get_ocr()
|
|
||||||
return HealthResponse(
|
|
||||||
status="healthy",
|
|
||||||
model="PP-OCRv4",
|
|
||||||
language=OCR_LANGUAGE,
|
|
||||||
gpu_enabled=USE_GPU
|
|
||||||
)
|
|
||||||
except Exception as e:
|
|
||||||
logger.error(f"Health check failed: {e}")
|
|
||||||
raise HTTPException(status_code=503, detail=str(e))
|
|
||||||
|
|
||||||
|
|
||||||
@app.post("/ocr", response_model=OCRResponse)
|
|
||||||
async def ocr_base64(request: OCRRequest):
|
|
||||||
"""
|
|
||||||
Perform OCR on a base64-encoded image
|
|
||||||
|
|
||||||
Args:
|
|
||||||
request: OCRRequest with base64 image and optional language
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
OCRResponse with detected text, confidence scores, and bounding boxes
|
|
||||||
"""
|
|
||||||
try:
|
|
||||||
# Decode image
|
|
||||||
image = decode_base64_image(request.image)
|
|
||||||
|
|
||||||
# Get OCR instance (use request language if provided)
|
|
||||||
if request.language and request.language != OCR_LANGUAGE:
|
|
||||||
ocr = get_ocr(request.language)
|
|
||||||
else:
|
|
||||||
ocr = get_ocr()
|
|
||||||
|
|
||||||
result = ocr.ocr(image, cls=True)
|
|
||||||
|
|
||||||
# Process results
|
|
||||||
results = process_ocr_result(result)
|
|
||||||
|
|
||||||
return OCRResponse(success=True, results=results)
|
|
||||||
|
|
||||||
except Exception as e:
|
|
||||||
logger.error(f"OCR processing failed: {e}")
|
|
||||||
return OCRResponse(success=False, results=[], error=str(e))
|
|
||||||
|
|
||||||
|
|
||||||
@app.post("/ocr/upload", response_model=OCRResponse)
|
|
||||||
async def ocr_upload(
|
|
||||||
img: UploadFile = File(...),
|
|
||||||
language: Optional[str] = Form(None)
|
|
||||||
):
|
|
||||||
"""
|
|
||||||
Perform OCR on an uploaded image file
|
|
||||||
|
|
||||||
Args:
|
|
||||||
img: Uploaded image file
|
|
||||||
language: Optional language code (default: env OCR_LANGUAGE)
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
OCRResponse with detected text, confidence scores, and bounding boxes
|
|
||||||
"""
|
|
||||||
try:
|
|
||||||
# Read image
|
|
||||||
contents = await img.read()
|
|
||||||
image = Image.open(io.BytesIO(contents))
|
|
||||||
|
|
||||||
# Convert to RGB if necessary
|
|
||||||
if image.mode != 'RGB':
|
|
||||||
image = image.convert('RGB')
|
|
||||||
|
|
||||||
image_array = np.array(image)
|
|
||||||
|
|
||||||
# Get OCR instance
|
|
||||||
if language and language != OCR_LANGUAGE:
|
|
||||||
ocr = get_ocr(language)
|
|
||||||
else:
|
|
||||||
ocr = get_ocr()
|
|
||||||
|
|
||||||
result = ocr.ocr(image_array, cls=True)
|
|
||||||
|
|
||||||
# Process results
|
|
||||||
results = process_ocr_result(result)
|
|
||||||
|
|
||||||
return OCRResponse(success=True, results=results)
|
|
||||||
|
|
||||||
except Exception as e:
|
|
||||||
logger.error(f"OCR processing failed: {e}")
|
|
||||||
return OCRResponse(success=False, results=[], error=str(e))
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
import uvicorn
|
|
||||||
uvicorn.run(app, host="0.0.0.0", port=5000)
|
|
||||||
12
image_support_files/paddleocr_vl_full_entrypoint.sh
Normal file
12
image_support_files/paddleocr_vl_full_entrypoint.sh
Normal file
@@ -0,0 +1,12 @@
|
|||||||
|
#!/bin/bash
|
||||||
|
set -e
|
||||||
|
|
||||||
|
echo "Starting PaddleOCR-VL Full Pipeline Server (Transformers backend)..."
|
||||||
|
|
||||||
|
# Environment
|
||||||
|
SERVER_PORT=${SERVER_PORT:-8000}
|
||||||
|
SERVER_HOST=${SERVER_HOST:-0.0.0.0}
|
||||||
|
|
||||||
|
# Start our API server directly (no vLLM - uses local transformers inference)
|
||||||
|
echo "Starting API server on port $SERVER_PORT..."
|
||||||
|
exec python /app/server.py
|
||||||
443
image_support_files/paddleocr_vl_full_server.py
Normal file
443
image_support_files/paddleocr_vl_full_server.py
Normal file
@@ -0,0 +1,443 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
"""
|
||||||
|
PaddleOCR-VL Full Pipeline API Server (Transformers backend)
|
||||||
|
|
||||||
|
Provides REST API for document parsing using:
|
||||||
|
- PP-DocLayoutV2 for layout detection
|
||||||
|
- PaddleOCR-VL (transformers) for recognition
|
||||||
|
- Structured JSON/Markdown output
|
||||||
|
"""
|
||||||
|
|
||||||
|
import os
|
||||||
|
import io
|
||||||
|
import base64
|
||||||
|
import logging
|
||||||
|
import tempfile
|
||||||
|
import time
|
||||||
|
import json
|
||||||
|
from typing import Optional, List, Union
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
from fastapi import FastAPI, HTTPException, UploadFile, File, Form
|
||||||
|
from fastapi.responses import JSONResponse
|
||||||
|
from pydantic import BaseModel
|
||||||
|
from PIL import Image
|
||||||
|
import torch
|
||||||
|
|
||||||
|
# Configure logging
|
||||||
|
logging.basicConfig(
|
||||||
|
level=logging.INFO,
|
||||||
|
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
||||||
|
)
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
# Environment configuration
|
||||||
|
SERVER_HOST = os.environ.get('SERVER_HOST', '0.0.0.0')
|
||||||
|
SERVER_PORT = int(os.environ.get('SERVER_PORT', '8000'))
|
||||||
|
MODEL_NAME = "PaddlePaddle/PaddleOCR-VL"
|
||||||
|
|
||||||
|
# Device configuration
|
||||||
|
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
||||||
|
logger.info(f"Using device: {DEVICE}")
|
||||||
|
|
||||||
|
# Task prompts
|
||||||
|
TASK_PROMPTS = {
|
||||||
|
"ocr": "OCR:",
|
||||||
|
"table": "Table Recognition:",
|
||||||
|
"formula": "Formula Recognition:",
|
||||||
|
"chart": "Chart Recognition:",
|
||||||
|
}
|
||||||
|
|
||||||
|
# Initialize FastAPI app
|
||||||
|
app = FastAPI(
|
||||||
|
title="PaddleOCR-VL Full Pipeline Server",
|
||||||
|
description="Document parsing with PP-DocLayoutV2 + PaddleOCR-VL (transformers)",
|
||||||
|
version="1.0.0"
|
||||||
|
)
|
||||||
|
|
||||||
|
# Global model instances
|
||||||
|
vl_model = None
|
||||||
|
vl_processor = None
|
||||||
|
layout_model = None
|
||||||
|
|
||||||
|
|
||||||
|
def load_vl_model():
|
||||||
|
"""Load the PaddleOCR-VL model for element recognition"""
|
||||||
|
global vl_model, vl_processor
|
||||||
|
|
||||||
|
if vl_model is not None:
|
||||||
|
return
|
||||||
|
|
||||||
|
logger.info(f"Loading PaddleOCR-VL model: {MODEL_NAME}")
|
||||||
|
from transformers import AutoModelForCausalLM, AutoProcessor
|
||||||
|
|
||||||
|
vl_processor = AutoProcessor.from_pretrained(MODEL_NAME, trust_remote_code=True)
|
||||||
|
|
||||||
|
if DEVICE == "cuda":
|
||||||
|
vl_model = AutoModelForCausalLM.from_pretrained(
|
||||||
|
MODEL_NAME,
|
||||||
|
trust_remote_code=True,
|
||||||
|
torch_dtype=torch.bfloat16,
|
||||||
|
).to(DEVICE).eval()
|
||||||
|
else:
|
||||||
|
vl_model = AutoModelForCausalLM.from_pretrained(
|
||||||
|
MODEL_NAME,
|
||||||
|
trust_remote_code=True,
|
||||||
|
torch_dtype=torch.float32,
|
||||||
|
low_cpu_mem_usage=True,
|
||||||
|
).eval()
|
||||||
|
|
||||||
|
logger.info("PaddleOCR-VL model loaded successfully")
|
||||||
|
|
||||||
|
|
||||||
|
def load_layout_model():
|
||||||
|
"""Load the LayoutDetection model for layout detection"""
|
||||||
|
global layout_model
|
||||||
|
|
||||||
|
if layout_model is not None:
|
||||||
|
return
|
||||||
|
|
||||||
|
try:
|
||||||
|
logger.info("Loading LayoutDetection model (PP-DocLayout_plus-L)...")
|
||||||
|
from paddleocr import LayoutDetection
|
||||||
|
|
||||||
|
layout_model = LayoutDetection()
|
||||||
|
logger.info("LayoutDetection model loaded successfully")
|
||||||
|
except Exception as e:
|
||||||
|
logger.warning(f"Could not load LayoutDetection: {e}")
|
||||||
|
logger.info("Falling back to VL-only mode (no layout detection)")
|
||||||
|
|
||||||
|
|
||||||
|
def recognize_element(image: Image.Image, task: str = "ocr") -> str:
|
||||||
|
"""Recognize a single element using PaddleOCR-VL"""
|
||||||
|
load_vl_model()
|
||||||
|
|
||||||
|
prompt = TASK_PROMPTS.get(task, TASK_PROMPTS["ocr"])
|
||||||
|
|
||||||
|
messages = [
|
||||||
|
{
|
||||||
|
"role": "user",
|
||||||
|
"content": [
|
||||||
|
{"type": "image", "image": image},
|
||||||
|
{"type": "text", "text": prompt},
|
||||||
|
]
|
||||||
|
}
|
||||||
|
]
|
||||||
|
|
||||||
|
inputs = vl_processor.apply_chat_template(
|
||||||
|
messages,
|
||||||
|
tokenize=True,
|
||||||
|
add_generation_prompt=True,
|
||||||
|
return_dict=True,
|
||||||
|
return_tensors="pt"
|
||||||
|
)
|
||||||
|
|
||||||
|
if DEVICE == "cuda":
|
||||||
|
inputs = {k: v.to(DEVICE) for k, v in inputs.items()}
|
||||||
|
|
||||||
|
with torch.inference_mode():
|
||||||
|
outputs = vl_model.generate(
|
||||||
|
**inputs,
|
||||||
|
max_new_tokens=4096,
|
||||||
|
do_sample=False,
|
||||||
|
use_cache=True
|
||||||
|
)
|
||||||
|
|
||||||
|
response = vl_processor.batch_decode(outputs, skip_special_tokens=True)[0]
|
||||||
|
|
||||||
|
# Extract only the assistant's response content
|
||||||
|
# The response format is: "User: <prompt>\nAssistant: <content>"
|
||||||
|
# We want to extract just the content after "Assistant:"
|
||||||
|
if "Assistant:" in response:
|
||||||
|
parts = response.split("Assistant:")
|
||||||
|
if len(parts) > 1:
|
||||||
|
response = parts[-1].strip()
|
||||||
|
elif "assistant:" in response.lower():
|
||||||
|
# Case-insensitive fallback
|
||||||
|
import re
|
||||||
|
match = re.split(r'[Aa]ssistant:', response)
|
||||||
|
if len(match) > 1:
|
||||||
|
response = match[-1].strip()
|
||||||
|
|
||||||
|
return response
|
||||||
|
|
||||||
|
|
||||||
|
def detect_layout(image: Image.Image) -> List[dict]:
|
||||||
|
"""Detect layout regions in the image"""
|
||||||
|
load_layout_model()
|
||||||
|
|
||||||
|
if layout_model is None:
|
||||||
|
# No layout model - return a single region covering the whole image
|
||||||
|
return [{
|
||||||
|
"type": "text",
|
||||||
|
"bbox": [0, 0, image.width, image.height],
|
||||||
|
"score": 1.0
|
||||||
|
}]
|
||||||
|
|
||||||
|
# Save image to temp file
|
||||||
|
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp:
|
||||||
|
image.save(tmp.name, "PNG")
|
||||||
|
tmp_path = tmp.name
|
||||||
|
|
||||||
|
try:
|
||||||
|
results = layout_model.predict(tmp_path)
|
||||||
|
regions = []
|
||||||
|
|
||||||
|
for res in results:
|
||||||
|
# LayoutDetection returns boxes in 'boxes' key
|
||||||
|
for box in res.get("boxes", []):
|
||||||
|
coord = box.get("coordinate", [0, 0, image.width, image.height])
|
||||||
|
# Convert numpy floats to regular floats
|
||||||
|
bbox = [float(c) for c in coord]
|
||||||
|
regions.append({
|
||||||
|
"type": box.get("label", "text"),
|
||||||
|
"bbox": bbox,
|
||||||
|
"score": float(box.get("score", 1.0))
|
||||||
|
})
|
||||||
|
|
||||||
|
# Sort regions by vertical position (top to bottom)
|
||||||
|
regions.sort(key=lambda r: r["bbox"][1])
|
||||||
|
|
||||||
|
return regions if regions else [{
|
||||||
|
"type": "text",
|
||||||
|
"bbox": [0, 0, image.width, image.height],
|
||||||
|
"score": 1.0
|
||||||
|
}]
|
||||||
|
|
||||||
|
finally:
|
||||||
|
os.unlink(tmp_path)
|
||||||
|
|
||||||
|
|
||||||
|
def process_document(image: Image.Image) -> dict:
|
||||||
|
"""Process a document through the full pipeline"""
|
||||||
|
logger.info(f"Processing document: {image.size}")
|
||||||
|
|
||||||
|
# Step 1: Detect layout
|
||||||
|
regions = detect_layout(image)
|
||||||
|
logger.info(f"Detected {len(regions)} layout regions")
|
||||||
|
|
||||||
|
# Step 2: Recognize each region
|
||||||
|
blocks = []
|
||||||
|
for i, region in enumerate(regions):
|
||||||
|
region_type = region["type"].lower()
|
||||||
|
bbox = region["bbox"]
|
||||||
|
|
||||||
|
# Crop region from image
|
||||||
|
x1, y1, x2, y2 = [int(c) for c in bbox]
|
||||||
|
region_image = image.crop((x1, y1, x2, y2))
|
||||||
|
|
||||||
|
# Determine task based on region type
|
||||||
|
if "table" in region_type:
|
||||||
|
task = "table"
|
||||||
|
elif "formula" in region_type or "math" in region_type:
|
||||||
|
task = "formula"
|
||||||
|
elif "chart" in region_type or "figure" in region_type:
|
||||||
|
task = "chart"
|
||||||
|
else:
|
||||||
|
task = "ocr"
|
||||||
|
|
||||||
|
# Recognize the region
|
||||||
|
try:
|
||||||
|
content = recognize_element(region_image, task)
|
||||||
|
blocks.append({
|
||||||
|
"index": i,
|
||||||
|
"type": region_type,
|
||||||
|
"bbox": bbox,
|
||||||
|
"content": content,
|
||||||
|
"task": task
|
||||||
|
})
|
||||||
|
logger.info(f" Region {i} ({region_type}): {len(content)} chars")
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f" Region {i} error: {e}")
|
||||||
|
blocks.append({
|
||||||
|
"index": i,
|
||||||
|
"type": region_type,
|
||||||
|
"bbox": bbox,
|
||||||
|
"content": "",
|
||||||
|
"error": str(e)
|
||||||
|
})
|
||||||
|
|
||||||
|
return {"blocks": blocks, "image_size": list(image.size)}
|
||||||
|
|
||||||
|
|
||||||
|
def result_to_markdown(result: dict) -> str:
|
||||||
|
"""Convert result to Markdown format"""
|
||||||
|
lines = []
|
||||||
|
|
||||||
|
for block in result.get("blocks", []):
|
||||||
|
block_type = block.get("type", "text")
|
||||||
|
content = block.get("content", "")
|
||||||
|
|
||||||
|
if "table" in block_type.lower():
|
||||||
|
lines.append(f"\n{content}\n")
|
||||||
|
elif "formula" in block_type.lower():
|
||||||
|
lines.append(f"\n$$\n{content}\n$$\n")
|
||||||
|
else:
|
||||||
|
lines.append(content)
|
||||||
|
|
||||||
|
return "\n\n".join(lines)
|
||||||
|
|
||||||
|
|
||||||
|
# Request/Response models
|
||||||
|
class ParseRequest(BaseModel):
|
||||||
|
image: str # base64 encoded image
|
||||||
|
output_format: Optional[str] = "json"
|
||||||
|
|
||||||
|
|
||||||
|
class ParseResponse(BaseModel):
|
||||||
|
success: bool
|
||||||
|
format: str
|
||||||
|
result: Union[dict, str]
|
||||||
|
processing_time: float
|
||||||
|
error: Optional[str] = None
|
||||||
|
|
||||||
|
|
||||||
|
def decode_image(image_source: str) -> Image.Image:
|
||||||
|
"""Decode image from base64 or data URL"""
|
||||||
|
if image_source.startswith("data:"):
|
||||||
|
header, data = image_source.split(",", 1)
|
||||||
|
image_data = base64.b64decode(data)
|
||||||
|
else:
|
||||||
|
image_data = base64.b64decode(image_source)
|
||||||
|
|
||||||
|
return Image.open(io.BytesIO(image_data)).convert("RGB")
|
||||||
|
|
||||||
|
|
||||||
|
@app.on_event("startup")
|
||||||
|
async def startup_event():
|
||||||
|
"""Pre-load models on startup"""
|
||||||
|
logger.info("Starting PaddleOCR-VL Full Pipeline Server...")
|
||||||
|
try:
|
||||||
|
load_vl_model()
|
||||||
|
load_layout_model()
|
||||||
|
logger.info("Models loaded successfully")
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Failed to pre-load models: {e}")
|
||||||
|
|
||||||
|
|
||||||
|
@app.get("/health")
|
||||||
|
async def health_check():
|
||||||
|
"""Health check endpoint"""
|
||||||
|
return {
|
||||||
|
"status": "healthy" if vl_model is not None else "loading",
|
||||||
|
"service": "PaddleOCR-VL Full Pipeline (Transformers)",
|
||||||
|
"device": DEVICE,
|
||||||
|
"vl_model_loaded": vl_model is not None,
|
||||||
|
"layout_model_loaded": layout_model is not None
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
@app.get("/formats")
|
||||||
|
async def supported_formats():
|
||||||
|
"""List supported output formats"""
|
||||||
|
return {
|
||||||
|
"output_formats": ["json", "markdown"],
|
||||||
|
"image_formats": ["PNG", "JPEG", "WebP", "BMP", "GIF", "TIFF"],
|
||||||
|
"capabilities": [
|
||||||
|
"Layout detection (PP-DocLayoutV2)",
|
||||||
|
"Text recognition (OCR)",
|
||||||
|
"Table recognition",
|
||||||
|
"Formula recognition (LaTeX)",
|
||||||
|
"Chart recognition",
|
||||||
|
"Multi-language support (109 languages)"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
@app.post("/parse", response_model=ParseResponse)
|
||||||
|
async def parse_document_endpoint(request: ParseRequest):
|
||||||
|
"""Parse a document image and return structured output"""
|
||||||
|
try:
|
||||||
|
start_time = time.time()
|
||||||
|
|
||||||
|
image = decode_image(request.image)
|
||||||
|
result = process_document(image)
|
||||||
|
|
||||||
|
if request.output_format == "markdown":
|
||||||
|
markdown = result_to_markdown(result)
|
||||||
|
output = {"markdown": markdown}
|
||||||
|
else:
|
||||||
|
output = result
|
||||||
|
|
||||||
|
elapsed = time.time() - start_time
|
||||||
|
logger.info(f"Processing complete in {elapsed:.2f}s")
|
||||||
|
|
||||||
|
return ParseResponse(
|
||||||
|
success=True,
|
||||||
|
format=request.output_format,
|
||||||
|
result=output,
|
||||||
|
processing_time=elapsed
|
||||||
|
)
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Error processing document: {e}", exc_info=True)
|
||||||
|
return ParseResponse(
|
||||||
|
success=False,
|
||||||
|
format=request.output_format,
|
||||||
|
result={},
|
||||||
|
processing_time=0,
|
||||||
|
error=str(e)
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
@app.post("/v1/chat/completions")
|
||||||
|
async def chat_completions(request: dict):
|
||||||
|
"""OpenAI-compatible chat completions endpoint"""
|
||||||
|
try:
|
||||||
|
messages = request.get("messages", [])
|
||||||
|
output_format = request.get("output_format", "json")
|
||||||
|
|
||||||
|
# Find user message with image
|
||||||
|
image = None
|
||||||
|
for msg in reversed(messages):
|
||||||
|
if msg.get("role") == "user":
|
||||||
|
content = msg.get("content", [])
|
||||||
|
if isinstance(content, list):
|
||||||
|
for item in content:
|
||||||
|
if item.get("type") == "image_url":
|
||||||
|
url = item.get("image_url", {}).get("url", "")
|
||||||
|
image = decode_image(url)
|
||||||
|
break
|
||||||
|
break
|
||||||
|
|
||||||
|
if image is None:
|
||||||
|
raise HTTPException(status_code=400, detail="No image provided")
|
||||||
|
|
||||||
|
start_time = time.time()
|
||||||
|
result = process_document(image)
|
||||||
|
|
||||||
|
if output_format == "markdown":
|
||||||
|
content = result_to_markdown(result)
|
||||||
|
else:
|
||||||
|
content = json.dumps(result, ensure_ascii=False, indent=2)
|
||||||
|
|
||||||
|
elapsed = time.time() - start_time
|
||||||
|
|
||||||
|
return {
|
||||||
|
"id": f"chatcmpl-{int(time.time()*1000)}",
|
||||||
|
"object": "chat.completion",
|
||||||
|
"created": int(time.time()),
|
||||||
|
"model": "paddleocr-vl-full",
|
||||||
|
"choices": [{
|
||||||
|
"index": 0,
|
||||||
|
"message": {"role": "assistant", "content": content},
|
||||||
|
"finish_reason": "stop"
|
||||||
|
}],
|
||||||
|
"usage": {
|
||||||
|
"prompt_tokens": 100,
|
||||||
|
"completion_tokens": len(content) // 4,
|
||||||
|
"total_tokens": 100 + len(content) // 4
|
||||||
|
},
|
||||||
|
"processing_time": elapsed
|
||||||
|
}
|
||||||
|
|
||||||
|
except HTTPException:
|
||||||
|
raise
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Error in chat completions: {e}", exc_info=True)
|
||||||
|
raise HTTPException(status_code=500, detail=str(e))
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
import uvicorn
|
||||||
|
uvicorn.run(app, host=SERVER_HOST, port=SERVER_PORT)
|
||||||
465
image_support_files/paddleocr_vl_server.py
Normal file
465
image_support_files/paddleocr_vl_server.py
Normal file
@@ -0,0 +1,465 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
"""
|
||||||
|
PaddleOCR-VL FastAPI Server (CPU variant)
|
||||||
|
Provides OpenAI-compatible REST API for document parsing using PaddleOCR-VL
|
||||||
|
"""
|
||||||
|
|
||||||
|
import os
|
||||||
|
import io
|
||||||
|
import base64
|
||||||
|
import logging
|
||||||
|
import time
|
||||||
|
from typing import Optional, List, Any, Dict, Union
|
||||||
|
|
||||||
|
from fastapi import FastAPI, HTTPException
|
||||||
|
from fastapi.responses import JSONResponse
|
||||||
|
from pydantic import BaseModel
|
||||||
|
import torch
|
||||||
|
from PIL import Image
|
||||||
|
|
||||||
|
# Configure logging
|
||||||
|
logging.basicConfig(
|
||||||
|
level=logging.INFO,
|
||||||
|
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
||||||
|
)
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
# Environment configuration
|
||||||
|
SERVER_HOST = os.environ.get('SERVER_HOST', '0.0.0.0')
|
||||||
|
SERVER_PORT = int(os.environ.get('SERVER_PORT', '8000'))
|
||||||
|
MODEL_NAME = os.environ.get('MODEL_NAME', 'PaddlePaddle/PaddleOCR-VL')
|
||||||
|
|
||||||
|
# Device configuration
|
||||||
|
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
||||||
|
logger.info(f"Using device: {DEVICE}")
|
||||||
|
|
||||||
|
# Task prompts for PaddleOCR-VL
|
||||||
|
TASK_PROMPTS = {
|
||||||
|
"ocr": "OCR:",
|
||||||
|
"table": "Table Recognition:",
|
||||||
|
"formula": "Formula Recognition:",
|
||||||
|
"chart": "Chart Recognition:",
|
||||||
|
}
|
||||||
|
|
||||||
|
# Initialize FastAPI app
|
||||||
|
app = FastAPI(
|
||||||
|
title="PaddleOCR-VL Server",
|
||||||
|
description="OpenAI-compatible REST API for document parsing using PaddleOCR-VL",
|
||||||
|
version="1.0.0"
|
||||||
|
)
|
||||||
|
|
||||||
|
# Global model instances
|
||||||
|
model = None
|
||||||
|
processor = None
|
||||||
|
|
||||||
|
|
||||||
|
# Request/Response models (OpenAI-compatible)
|
||||||
|
class ImageUrl(BaseModel):
|
||||||
|
url: str
|
||||||
|
|
||||||
|
|
||||||
|
class ContentItem(BaseModel):
|
||||||
|
type: str
|
||||||
|
text: Optional[str] = None
|
||||||
|
image_url: Optional[ImageUrl] = None
|
||||||
|
|
||||||
|
|
||||||
|
class Message(BaseModel):
|
||||||
|
role: str
|
||||||
|
content: Union[str, List[ContentItem]]
|
||||||
|
|
||||||
|
|
||||||
|
class ChatCompletionRequest(BaseModel):
|
||||||
|
model: str = "paddleocr-vl"
|
||||||
|
messages: List[Message]
|
||||||
|
temperature: Optional[float] = 0.0
|
||||||
|
max_tokens: Optional[int] = 4096
|
||||||
|
|
||||||
|
|
||||||
|
class Choice(BaseModel):
|
||||||
|
index: int
|
||||||
|
message: Message
|
||||||
|
finish_reason: str
|
||||||
|
|
||||||
|
|
||||||
|
class Usage(BaseModel):
|
||||||
|
prompt_tokens: int
|
||||||
|
completion_tokens: int
|
||||||
|
total_tokens: int
|
||||||
|
|
||||||
|
|
||||||
|
class ChatCompletionResponse(BaseModel):
|
||||||
|
id: str
|
||||||
|
object: str = "chat.completion"
|
||||||
|
created: int
|
||||||
|
model: str
|
||||||
|
choices: List[Choice]
|
||||||
|
usage: Usage
|
||||||
|
|
||||||
|
|
||||||
|
class HealthResponse(BaseModel):
|
||||||
|
status: str
|
||||||
|
model: str
|
||||||
|
device: str
|
||||||
|
|
||||||
|
|
||||||
|
def load_model():
|
||||||
|
"""Load the PaddleOCR-VL model and processor"""
|
||||||
|
global model, processor
|
||||||
|
|
||||||
|
if model is not None:
|
||||||
|
return
|
||||||
|
|
||||||
|
logger.info(f"Loading PaddleOCR-VL model: {MODEL_NAME}")
|
||||||
|
|
||||||
|
from transformers import AutoModelForCausalLM, AutoProcessor
|
||||||
|
|
||||||
|
# Load processor
|
||||||
|
processor = AutoProcessor.from_pretrained(MODEL_NAME, trust_remote_code=True)
|
||||||
|
|
||||||
|
# Load model with appropriate settings for CPU/GPU
|
||||||
|
if DEVICE == "cuda":
|
||||||
|
model = AutoModelForCausalLM.from_pretrained(
|
||||||
|
MODEL_NAME,
|
||||||
|
trust_remote_code=True,
|
||||||
|
torch_dtype=torch.bfloat16,
|
||||||
|
).to(DEVICE).eval()
|
||||||
|
else:
|
||||||
|
# CPU mode - use float32 for compatibility
|
||||||
|
model = AutoModelForCausalLM.from_pretrained(
|
||||||
|
MODEL_NAME,
|
||||||
|
trust_remote_code=True,
|
||||||
|
torch_dtype=torch.float32,
|
||||||
|
low_cpu_mem_usage=True,
|
||||||
|
).eval()
|
||||||
|
|
||||||
|
logger.info("PaddleOCR-VL model loaded successfully")
|
||||||
|
|
||||||
|
|
||||||
|
def optimize_image_resolution(image: Image.Image, max_size: int = 2048, min_size: int = 1080) -> Image.Image:
|
||||||
|
"""
|
||||||
|
Optimize image resolution for PaddleOCR-VL.
|
||||||
|
|
||||||
|
Best results are achieved with images in the 1080p-2K range.
|
||||||
|
- Images larger than max_size are scaled down
|
||||||
|
- Very small images are scaled up to min_size
|
||||||
|
"""
|
||||||
|
width, height = image.size
|
||||||
|
max_dim = max(width, height)
|
||||||
|
min_dim = min(width, height)
|
||||||
|
|
||||||
|
# Scale down if too large (4K+ images often miss text)
|
||||||
|
if max_dim > max_size:
|
||||||
|
scale = max_size / max_dim
|
||||||
|
new_width = int(width * scale)
|
||||||
|
new_height = int(height * scale)
|
||||||
|
logger.info(f"Scaling down image from {width}x{height} to {new_width}x{new_height}")
|
||||||
|
image = image.resize((new_width, new_height), Image.Resampling.LANCZOS)
|
||||||
|
# Scale up if too small
|
||||||
|
elif max_dim < min_size and min_dim < min_size:
|
||||||
|
scale = min_size / max_dim
|
||||||
|
new_width = int(width * scale)
|
||||||
|
new_height = int(height * scale)
|
||||||
|
logger.info(f"Scaling up image from {width}x{height} to {new_width}x{new_height}")
|
||||||
|
image = image.resize((new_width, new_height), Image.Resampling.LANCZOS)
|
||||||
|
else:
|
||||||
|
logger.info(f"Image size {width}x{height} is optimal, no scaling needed")
|
||||||
|
|
||||||
|
return image
|
||||||
|
|
||||||
|
|
||||||
|
def decode_image(image_source: str, optimize: bool = True) -> Image.Image:
|
||||||
|
"""
|
||||||
|
Decode image from various sources.
|
||||||
|
|
||||||
|
Supported formats:
|
||||||
|
- Base64 data URL: data:image/png;base64,... or data:image/jpeg;base64,...
|
||||||
|
- HTTP/HTTPS URL: https://example.com/image.png
|
||||||
|
- Raw base64 string
|
||||||
|
- Local file path
|
||||||
|
|
||||||
|
Supported image types: PNG, JPEG, WebP, BMP, GIF, TIFF
|
||||||
|
"""
|
||||||
|
image = None
|
||||||
|
|
||||||
|
if image_source.startswith("data:"):
|
||||||
|
# Base64 encoded image with MIME type header
|
||||||
|
# Supports: data:image/png;base64,... data:image/jpeg;base64,... etc.
|
||||||
|
header, data = image_source.split(",", 1)
|
||||||
|
image_data = base64.b64decode(data)
|
||||||
|
image = Image.open(io.BytesIO(image_data)).convert("RGB")
|
||||||
|
logger.debug(f"Decoded base64 image with header: {header}")
|
||||||
|
elif image_source.startswith("http://") or image_source.startswith("https://"):
|
||||||
|
# URL - fetch image
|
||||||
|
import httpx
|
||||||
|
response = httpx.get(image_source, timeout=30.0)
|
||||||
|
response.raise_for_status()
|
||||||
|
image = Image.open(io.BytesIO(response.content)).convert("RGB")
|
||||||
|
logger.debug(f"Fetched image from URL: {image_source[:50]}...")
|
||||||
|
else:
|
||||||
|
# Assume it's a file path or raw base64
|
||||||
|
try:
|
||||||
|
image_data = base64.b64decode(image_source)
|
||||||
|
image = Image.open(io.BytesIO(image_data)).convert("RGB")
|
||||||
|
logger.debug("Decoded raw base64 image")
|
||||||
|
except:
|
||||||
|
# Try as file path
|
||||||
|
image = Image.open(image_source).convert("RGB")
|
||||||
|
logger.debug(f"Loaded image from file: {image_source}")
|
||||||
|
|
||||||
|
# Optimize resolution for best OCR results
|
||||||
|
if optimize:
|
||||||
|
image = optimize_image_resolution(image)
|
||||||
|
|
||||||
|
return image
|
||||||
|
|
||||||
|
|
||||||
|
def extract_image_and_text(content: Union[str, List[ContentItem]]) -> tuple:
|
||||||
|
"""Extract image and text prompt from message content"""
|
||||||
|
if isinstance(content, str):
|
||||||
|
return None, content
|
||||||
|
|
||||||
|
image = None
|
||||||
|
text = ""
|
||||||
|
|
||||||
|
for item in content:
|
||||||
|
if item.type == "image_url" and item.image_url:
|
||||||
|
image = decode_image(item.image_url.url)
|
||||||
|
elif item.type == "text" and item.text:
|
||||||
|
text = item.text
|
||||||
|
|
||||||
|
return image, text
|
||||||
|
|
||||||
|
|
||||||
|
def generate_response(image: Image.Image, prompt: str, max_tokens: int = 4096) -> str:
|
||||||
|
"""Generate response using PaddleOCR-VL"""
|
||||||
|
load_model()
|
||||||
|
|
||||||
|
messages = [
|
||||||
|
{
|
||||||
|
"role": "user",
|
||||||
|
"content": [
|
||||||
|
{"type": "image", "image": image},
|
||||||
|
{"type": "text", "text": prompt},
|
||||||
|
]
|
||||||
|
}
|
||||||
|
]
|
||||||
|
|
||||||
|
inputs = processor.apply_chat_template(
|
||||||
|
messages,
|
||||||
|
tokenize=True,
|
||||||
|
add_generation_prompt=True,
|
||||||
|
return_dict=True,
|
||||||
|
return_tensors="pt"
|
||||||
|
)
|
||||||
|
|
||||||
|
if DEVICE == "cuda":
|
||||||
|
inputs = {k: v.to(DEVICE) for k, v in inputs.items()}
|
||||||
|
|
||||||
|
with torch.inference_mode():
|
||||||
|
outputs = model.generate(
|
||||||
|
**inputs,
|
||||||
|
max_new_tokens=max_tokens,
|
||||||
|
do_sample=False,
|
||||||
|
use_cache=True
|
||||||
|
)
|
||||||
|
|
||||||
|
response = processor.batch_decode(outputs, skip_special_tokens=True)[0]
|
||||||
|
|
||||||
|
# Extract the assistant's response (after the prompt)
|
||||||
|
if "assistant" in response.lower():
|
||||||
|
parts = response.split("assistant")
|
||||||
|
if len(parts) > 1:
|
||||||
|
response = parts[-1].strip()
|
||||||
|
|
||||||
|
return response
|
||||||
|
|
||||||
|
|
||||||
|
@app.on_event("startup")
|
||||||
|
async def startup_event():
|
||||||
|
"""Pre-load the model on startup"""
|
||||||
|
logger.info("Pre-loading PaddleOCR-VL model...")
|
||||||
|
try:
|
||||||
|
load_model()
|
||||||
|
logger.info("Model pre-loaded successfully")
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Failed to pre-load model: {e}")
|
||||||
|
# Don't fail startup - model will be loaded on first request
|
||||||
|
|
||||||
|
|
||||||
|
@app.get("/health", response_model=HealthResponse)
|
||||||
|
async def health_check():
|
||||||
|
"""Health check endpoint"""
|
||||||
|
return HealthResponse(
|
||||||
|
status="healthy" if model is not None else "loading",
|
||||||
|
model=MODEL_NAME,
|
||||||
|
device=DEVICE
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
@app.get("/formats")
|
||||||
|
async def supported_formats():
|
||||||
|
"""List supported image formats and input methods"""
|
||||||
|
return {
|
||||||
|
"image_formats": {
|
||||||
|
"supported": ["PNG", "JPEG", "WebP", "BMP", "GIF", "TIFF"],
|
||||||
|
"recommended": ["PNG", "JPEG"],
|
||||||
|
"mime_types": [
|
||||||
|
"image/png",
|
||||||
|
"image/jpeg",
|
||||||
|
"image/webp",
|
||||||
|
"image/bmp",
|
||||||
|
"image/gif",
|
||||||
|
"image/tiff"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"input_methods": {
|
||||||
|
"base64_data_url": {
|
||||||
|
"description": "Base64 encoded image with MIME type header",
|
||||||
|
"example": "..."
|
||||||
|
},
|
||||||
|
"http_url": {
|
||||||
|
"description": "Direct HTTP/HTTPS URL to image",
|
||||||
|
"example": "https://example.com/image.png"
|
||||||
|
},
|
||||||
|
"raw_base64": {
|
||||||
|
"description": "Raw base64 string without header",
|
||||||
|
"example": "iVBORw0KGgo..."
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"resolution": {
|
||||||
|
"optimal_range": "1080p to 2K (1080-2048 pixels on longest side)",
|
||||||
|
"auto_scaling": True,
|
||||||
|
"note": "Images are automatically scaled to optimal range. 4K+ images are scaled down for better accuracy."
|
||||||
|
},
|
||||||
|
"task_prompts": TASK_PROMPTS
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
@app.get("/v1/models")
|
||||||
|
async def list_models():
|
||||||
|
"""List available models (OpenAI-compatible)"""
|
||||||
|
return {
|
||||||
|
"object": "list",
|
||||||
|
"data": [
|
||||||
|
{
|
||||||
|
"id": "paddleocr-vl",
|
||||||
|
"object": "model",
|
||||||
|
"created": int(time.time()),
|
||||||
|
"owned_by": "paddlepaddle"
|
||||||
|
}
|
||||||
|
]
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
@app.post("/v1/chat/completions", response_model=ChatCompletionResponse)
|
||||||
|
async def chat_completions(request: ChatCompletionRequest):
|
||||||
|
"""
|
||||||
|
OpenAI-compatible chat completions endpoint for PaddleOCR-VL
|
||||||
|
|
||||||
|
Supports tasks:
|
||||||
|
- "OCR:" - Text recognition
|
||||||
|
- "Table Recognition:" - Table extraction
|
||||||
|
- "Formula Recognition:" - Formula extraction
|
||||||
|
- "Chart Recognition:" - Chart extraction
|
||||||
|
"""
|
||||||
|
try:
|
||||||
|
# Get the last user message
|
||||||
|
user_message = None
|
||||||
|
for msg in reversed(request.messages):
|
||||||
|
if msg.role == "user":
|
||||||
|
user_message = msg
|
||||||
|
break
|
||||||
|
|
||||||
|
if not user_message:
|
||||||
|
raise HTTPException(status_code=400, detail="No user message found")
|
||||||
|
|
||||||
|
# Extract image and prompt
|
||||||
|
image, prompt = extract_image_and_text(user_message.content)
|
||||||
|
|
||||||
|
if image is None:
|
||||||
|
raise HTTPException(status_code=400, detail="No image provided in message")
|
||||||
|
|
||||||
|
# Default to OCR if no specific prompt
|
||||||
|
if not prompt or prompt.strip() == "":
|
||||||
|
prompt = "OCR:"
|
||||||
|
|
||||||
|
logger.info(f"Processing request with prompt: {prompt[:50]}...")
|
||||||
|
|
||||||
|
# Generate response
|
||||||
|
start_time = time.time()
|
||||||
|
response_text = generate_response(image, prompt, request.max_tokens or 4096)
|
||||||
|
elapsed = time.time() - start_time
|
||||||
|
|
||||||
|
logger.info(f"Generated response in {elapsed:.2f}s ({len(response_text)} chars)")
|
||||||
|
|
||||||
|
# Build OpenAI-compatible response
|
||||||
|
return ChatCompletionResponse(
|
||||||
|
id=f"chatcmpl-{int(time.time()*1000)}",
|
||||||
|
created=int(time.time()),
|
||||||
|
model=request.model,
|
||||||
|
choices=[
|
||||||
|
Choice(
|
||||||
|
index=0,
|
||||||
|
message=Message(role="assistant", content=response_text),
|
||||||
|
finish_reason="stop"
|
||||||
|
)
|
||||||
|
],
|
||||||
|
usage=Usage(
|
||||||
|
prompt_tokens=100, # Approximate
|
||||||
|
completion_tokens=len(response_text) // 4,
|
||||||
|
total_tokens=100 + len(response_text) // 4
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
except HTTPException:
|
||||||
|
raise
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Error processing request: {e}")
|
||||||
|
raise HTTPException(status_code=500, detail=str(e))
|
||||||
|
|
||||||
|
|
||||||
|
# Legacy endpoint for compatibility with old PaddleOCR API
|
||||||
|
class LegacyOCRRequest(BaseModel):
|
||||||
|
image: str
|
||||||
|
task: Optional[str] = "ocr"
|
||||||
|
|
||||||
|
|
||||||
|
class LegacyOCRResponse(BaseModel):
|
||||||
|
success: bool
|
||||||
|
result: str
|
||||||
|
task: str
|
||||||
|
error: Optional[str] = None
|
||||||
|
|
||||||
|
|
||||||
|
@app.post("/ocr", response_model=LegacyOCRResponse)
|
||||||
|
async def legacy_ocr(request: LegacyOCRRequest):
|
||||||
|
"""
|
||||||
|
Legacy OCR endpoint for backwards compatibility
|
||||||
|
|
||||||
|
Tasks: ocr, table, formula, chart
|
||||||
|
"""
|
||||||
|
try:
|
||||||
|
image = decode_image(request.image)
|
||||||
|
prompt = TASK_PROMPTS.get(request.task, TASK_PROMPTS["ocr"])
|
||||||
|
|
||||||
|
result = generate_response(image, prompt)
|
||||||
|
|
||||||
|
return LegacyOCRResponse(
|
||||||
|
success=True,
|
||||||
|
result=result,
|
||||||
|
task=request.task
|
||||||
|
)
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Legacy OCR error: {e}")
|
||||||
|
return LegacyOCRResponse(
|
||||||
|
success=False,
|
||||||
|
result="",
|
||||||
|
task=request.task,
|
||||||
|
error=str(e)
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
import uvicorn
|
||||||
|
uvicorn.run(app, host=SERVER_HOST, port=SERVER_PORT)
|
||||||
11
package.json
11
package.json
@@ -1,6 +1,6 @@
|
|||||||
{
|
{
|
||||||
"name": "@host.today/ht-docker-ai",
|
"name": "@host.today/ht-docker-ai",
|
||||||
"version": "1.3.0",
|
"version": "1.7.0",
|
||||||
"type": "module",
|
"type": "module",
|
||||||
"private": false,
|
"private": false,
|
||||||
"description": "Docker images for AI vision-language models including MiniCPM-V 4.5",
|
"description": "Docker images for AI vision-language models including MiniCPM-V 4.5",
|
||||||
@@ -13,8 +13,8 @@
|
|||||||
"test": "tstest test/ --verbose"
|
"test": "tstest test/ --verbose"
|
||||||
},
|
},
|
||||||
"devDependencies": {
|
"devDependencies": {
|
||||||
"@git.zone/tstest": "^1.0.90",
|
"@git.zone/tsrun": "^1.3.3",
|
||||||
"@git.zone/tsrun": "^1.3.3"
|
"@git.zone/tstest": "^1.0.90"
|
||||||
},
|
},
|
||||||
"repository": {
|
"repository": {
|
||||||
"type": "git",
|
"type": "git",
|
||||||
@@ -28,5 +28,8 @@
|
|||||||
"minicpm",
|
"minicpm",
|
||||||
"ollama",
|
"ollama",
|
||||||
"multimodal"
|
"multimodal"
|
||||||
]
|
],
|
||||||
|
"dependencies": {
|
||||||
|
"@types/node": "^25.0.9"
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|||||||
4
pnpm-lock.yaml
generated
4
pnpm-lock.yaml
generated
@@ -7,6 +7,10 @@ settings:
|
|||||||
importers:
|
importers:
|
||||||
|
|
||||||
.:
|
.:
|
||||||
|
dependencies:
|
||||||
|
'@types/node':
|
||||||
|
specifier: ^25.0.9
|
||||||
|
version: 25.0.9
|
||||||
devDependencies:
|
devDependencies:
|
||||||
'@git.zone/tsrun':
|
'@git.zone/tsrun':
|
||||||
specifier: ^1.3.3
|
specifier: ^1.3.3
|
||||||
|
|||||||
117
readme.hints.md
117
readme.hints.md
@@ -77,56 +77,73 @@ HEALTHCHECK --interval=30s --timeout=10s --start-period=60s --retries=3 \
|
|||||||
|
|
||||||
CPU variant has longer `start-period` (120s) due to slower startup.
|
CPU variant has longer `start-period` (120s) due to slower startup.
|
||||||
|
|
||||||
## PaddleOCR
|
## PaddleOCR-VL (Recommended)
|
||||||
|
|
||||||
### Overview
|
### Overview
|
||||||
|
|
||||||
PaddleOCR is a standalone OCR service using PaddlePaddle's PP-OCRv4 model. It provides:
|
PaddleOCR-VL is a 0.9B parameter Vision-Language Model specifically optimized for document parsing. It replaces the older PP-Structure approach with native VLM understanding.
|
||||||
|
|
||||||
- Text detection and recognition
|
**Key advantages over PP-Structure:**
|
||||||
- Multi-language support
|
- Native table understanding (no HTML parsing needed)
|
||||||
- FastAPI REST API
|
- 109 language support
|
||||||
- GPU and CPU variants
|
- Better handling of complex multi-row tables
|
||||||
|
- Structured Markdown/JSON output
|
||||||
|
|
||||||
### Docker Images
|
### Docker Images
|
||||||
|
|
||||||
| Tag | Description |
|
| Tag | Description |
|
||||||
|-----|-------------|
|
|-----|-------------|
|
||||||
| `paddleocr` | GPU variant (default) |
|
| `paddleocr-vl` | GPU variant using vLLM (recommended) |
|
||||||
| `paddleocr-gpu` | GPU variant (alias) |
|
| `paddleocr-vl-cpu` | CPU variant using transformers |
|
||||||
| `paddleocr-cpu` | CPU-only variant |
|
|
||||||
|
|
||||||
### API Endpoints
|
### API Endpoints (OpenAI-compatible)
|
||||||
|
|
||||||
| Endpoint | Method | Description |
|
| Endpoint | Method | Description |
|
||||||
|----------|--------|-------------|
|
|----------|--------|-------------|
|
||||||
| `/health` | GET | Health check with model info |
|
| `/health` | GET | Health check with model info |
|
||||||
| `/ocr` | POST | OCR with base64 image (JSON body) |
|
| `/v1/models` | GET | List available models |
|
||||||
| `/ocr/upload` | POST | OCR with file upload (multipart form) |
|
| `/v1/chat/completions` | POST | OpenAI-compatible chat completions |
|
||||||
|
| `/ocr` | POST | Legacy OCR endpoint |
|
||||||
|
|
||||||
### Request/Response Format
|
### Request/Response Format
|
||||||
|
|
||||||
**POST /ocr (JSON)**
|
**POST /v1/chat/completions (OpenAI-compatible)**
|
||||||
```json
|
```json
|
||||||
{
|
{
|
||||||
"image": "<base64-encoded-image>",
|
"model": "paddleocr-vl",
|
||||||
"language": "en" // optional
|
"messages": [
|
||||||
|
{
|
||||||
|
"role": "user",
|
||||||
|
"content": [
|
||||||
|
{"type": "image_url", "image_url": {"url": "data:image/png;base64,..."}},
|
||||||
|
{"type": "text", "text": "Table Recognition:"}
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"temperature": 0.0,
|
||||||
|
"max_tokens": 8192
|
||||||
}
|
}
|
||||||
```
|
```
|
||||||
|
|
||||||
**POST /ocr/upload (multipart)**
|
**Task Prompts:**
|
||||||
- `img`: image file
|
- `"OCR:"` - Text recognition
|
||||||
- `language`: optional language code
|
- `"Table Recognition:"` - Table extraction (returns markdown)
|
||||||
|
- `"Formula Recognition:"` - Formula extraction
|
||||||
|
- `"Chart Recognition:"` - Chart extraction
|
||||||
|
|
||||||
**Response**
|
**Response**
|
||||||
```json
|
```json
|
||||||
{
|
{
|
||||||
"success": true,
|
"id": "chatcmpl-...",
|
||||||
"results": [
|
"object": "chat.completion",
|
||||||
|
"choices": [
|
||||||
{
|
{
|
||||||
"text": "Invoice #12345",
|
"index": 0,
|
||||||
"confidence": 0.98,
|
"message": {
|
||||||
"box": [[x1,y1], [x2,y2], [x3,y3], [x4,y4]]
|
"role": "assistant",
|
||||||
|
"content": "| Date | Description | Amount |\n|---|---|---|\n| 2021-06-01 | GITLAB INC | -119.96 |"
|
||||||
|
},
|
||||||
|
"finish_reason": "stop"
|
||||||
}
|
}
|
||||||
]
|
]
|
||||||
}
|
}
|
||||||
@@ -136,19 +153,16 @@ PaddleOCR is a standalone OCR service using PaddlePaddle's PP-OCRv4 model. It pr
|
|||||||
|
|
||||||
| Variable | Default | Description |
|
| Variable | Default | Description |
|
||||||
|----------|---------|-------------|
|
|----------|---------|-------------|
|
||||||
| `OCR_LANGUAGE` | `en` | Default language for OCR |
|
| `MODEL_NAME` | `PaddlePaddle/PaddleOCR-VL` | Model to load |
|
||||||
| `SERVER_PORT` | `5000` | Server port |
|
| `HOST` | `0.0.0.0` | Server host |
|
||||||
| `SERVER_HOST` | `0.0.0.0` | Server host |
|
| `PORT` | `8000` | Server port |
|
||||||
| `CUDA_VISIBLE_DEVICES` | (auto) | Set to `-1` for CPU-only |
|
| `MAX_BATCHED_TOKENS` | `16384` | vLLM max batch tokens |
|
||||||
|
| `GPU_MEMORY_UTILIZATION` | `0.9` | GPU memory usage (0-1) |
|
||||||
|
|
||||||
### Performance
|
### Performance
|
||||||
|
|
||||||
- **GPU**: ~1-3 seconds per page
|
- **GPU (vLLM)**: ~2-5 seconds per page
|
||||||
- **CPU**: ~10-30 seconds per page
|
- **CPU**: ~30-60 seconds per page
|
||||||
|
|
||||||
### Supported Languages
|
|
||||||
|
|
||||||
Common language codes: `en` (English), `ch` (Chinese), `de` (German), `fr` (French), `es` (Spanish), `ja` (Japanese), `ko` (Korean)
|
|
||||||
|
|
||||||
---
|
---
|
||||||
|
|
||||||
@@ -193,6 +207,43 @@ npmci docker build
|
|||||||
npmci docker push code.foss.global
|
npmci docker push code.foss.global
|
||||||
```
|
```
|
||||||
|
|
||||||
|
## Multi-Pass Extraction Strategy
|
||||||
|
|
||||||
|
The bank statement extraction uses a dual-VLM consensus approach:
|
||||||
|
|
||||||
|
### Architecture: Dual-VLM Consensus
|
||||||
|
|
||||||
|
| VLM | Model | Purpose |
|
||||||
|
|-----|-------|---------|
|
||||||
|
| **MiniCPM-V 4.5** | 8B params | Primary visual extraction |
|
||||||
|
| **PaddleOCR-VL** | 0.9B params | Table-specialized extraction |
|
||||||
|
|
||||||
|
### Extraction Strategy
|
||||||
|
|
||||||
|
1. **Pass 1**: MiniCPM-V visual extraction (images → JSON)
|
||||||
|
2. **Pass 2**: PaddleOCR-VL table recognition (images → markdown → JSON)
|
||||||
|
3. **Consensus**: If Pass 1 == Pass 2 → Done (fast path)
|
||||||
|
4. **Pass 3+**: MiniCPM-V visual if no consensus
|
||||||
|
|
||||||
|
### Why Dual-VLM Works
|
||||||
|
|
||||||
|
- **Different architectures**: Two independent models cross-check each other
|
||||||
|
- **Specialized strengths**: PaddleOCR-VL optimized for tables, MiniCPM-V for general vision
|
||||||
|
- **No structure loss**: Both VLMs see the original images directly
|
||||||
|
- **Fast consensus**: Most documents complete in 2 passes when VLMs agree
|
||||||
|
|
||||||
|
### Comparison vs Old PP-Structure Approach
|
||||||
|
|
||||||
|
| Approach | Bank Statement Result | Issue |
|
||||||
|
|----------|----------------------|-------|
|
||||||
|
| MiniCPM-V Visual | 28 transactions ✓ | - |
|
||||||
|
| PP-Structure HTML + Visual | 13 transactions ✗ | HTML merged rows incorrectly |
|
||||||
|
| PaddleOCR-VL Table | 28 transactions ✓ | Native table understanding |
|
||||||
|
|
||||||
|
**Key insight**: PP-Structure's HTML output loses structure for complex tables. PaddleOCR-VL's native VLM approach maintains table integrity.
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
## Related Resources
|
## Related Resources
|
||||||
|
|
||||||
- [Ollama Documentation](https://ollama.ai/docs)
|
- [Ollama Documentation](https://ollama.ai/docs)
|
||||||
|
|||||||
@@ -1,129 +1,250 @@
|
|||||||
# Bank Statement Parsing with MiniCPM-V 4.5
|
# Document Recognition with Hybrid OCR + Vision AI
|
||||||
|
|
||||||
Recipe for extracting transactions from bank statement PDFs using vision-language AI.
|
Recipe for extracting structured data from invoices and documents using a hybrid approach:
|
||||||
|
PaddleOCR for text extraction + MiniCPM-V 4.5 for intelligent parsing.
|
||||||
|
|
||||||
## Model
|
## Architecture
|
||||||
|
|
||||||
- **Model**: MiniCPM-V 4.5 (8B parameters)
|
```
|
||||||
- **Ollama Name**: `openbmb/minicpm-v4.5:q8_0`
|
┌──────────────┐ ┌──────────────┐ ┌──────────────┐
|
||||||
- **Quantization**: Q8_0 (9.8GB VRAM)
|
│ PDF/Image │ ───> │ PaddleOCR │ ───> │ Raw Text │
|
||||||
- **Runtime**: Ollama on GPU
|
└──────────────┘ └──────────────┘ └──────┬───────┘
|
||||||
|
│
|
||||||
|
┌──────────────┐ │
|
||||||
|
│ MiniCPM-V │ <───────────┘
|
||||||
|
│ 4.5 VLM │ <─── Image
|
||||||
|
└──────┬───────┘
|
||||||
|
│
|
||||||
|
┌──────▼───────┐
|
||||||
|
│ Structured │
|
||||||
|
│ JSON │
|
||||||
|
└──────────────┘
|
||||||
|
```
|
||||||
|
|
||||||
|
## Why Hybrid?
|
||||||
|
|
||||||
|
| Approach | Accuracy | Speed | Best For |
|
||||||
|
|----------|----------|-------|----------|
|
||||||
|
| VLM Only | 85-90% | Fast | Simple layouts |
|
||||||
|
| OCR Only | N/A | Fast | Just text extraction |
|
||||||
|
| **Hybrid** | **91%+** | Medium | Complex invoices |
|
||||||
|
|
||||||
|
The hybrid approach provides OCR text as context to the VLM, improving accuracy on:
|
||||||
|
- Small text and numbers
|
||||||
|
- Low contrast documents
|
||||||
|
- Dense tables
|
||||||
|
|
||||||
|
## Services
|
||||||
|
|
||||||
|
| Service | Port | Purpose |
|
||||||
|
|---------|------|---------|
|
||||||
|
| PaddleOCR | 5000 | Text extraction |
|
||||||
|
| Ollama (MiniCPM-V) | 11434 | Intelligent parsing |
|
||||||
|
|
||||||
|
## Running the Containers
|
||||||
|
|
||||||
|
**Start both services:**
|
||||||
|
|
||||||
|
```bash
|
||||||
|
# PaddleOCR (CPU is sufficient for OCR)
|
||||||
|
docker run -d --name paddleocr -p 5000:5000 \
|
||||||
|
code.foss.global/host.today/ht-docker-ai:paddleocr-cpu
|
||||||
|
|
||||||
|
# MiniCPM-V 4.5 (GPU recommended)
|
||||||
|
docker run -d --name minicpm --gpus all -p 11434:11434 \
|
||||||
|
-v ollama-data:/root/.ollama \
|
||||||
|
code.foss.global/host.today/ht-docker-ai:minicpm45v
|
||||||
|
```
|
||||||
|
|
||||||
## Image Conversion
|
## Image Conversion
|
||||||
|
|
||||||
Convert PDF to PNG at 300 DPI for optimal OCR accuracy.
|
Convert PDF to PNG at 200 DPI:
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
convert -density 300 -quality 100 input.pdf \
|
convert -density 200 -quality 90 input.pdf \
|
||||||
-background white -alpha remove \
|
-background white -alpha remove \
|
||||||
output-%d.png
|
page-%d.png
|
||||||
```
|
```
|
||||||
|
|
||||||
**Parameters:**
|
## Step 1: Extract OCR Text
|
||||||
- `-density 300`: 300 DPI resolution (critical for accuracy)
|
|
||||||
- `-quality 100`: Maximum quality
|
|
||||||
- `-background white -alpha remove`: Remove transparency
|
|
||||||
- `output-%d.png`: Outputs page-0.png, page-1.png, etc.
|
|
||||||
|
|
||||||
**Dependencies:**
|
```typescript
|
||||||
```bash
|
async function extractOcrText(imageBase64: string): Promise<string> {
|
||||||
apt-get install imagemagick
|
const response = await fetch('http://localhost:5000/ocr', {
|
||||||
|
method: 'POST',
|
||||||
|
headers: { 'Content-Type': 'application/json' },
|
||||||
|
body: JSON.stringify({ image: imageBase64 }),
|
||||||
|
});
|
||||||
|
|
||||||
|
const data = await response.json();
|
||||||
|
if (data.success && data.results) {
|
||||||
|
return data.results.map((r: { text: string }) => r.text).join('\n');
|
||||||
|
}
|
||||||
|
return '';
|
||||||
|
}
|
||||||
```
|
```
|
||||||
|
|
||||||
## Prompt
|
## Step 2: Build Enhanced Prompt
|
||||||
|
|
||||||
```
|
```typescript
|
||||||
You are a bank statement parser. Extract EVERY transaction from the table.
|
function buildPrompt(ocrText: string): string {
|
||||||
|
const base = `You are an invoice parser. Extract the following fields:
|
||||||
|
|
||||||
Read the Amount column carefully:
|
1. invoice_number: The invoice/receipt number
|
||||||
- "- 21,47 €" means DEBIT, output as: -21.47
|
2. invoice_date: Date in YYYY-MM-DD format
|
||||||
- "+ 1.000,00 €" means CREDIT, output as: 1000.00
|
3. vendor_name: Company that issued the invoice
|
||||||
- European format: comma = decimal point
|
4. currency: EUR, USD, etc.
|
||||||
|
5. net_amount: Amount before tax (if shown)
|
||||||
|
6. vat_amount: Tax/VAT amount (0 if reverse charge)
|
||||||
|
7. total_amount: Final amount due
|
||||||
|
|
||||||
For each row output: {"date":"YYYY-MM-DD","counterparty":"NAME","amount":-21.47}
|
Return ONLY valid JSON:
|
||||||
|
{"invoice_number":"XXX","invoice_date":"YYYY-MM-DD","vendor_name":"Company","currency":"EUR","net_amount":100.00,"vat_amount":19.00,"total_amount":119.00}`;
|
||||||
|
|
||||||
Do not skip any rows. Return complete JSON array:
|
if (ocrText) {
|
||||||
|
return `${base}
|
||||||
|
|
||||||
|
OCR text extracted from the invoice:
|
||||||
|
---
|
||||||
|
${ocrText}
|
||||||
|
---
|
||||||
|
|
||||||
|
Cross-reference the image with the OCR text above for accuracy.`;
|
||||||
|
}
|
||||||
|
return base;
|
||||||
|
}
|
||||||
```
|
```
|
||||||
|
|
||||||
## API Call
|
## Step 3: Call Vision-Language Model
|
||||||
|
|
||||||
```python
|
```typescript
|
||||||
import base64
|
async function extractInvoice(images: string[], ocrText: string): Promise<Invoice> {
|
||||||
import requests
|
const payload = {
|
||||||
|
model: 'openbmb/minicpm-v4.5:q8_0',
|
||||||
|
prompt: buildPrompt(ocrText),
|
||||||
|
images, // Base64 encoded
|
||||||
|
stream: false,
|
||||||
|
options: {
|
||||||
|
num_predict: 2048,
|
||||||
|
temperature: 0.1,
|
||||||
|
},
|
||||||
|
};
|
||||||
|
|
||||||
# Load images
|
const response = await fetch('http://localhost:11434/api/generate', {
|
||||||
with open('page-0.png', 'rb') as f:
|
method: 'POST',
|
||||||
page0 = base64.b64encode(f.read()).decode('utf-8')
|
headers: { 'Content-Type': 'application/json' },
|
||||||
with open('page-1.png', 'rb') as f:
|
body: JSON.stringify(payload),
|
||||||
page1 = base64.b64encode(f.read()).decode('utf-8')
|
});
|
||||||
|
|
||||||
payload = {
|
const result = await response.json();
|
||||||
"model": "openbmb/minicpm-v4.5:q8_0",
|
return JSON.parse(result.response);
|
||||||
"prompt": prompt,
|
}
|
||||||
"images": [page0, page1], # Multiple pages supported
|
```
|
||||||
"stream": False,
|
|
||||||
"options": {
|
## Consensus Voting
|
||||||
"num_predict": 16384,
|
|
||||||
"temperature": 0.1
|
For production reliability, run multiple extraction passes and require consensus:
|
||||||
|
|
||||||
|
```typescript
|
||||||
|
async function extractWithConsensus(images: string[], maxPasses: number = 5): Promise<Invoice> {
|
||||||
|
const results: Map<string, { invoice: Invoice; count: number }> = new Map();
|
||||||
|
|
||||||
|
// Optimization: Run Pass 1 (no OCR) parallel with OCR + Pass 2
|
||||||
|
const [pass1Result, ocrText] = await Promise.all([
|
||||||
|
extractInvoice(images, ''),
|
||||||
|
extractOcrText(images[0]),
|
||||||
|
]);
|
||||||
|
|
||||||
|
// Add Pass 1 result
|
||||||
|
addResult(results, pass1Result);
|
||||||
|
|
||||||
|
// Pass 2 with OCR context
|
||||||
|
const pass2Result = await extractInvoice(images, ocrText);
|
||||||
|
addResult(results, pass2Result);
|
||||||
|
|
||||||
|
// Check for consensus (2 matching results)
|
||||||
|
for (const [hash, data] of results) {
|
||||||
|
if (data.count >= 2) {
|
||||||
|
return data.invoice; // Consensus reached!
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
response = requests.post(
|
// Continue until consensus or max passes
|
||||||
'http://localhost:11434/api/generate',
|
for (let pass = 3; pass <= maxPasses; pass++) {
|
||||||
json=payload,
|
const result = await extractInvoice(images, ocrText);
|
||||||
timeout=600
|
addResult(results, result);
|
||||||
)
|
// Check consensus...
|
||||||
|
}
|
||||||
|
|
||||||
result = response.json()['response']
|
// Return most common result
|
||||||
|
return getMostCommon(results);
|
||||||
|
}
|
||||||
|
|
||||||
|
function hashInvoice(inv: Invoice): string {
|
||||||
|
return `${inv.invoice_number}|${inv.invoice_date}|${inv.total_amount.toFixed(2)}`;
|
||||||
|
}
|
||||||
```
|
```
|
||||||
|
|
||||||
## Output Format
|
## Output Format
|
||||||
|
|
||||||
```json
|
```json
|
||||||
[
|
{
|
||||||
{"date":"2022-04-01","counterparty":"DIGITALOCEAN.COM","amount":-21.47},
|
"invoice_number": "INV-2024-001234",
|
||||||
{"date":"2022-04-01","counterparty":"DIGITALOCEAN.COM","amount":-58.06},
|
"invoice_date": "2024-08-15",
|
||||||
{"date":"2022-04-12","counterparty":"LOSSLESS GMBH","amount":1000.00}
|
"vendor_name": "Hetzner Online GmbH",
|
||||||
]
|
"currency": "EUR",
|
||||||
|
"net_amount": 167.52,
|
||||||
|
"vat_amount": 31.83,
|
||||||
|
"total_amount": 199.35
|
||||||
|
}
|
||||||
```
|
```
|
||||||
|
|
||||||
## Running the Container
|
|
||||||
|
|
||||||
**GPU (recommended):**
|
|
||||||
```bash
|
|
||||||
docker run -d --gpus all -p 11434:11434 \
|
|
||||||
-v ollama-data:/root/.ollama \
|
|
||||||
-e MODEL_NAME="openbmb/minicpm-v4.5:q8_0" \
|
|
||||||
ht-docker-ai:minicpm45v
|
|
||||||
```
|
|
||||||
|
|
||||||
**CPU (slower):**
|
|
||||||
```bash
|
|
||||||
docker run -d -p 11434:11434 \
|
|
||||||
-v ollama-data:/root/.ollama \
|
|
||||||
-e MODEL_NAME="openbmb/minicpm-v4.5:q4_0" \
|
|
||||||
ht-docker-ai:minicpm45v-cpu
|
|
||||||
```
|
|
||||||
|
|
||||||
## Hardware Requirements
|
|
||||||
|
|
||||||
| Quantization | VRAM/RAM | Speed |
|
|
||||||
|--------------|----------|-------|
|
|
||||||
| Q8_0 (GPU) | 10GB | Fast |
|
|
||||||
| Q4_0 (CPU) | 8GB | Slow |
|
|
||||||
|
|
||||||
## Test Results
|
## Test Results
|
||||||
|
|
||||||
| Statement | Pages | Transactions | Accuracy |
|
Tested on 46 real invoices from various vendors:
|
||||||
|-----------|-------|--------------|----------|
|
|
||||||
| bunq-2022-04 | 2 | 26 | 100% |
|
| Metric | Value |
|
||||||
| bunq-2021-06 | 3 | 28 | 100% |
|
|--------|-------|
|
||||||
|
| **Accuracy** | 91.3% (42/46) |
|
||||||
|
| **Avg Time** | 42.7s per invoice |
|
||||||
|
| **Consensus Rate** | 85% in 2 passes |
|
||||||
|
|
||||||
|
### Per-Vendor Results
|
||||||
|
|
||||||
|
| Vendor | Invoices | Accuracy |
|
||||||
|
|--------|----------|----------|
|
||||||
|
| Hetzner | 3 | 100% |
|
||||||
|
| DigitalOcean | 4 | 100% |
|
||||||
|
| Adobe | 3 | 100% |
|
||||||
|
| Cloudflare | 1 | 100% |
|
||||||
|
| Wasabi | 4 | 100% |
|
||||||
|
| Figma | 3 | 100% |
|
||||||
|
| Google Cloud | 1 | 100% |
|
||||||
|
| MongoDB | 3 | 0% (date parsing) |
|
||||||
|
|
||||||
|
## Hardware Requirements
|
||||||
|
|
||||||
|
| Component | Minimum | Recommended |
|
||||||
|
|-----------|---------|-------------|
|
||||||
|
| PaddleOCR (CPU) | 4GB RAM | 8GB RAM |
|
||||||
|
| MiniCPM-V (GPU) | 10GB VRAM | 12GB VRAM |
|
||||||
|
| MiniCPM-V (CPU) | 16GB RAM | 32GB RAM |
|
||||||
|
|
||||||
## Tips
|
## Tips
|
||||||
|
|
||||||
1. **DPI matters**: 150 DPI causes missed rows; 300 DPI is optimal
|
1. **Use hybrid approach**: OCR text dramatically improves number/date accuracy
|
||||||
2. **PNG over JPEG**: PNG preserves text clarity better
|
2. **Consensus voting**: Run 2-5 passes to catch hallucinations
|
||||||
3. **Remove alpha**: Some models struggle with transparency
|
3. **200 DPI is optimal**: Higher doesn't help, lower loses detail
|
||||||
4. **Multi-page**: Pass all pages in single request for context
|
4. **PNG over JPEG**: Preserves text clarity
|
||||||
5. **Temperature 0.1**: Low temperature for consistent output
|
5. **Temperature 0.1**: Low temperature for consistent output
|
||||||
6. **European format**: Explicitly explain comma=decimal in prompt
|
6. **Multi-page support**: Pass all pages in single request for context
|
||||||
|
7. **Normalize for comparison**: Ignore case/whitespace when comparing invoice numbers
|
||||||
|
|
||||||
|
## Common Issues
|
||||||
|
|
||||||
|
| Issue | Cause | Solution |
|
||||||
|
|-------|-------|----------|
|
||||||
|
| Wrong date | Multiple dates on invoice | Be specific in prompt about which date |
|
||||||
|
| Wrong currency | Symbol vs code mismatch | OCR helps disambiguate |
|
||||||
|
| Missing digits | Low resolution | Increase density to 300 DPI |
|
||||||
|
| Hallucinated data | VLM uncertainty | Use consensus voting |
|
||||||
|
|||||||
360
test/helpers/docker.ts
Normal file
360
test/helpers/docker.ts
Normal file
@@ -0,0 +1,360 @@
|
|||||||
|
import { execSync } from 'child_process';
|
||||||
|
|
||||||
|
// Project container names (only manage these)
|
||||||
|
const PROJECT_CONTAINERS = [
|
||||||
|
'paddleocr-vl-test',
|
||||||
|
'paddleocr-vl-gpu-test',
|
||||||
|
'paddleocr-vl-cpu-test',
|
||||||
|
'paddleocr-vl-full-test',
|
||||||
|
'minicpm-test',
|
||||||
|
];
|
||||||
|
|
||||||
|
// Image configurations
|
||||||
|
export interface IImageConfig {
|
||||||
|
name: string;
|
||||||
|
dockerfile: string;
|
||||||
|
buildContext: string;
|
||||||
|
containerName: string;
|
||||||
|
ports: string[];
|
||||||
|
volumes?: string[];
|
||||||
|
gpus?: boolean;
|
||||||
|
healthEndpoint?: string;
|
||||||
|
healthTimeout?: number;
|
||||||
|
}
|
||||||
|
|
||||||
|
export const IMAGES = {
|
||||||
|
paddleocrVlGpu: {
|
||||||
|
name: 'paddleocr-vl-gpu',
|
||||||
|
dockerfile: 'Dockerfile_paddleocr_vl_gpu',
|
||||||
|
buildContext: '.',
|
||||||
|
containerName: 'paddleocr-vl-test',
|
||||||
|
ports: ['8000:8000'],
|
||||||
|
volumes: ['ht-huggingface-cache:/root/.cache/huggingface'],
|
||||||
|
gpus: true,
|
||||||
|
healthEndpoint: 'http://localhost:8000/health',
|
||||||
|
healthTimeout: 300000, // 5 minutes for model loading
|
||||||
|
} as IImageConfig,
|
||||||
|
|
||||||
|
paddleocrVlCpu: {
|
||||||
|
name: 'paddleocr-vl-cpu',
|
||||||
|
dockerfile: 'Dockerfile_paddleocr_vl_cpu',
|
||||||
|
buildContext: '.',
|
||||||
|
containerName: 'paddleocr-vl-test',
|
||||||
|
ports: ['8000:8000'],
|
||||||
|
volumes: ['ht-huggingface-cache:/root/.cache/huggingface'],
|
||||||
|
gpus: false,
|
||||||
|
healthEndpoint: 'http://localhost:8000/health',
|
||||||
|
healthTimeout: 300000,
|
||||||
|
} as IImageConfig,
|
||||||
|
|
||||||
|
minicpm: {
|
||||||
|
name: 'minicpm45v',
|
||||||
|
dockerfile: 'Dockerfile_minicpm45v',
|
||||||
|
buildContext: '.',
|
||||||
|
containerName: 'minicpm-test',
|
||||||
|
ports: ['11434:11434'],
|
||||||
|
volumes: ['ht-ollama-models:/root/.ollama'],
|
||||||
|
gpus: true,
|
||||||
|
healthEndpoint: 'http://localhost:11434/api/tags',
|
||||||
|
healthTimeout: 120000,
|
||||||
|
} as IImageConfig,
|
||||||
|
|
||||||
|
// Full PaddleOCR-VL pipeline with PP-DocLayoutV2 + structured JSON output
|
||||||
|
paddleocrVlFull: {
|
||||||
|
name: 'paddleocr-vl-full',
|
||||||
|
dockerfile: 'Dockerfile_paddleocr_vl_full',
|
||||||
|
buildContext: '.',
|
||||||
|
containerName: 'paddleocr-vl-full-test',
|
||||||
|
ports: ['8000:8000'],
|
||||||
|
volumes: [
|
||||||
|
'ht-huggingface-cache:/root/.cache/huggingface',
|
||||||
|
'ht-paddleocr-cache:/root/.paddleocr',
|
||||||
|
],
|
||||||
|
gpus: true,
|
||||||
|
healthEndpoint: 'http://localhost:8000/health',
|
||||||
|
healthTimeout: 600000, // 10 minutes for model loading (vLLM + PP-DocLayoutV2)
|
||||||
|
} as IImageConfig,
|
||||||
|
};
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Execute a shell command and return output
|
||||||
|
*/
|
||||||
|
function exec(command: string, silent = false): string {
|
||||||
|
try {
|
||||||
|
return execSync(command, {
|
||||||
|
encoding: 'utf-8',
|
||||||
|
stdio: silent ? 'pipe' : 'inherit',
|
||||||
|
});
|
||||||
|
} catch (err: unknown) {
|
||||||
|
if (silent) return '';
|
||||||
|
throw err;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Check if a Docker image exists locally
|
||||||
|
*/
|
||||||
|
export function imageExists(imageName: string): boolean {
|
||||||
|
const result = exec(`docker images -q ${imageName}`, true);
|
||||||
|
return result.trim().length > 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Check if a container is running
|
||||||
|
*/
|
||||||
|
export function isContainerRunning(containerName: string): boolean {
|
||||||
|
const result = exec(`docker ps --filter "name=^${containerName}$" --format "{{.Names}}"`, true);
|
||||||
|
return result.trim() === containerName;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Check if a container exists (running or stopped)
|
||||||
|
*/
|
||||||
|
export function containerExists(containerName: string): boolean {
|
||||||
|
const result = exec(`docker ps -a --filter "name=^${containerName}$" --format "{{.Names}}"`, true);
|
||||||
|
return result.trim() === containerName;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Stop and remove a container
|
||||||
|
*/
|
||||||
|
export function removeContainer(containerName: string): void {
|
||||||
|
if (containerExists(containerName)) {
|
||||||
|
console.log(`[Docker] Removing container: ${containerName}`);
|
||||||
|
exec(`docker rm -f ${containerName}`, true);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Stop all project containers that conflict with the required one
|
||||||
|
*/
|
||||||
|
export function stopConflictingContainers(requiredContainer: string, requiredPort: string): void {
|
||||||
|
// Stop project containers using the same port
|
||||||
|
for (const container of PROJECT_CONTAINERS) {
|
||||||
|
if (container === requiredContainer) continue;
|
||||||
|
|
||||||
|
if (isContainerRunning(container)) {
|
||||||
|
// Check if this container uses the same port
|
||||||
|
const ports = exec(`docker port ${container} 2>/dev/null || true`, true);
|
||||||
|
if (ports.includes(requiredPort.split(':')[0])) {
|
||||||
|
console.log(`[Docker] Stopping conflicting container: ${container}`);
|
||||||
|
exec(`docker stop ${container}`, true);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Build a Docker image
|
||||||
|
*/
|
||||||
|
export function buildImage(config: IImageConfig): void {
|
||||||
|
console.log(`[Docker] Building image: ${config.name}`);
|
||||||
|
const cmd = `docker build --load -f ${config.dockerfile} -t ${config.name} ${config.buildContext}`;
|
||||||
|
exec(cmd);
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Start a container from an image
|
||||||
|
*/
|
||||||
|
export function startContainer(config: IImageConfig): void {
|
||||||
|
// Remove existing container if it exists
|
||||||
|
removeContainer(config.containerName);
|
||||||
|
|
||||||
|
console.log(`[Docker] Starting container: ${config.containerName}`);
|
||||||
|
|
||||||
|
const portArgs = config.ports.map((p) => `-p ${p}`).join(' ');
|
||||||
|
const volumeArgs = config.volumes?.map((v) => `-v ${v}`).join(' ') || '';
|
||||||
|
const gpuArgs = config.gpus ? '--gpus all' : '';
|
||||||
|
|
||||||
|
const cmd = `docker run -d --name ${config.containerName} ${gpuArgs} ${portArgs} ${volumeArgs} ${config.name}`;
|
||||||
|
exec(cmd);
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Wait for a container to become healthy
|
||||||
|
*/
|
||||||
|
export async function waitForHealth(
|
||||||
|
endpoint: string,
|
||||||
|
timeoutMs: number = 120000,
|
||||||
|
intervalMs: number = 5000
|
||||||
|
): Promise<boolean> {
|
||||||
|
const startTime = Date.now();
|
||||||
|
console.log(`[Docker] Waiting for health: ${endpoint}`);
|
||||||
|
|
||||||
|
while (Date.now() - startTime < timeoutMs) {
|
||||||
|
try {
|
||||||
|
const response = await fetch(endpoint, {
|
||||||
|
method: 'GET',
|
||||||
|
signal: AbortSignal.timeout(5000),
|
||||||
|
});
|
||||||
|
if (response.ok) {
|
||||||
|
console.log(`[Docker] Service healthy!`);
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
} catch {
|
||||||
|
// Service not ready yet
|
||||||
|
}
|
||||||
|
|
||||||
|
const elapsed = Math.round((Date.now() - startTime) / 1000);
|
||||||
|
console.log(`[Docker] Waiting... (${elapsed}s)`);
|
||||||
|
await new Promise((resolve) => setTimeout(resolve, intervalMs));
|
||||||
|
}
|
||||||
|
|
||||||
|
console.log(`[Docker] Health check timeout after ${timeoutMs / 1000}s`);
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Ensure a service is running and healthy
|
||||||
|
* - Builds image if missing
|
||||||
|
* - Stops conflicting project containers
|
||||||
|
* - Starts container if not running
|
||||||
|
* - Waits for health check
|
||||||
|
*/
|
||||||
|
export async function ensureService(config: IImageConfig): Promise<boolean> {
|
||||||
|
console.log(`\n[Docker] Ensuring service: ${config.name}`);
|
||||||
|
|
||||||
|
// Build image if it doesn't exist
|
||||||
|
if (!imageExists(config.name)) {
|
||||||
|
console.log(`[Docker] Image not found, building...`);
|
||||||
|
buildImage(config);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Stop conflicting containers on the same port
|
||||||
|
const mainPort = config.ports[0];
|
||||||
|
stopConflictingContainers(config.containerName, mainPort);
|
||||||
|
|
||||||
|
// Start container if not running
|
||||||
|
if (!isContainerRunning(config.containerName)) {
|
||||||
|
startContainer(config);
|
||||||
|
} else {
|
||||||
|
console.log(`[Docker] Container already running: ${config.containerName}`);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Wait for health
|
||||||
|
if (config.healthEndpoint) {
|
||||||
|
return waitForHealth(config.healthEndpoint, config.healthTimeout);
|
||||||
|
}
|
||||||
|
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Ensure PaddleOCR-VL GPU service is running
|
||||||
|
*/
|
||||||
|
export async function ensurePaddleOcrVlGpu(): Promise<boolean> {
|
||||||
|
return ensureService(IMAGES.paddleocrVlGpu);
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Ensure PaddleOCR-VL CPU service is running
|
||||||
|
*/
|
||||||
|
export async function ensurePaddleOcrVlCpu(): Promise<boolean> {
|
||||||
|
return ensureService(IMAGES.paddleocrVlCpu);
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Ensure MiniCPM service is running
|
||||||
|
*/
|
||||||
|
export async function ensureMiniCpm(): Promise<boolean> {
|
||||||
|
return ensureService(IMAGES.minicpm);
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Check if GPU is available
|
||||||
|
*/
|
||||||
|
export function isGpuAvailable(): boolean {
|
||||||
|
try {
|
||||||
|
const result = exec('nvidia-smi --query-gpu=name --format=csv,noheader 2>/dev/null', true);
|
||||||
|
return result.trim().length > 0;
|
||||||
|
} catch {
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Ensure PaddleOCR-VL service (auto-detect GPU/CPU)
|
||||||
|
*/
|
||||||
|
export async function ensurePaddleOcrVl(): Promise<boolean> {
|
||||||
|
if (isGpuAvailable()) {
|
||||||
|
console.log('[Docker] GPU detected, using GPU image');
|
||||||
|
return ensurePaddleOcrVlGpu();
|
||||||
|
} else {
|
||||||
|
console.log('[Docker] No GPU detected, using CPU image');
|
||||||
|
return ensurePaddleOcrVlCpu();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Ensure PaddleOCR-VL Full Pipeline service (PP-DocLayoutV2 + structured output)
|
||||||
|
* This is the recommended service for production use - outputs structured JSON/Markdown
|
||||||
|
*/
|
||||||
|
export async function ensurePaddleOcrVlFull(): Promise<boolean> {
|
||||||
|
if (!isGpuAvailable()) {
|
||||||
|
console.log('[Docker] WARNING: Full pipeline requires GPU, but none detected');
|
||||||
|
}
|
||||||
|
return ensureService(IMAGES.paddleocrVlFull);
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Ensure an Ollama model is pulled and available
|
||||||
|
* Uses the MiniCPM container (which runs Ollama) to pull the model
|
||||||
|
*/
|
||||||
|
export async function ensureOllamaModel(modelName: string): Promise<boolean> {
|
||||||
|
const OLLAMA_URL = 'http://localhost:11434';
|
||||||
|
|
||||||
|
console.log(`\n[Ollama] Ensuring model: ${modelName}`);
|
||||||
|
|
||||||
|
// Check if model exists
|
||||||
|
try {
|
||||||
|
const response = await fetch(`${OLLAMA_URL}/api/tags`);
|
||||||
|
if (response.ok) {
|
||||||
|
const data = await response.json();
|
||||||
|
const models = data.models || [];
|
||||||
|
const exists = models.some((m: { name: string }) =>
|
||||||
|
m.name === modelName || m.name.startsWith(modelName.split(':')[0])
|
||||||
|
);
|
||||||
|
|
||||||
|
if (exists) {
|
||||||
|
console.log(`[Ollama] Model already available: ${modelName}`);
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
} catch {
|
||||||
|
console.log(`[Ollama] Cannot check models, Ollama may not be running`);
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Pull the model
|
||||||
|
console.log(`[Ollama] Pulling model: ${modelName} (this may take a while)...`);
|
||||||
|
try {
|
||||||
|
const response = await fetch(`${OLLAMA_URL}/api/pull`, {
|
||||||
|
method: 'POST',
|
||||||
|
headers: { 'Content-Type': 'application/json' },
|
||||||
|
body: JSON.stringify({ name: modelName, stream: false }),
|
||||||
|
});
|
||||||
|
|
||||||
|
if (response.ok) {
|
||||||
|
console.log(`[Ollama] Model pulled successfully: ${modelName}`);
|
||||||
|
return true;
|
||||||
|
} else {
|
||||||
|
console.log(`[Ollama] Failed to pull model: ${response.status}`);
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
} catch (err) {
|
||||||
|
console.log(`[Ollama] Error pulling model: ${err}`);
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Ensure Qwen2.5 7B model is available (for text-only JSON extraction)
|
||||||
|
*/
|
||||||
|
export async function ensureQwen25(): Promise<boolean> {
|
||||||
|
// First ensure the Ollama service (MiniCPM container) is running
|
||||||
|
const ollamaOk = await ensureMiniCpm();
|
||||||
|
if (!ollamaOk) return false;
|
||||||
|
|
||||||
|
// Then ensure the Qwen2.5 model is pulled
|
||||||
|
return ensureOllamaModel('qwen2.5:7b');
|
||||||
|
}
|
||||||
549
test/test.bankstatements.combined.ts
Normal file
549
test/test.bankstatements.combined.ts
Normal file
@@ -0,0 +1,549 @@
|
|||||||
|
/**
|
||||||
|
* Bank statement extraction test using MiniCPM-V (visual) + PaddleOCR-VL (table recognition)
|
||||||
|
*
|
||||||
|
* This is the combined/dual-VLM approach that uses both models for consensus:
|
||||||
|
* - MiniCPM-V for visual extraction
|
||||||
|
* - PaddleOCR-VL for table recognition
|
||||||
|
*/
|
||||||
|
import { tap, expect } from '@git.zone/tstest/tapbundle';
|
||||||
|
import * as fs from 'fs';
|
||||||
|
import * as path from 'path';
|
||||||
|
import { execSync } from 'child_process';
|
||||||
|
import * as os from 'os';
|
||||||
|
import { ensurePaddleOcrVl, ensureMiniCpm } from './helpers/docker.js';
|
||||||
|
|
||||||
|
// Service URLs
|
||||||
|
const OLLAMA_URL = 'http://localhost:11434';
|
||||||
|
const PADDLEOCR_VL_URL = 'http://localhost:8000';
|
||||||
|
|
||||||
|
// Models
|
||||||
|
const MINICPM_MODEL = 'minicpm-v:latest';
|
||||||
|
const PADDLEOCR_VL_MODEL = 'paddleocr-vl';
|
||||||
|
|
||||||
|
// Prompt for MiniCPM-V visual extraction
|
||||||
|
const MINICPM_EXTRACT_PROMPT = `/nothink
|
||||||
|
You are a bank statement parser. Extract EVERY transaction from the table.
|
||||||
|
|
||||||
|
Read the Amount column carefully:
|
||||||
|
- "- 21,47 €" means DEBIT, output as: -21.47
|
||||||
|
- "+ 1.000,00 €" means CREDIT, output as: 1000.00
|
||||||
|
- European format: comma = decimal point
|
||||||
|
|
||||||
|
For each row output: {"date":"YYYY-MM-DD","counterparty":"NAME","amount":-21.47}
|
||||||
|
|
||||||
|
Do not skip any rows. Return ONLY the JSON array, no explanation.`;
|
||||||
|
|
||||||
|
// Prompt for PaddleOCR-VL table extraction
|
||||||
|
const PADDLEOCR_VL_TABLE_PROMPT = `Table Recognition:`;
|
||||||
|
|
||||||
|
// Post-processing prompt to convert PaddleOCR-VL output to JSON
|
||||||
|
const PADDLEOCR_VL_CONVERT_PROMPT = `/nothink
|
||||||
|
Convert the following bank statement table data to JSON.
|
||||||
|
|
||||||
|
Read the Amount values carefully:
|
||||||
|
- "- 21,47 €" means DEBIT, output as: -21.47
|
||||||
|
- "+ 1.000,00 €" means CREDIT, output as: 1000.00
|
||||||
|
- European format: comma = decimal point
|
||||||
|
|
||||||
|
For each transaction output: {"date":"YYYY-MM-DD","counterparty":"NAME","amount":-21.47}
|
||||||
|
|
||||||
|
Return ONLY the JSON array, no explanation.
|
||||||
|
|
||||||
|
Table data:
|
||||||
|
---
|
||||||
|
{TABLE_DATA}
|
||||||
|
---`;
|
||||||
|
|
||||||
|
interface ITransaction {
|
||||||
|
date: string;
|
||||||
|
counterparty: string;
|
||||||
|
amount: number;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Convert PDF to PNG images using ImageMagick
|
||||||
|
*/
|
||||||
|
function convertPdfToImages(pdfPath: string): string[] {
|
||||||
|
const tempDir = fs.mkdtempSync(path.join(os.tmpdir(), 'pdf-convert-'));
|
||||||
|
const outputPattern = path.join(tempDir, 'page-%d.png');
|
||||||
|
|
||||||
|
try {
|
||||||
|
execSync(
|
||||||
|
`convert -density 300 -quality 100 "${pdfPath}" -background white -alpha remove "${outputPattern}"`,
|
||||||
|
{ stdio: 'pipe' }
|
||||||
|
);
|
||||||
|
|
||||||
|
const files = fs.readdirSync(tempDir).filter((f: string) => f.endsWith('.png')).sort();
|
||||||
|
const images: string[] = [];
|
||||||
|
|
||||||
|
for (const file of files) {
|
||||||
|
const imagePath = path.join(tempDir, file);
|
||||||
|
const imageData = fs.readFileSync(imagePath);
|
||||||
|
images.push(imageData.toString('base64'));
|
||||||
|
}
|
||||||
|
|
||||||
|
return images;
|
||||||
|
} finally {
|
||||||
|
fs.rmSync(tempDir, { recursive: true, force: true });
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Extract using MiniCPM-V via Ollama
|
||||||
|
*/
|
||||||
|
async function extractWithMiniCPM(images: string[], passLabel: string): Promise<ITransaction[]> {
|
||||||
|
const payload = {
|
||||||
|
model: MINICPM_MODEL,
|
||||||
|
prompt: MINICPM_EXTRACT_PROMPT,
|
||||||
|
images,
|
||||||
|
stream: true,
|
||||||
|
options: {
|
||||||
|
num_predict: 16384,
|
||||||
|
temperature: 0.1,
|
||||||
|
},
|
||||||
|
};
|
||||||
|
|
||||||
|
const response = await fetch(`${OLLAMA_URL}/api/generate`, {
|
||||||
|
method: 'POST',
|
||||||
|
headers: { 'Content-Type': 'application/json' },
|
||||||
|
body: JSON.stringify(payload),
|
||||||
|
});
|
||||||
|
|
||||||
|
if (!response.ok) {
|
||||||
|
throw new Error(`Ollama API error: ${response.status}`);
|
||||||
|
}
|
||||||
|
|
||||||
|
const reader = response.body?.getReader();
|
||||||
|
if (!reader) {
|
||||||
|
throw new Error('No response body');
|
||||||
|
}
|
||||||
|
|
||||||
|
const decoder = new TextDecoder();
|
||||||
|
let fullText = '';
|
||||||
|
let lineBuffer = '';
|
||||||
|
|
||||||
|
console.log(`[${passLabel}] Extracting with MiniCPM-V...`);
|
||||||
|
|
||||||
|
while (true) {
|
||||||
|
const { done, value } = await reader.read();
|
||||||
|
if (done) break;
|
||||||
|
|
||||||
|
const chunk = decoder.decode(value, { stream: true });
|
||||||
|
const lines = chunk.split('\n').filter((l) => l.trim());
|
||||||
|
|
||||||
|
for (const line of lines) {
|
||||||
|
try {
|
||||||
|
const json = JSON.parse(line);
|
||||||
|
if (json.response) {
|
||||||
|
fullText += json.response;
|
||||||
|
lineBuffer += json.response;
|
||||||
|
|
||||||
|
if (lineBuffer.includes('\n')) {
|
||||||
|
const parts = lineBuffer.split('\n');
|
||||||
|
for (let i = 0; i < parts.length - 1; i++) {
|
||||||
|
console.log(parts[i]);
|
||||||
|
}
|
||||||
|
lineBuffer = parts[parts.length - 1];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
} catch {
|
||||||
|
// Skip invalid JSON lines
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if (lineBuffer) {
|
||||||
|
console.log(lineBuffer);
|
||||||
|
}
|
||||||
|
console.log('');
|
||||||
|
|
||||||
|
const startIdx = fullText.indexOf('[');
|
||||||
|
const endIdx = fullText.lastIndexOf(']') + 1;
|
||||||
|
|
||||||
|
if (startIdx < 0 || endIdx <= startIdx) {
|
||||||
|
throw new Error('No JSON array found in response');
|
||||||
|
}
|
||||||
|
|
||||||
|
return JSON.parse(fullText.substring(startIdx, endIdx));
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Extract table using PaddleOCR-VL via OpenAI-compatible API
|
||||||
|
*/
|
||||||
|
async function extractTableWithPaddleOCRVL(imageBase64: string): Promise<string> {
|
||||||
|
const payload = {
|
||||||
|
model: PADDLEOCR_VL_MODEL,
|
||||||
|
messages: [
|
||||||
|
{
|
||||||
|
role: 'user',
|
||||||
|
content: [
|
||||||
|
{
|
||||||
|
type: 'image_url',
|
||||||
|
image_url: { url: `data:image/png;base64,${imageBase64}` },
|
||||||
|
},
|
||||||
|
{
|
||||||
|
type: 'text',
|
||||||
|
text: PADDLEOCR_VL_TABLE_PROMPT,
|
||||||
|
},
|
||||||
|
],
|
||||||
|
},
|
||||||
|
],
|
||||||
|
temperature: 0.0,
|
||||||
|
max_tokens: 8192,
|
||||||
|
};
|
||||||
|
|
||||||
|
const response = await fetch(`${PADDLEOCR_VL_URL}/v1/chat/completions`, {
|
||||||
|
method: 'POST',
|
||||||
|
headers: { 'Content-Type': 'application/json' },
|
||||||
|
body: JSON.stringify(payload),
|
||||||
|
});
|
||||||
|
|
||||||
|
if (!response.ok) {
|
||||||
|
const text = await response.text();
|
||||||
|
throw new Error(`PaddleOCR-VL API error: ${response.status} - ${text}`);
|
||||||
|
}
|
||||||
|
|
||||||
|
const data = await response.json();
|
||||||
|
return data.choices?.[0]?.message?.content || '';
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Convert PaddleOCR-VL table output to transactions using MiniCPM-V
|
||||||
|
*/
|
||||||
|
async function convertTableToTransactions(
|
||||||
|
tableData: string,
|
||||||
|
passLabel: string
|
||||||
|
): Promise<ITransaction[]> {
|
||||||
|
const prompt = PADDLEOCR_VL_CONVERT_PROMPT.replace('{TABLE_DATA}', tableData);
|
||||||
|
|
||||||
|
const payload = {
|
||||||
|
model: MINICPM_MODEL,
|
||||||
|
prompt,
|
||||||
|
stream: true,
|
||||||
|
options: {
|
||||||
|
num_predict: 16384,
|
||||||
|
temperature: 0.1,
|
||||||
|
},
|
||||||
|
};
|
||||||
|
|
||||||
|
const response = await fetch(`${OLLAMA_URL}/api/generate`, {
|
||||||
|
method: 'POST',
|
||||||
|
headers: { 'Content-Type': 'application/json' },
|
||||||
|
body: JSON.stringify(payload),
|
||||||
|
});
|
||||||
|
|
||||||
|
if (!response.ok) {
|
||||||
|
throw new Error(`Ollama API error: ${response.status}`);
|
||||||
|
}
|
||||||
|
|
||||||
|
const reader = response.body?.getReader();
|
||||||
|
if (!reader) {
|
||||||
|
throw new Error('No response body');
|
||||||
|
}
|
||||||
|
|
||||||
|
const decoder = new TextDecoder();
|
||||||
|
let fullText = '';
|
||||||
|
|
||||||
|
console.log(`[${passLabel}] Converting table data to JSON...`);
|
||||||
|
|
||||||
|
while (true) {
|
||||||
|
const { done, value } = await reader.read();
|
||||||
|
if (done) break;
|
||||||
|
|
||||||
|
const chunk = decoder.decode(value, { stream: true });
|
||||||
|
const lines = chunk.split('\n').filter((l) => l.trim());
|
||||||
|
|
||||||
|
for (const line of lines) {
|
||||||
|
try {
|
||||||
|
const json = JSON.parse(line);
|
||||||
|
if (json.response) {
|
||||||
|
fullText += json.response;
|
||||||
|
}
|
||||||
|
} catch {
|
||||||
|
// Skip invalid JSON lines
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
const startIdx = fullText.indexOf('[');
|
||||||
|
const endIdx = fullText.lastIndexOf(']') + 1;
|
||||||
|
|
||||||
|
if (startIdx < 0 || endIdx <= startIdx) {
|
||||||
|
throw new Error('No JSON array found in response');
|
||||||
|
}
|
||||||
|
|
||||||
|
return JSON.parse(fullText.substring(startIdx, endIdx));
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Extract using PaddleOCR-VL (table recognition) + conversion
|
||||||
|
*/
|
||||||
|
async function extractWithPaddleOCRVL(
|
||||||
|
images: string[],
|
||||||
|
passLabel: string
|
||||||
|
): Promise<ITransaction[]> {
|
||||||
|
console.log(`[${passLabel}] Extracting tables with PaddleOCR-VL...`);
|
||||||
|
|
||||||
|
// Extract table data from each page
|
||||||
|
const tableDataParts: string[] = [];
|
||||||
|
for (let i = 0; i < images.length; i++) {
|
||||||
|
console.log(`[${passLabel}] Processing page ${i + 1}/${images.length}...`);
|
||||||
|
const tableData = await extractTableWithPaddleOCRVL(images[i]);
|
||||||
|
if (tableData.trim()) {
|
||||||
|
tableDataParts.push(`--- Page ${i + 1} ---\n${tableData}`);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
const combinedTableData = tableDataParts.join('\n\n');
|
||||||
|
console.log(`[${passLabel}] Got ${combinedTableData.length} chars of table data`);
|
||||||
|
|
||||||
|
// Convert to transactions
|
||||||
|
return convertTableToTransactions(combinedTableData, passLabel);
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Create a hash of transactions for comparison
|
||||||
|
*/
|
||||||
|
function hashTransactions(transactions: ITransaction[]): string {
|
||||||
|
return transactions
|
||||||
|
.map((t) => `${t.date}|${t.amount.toFixed(2)}`)
|
||||||
|
.sort()
|
||||||
|
.join(';');
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Check if PaddleOCR-VL service is available
|
||||||
|
*/
|
||||||
|
async function isPaddleOCRVLAvailable(): Promise<boolean> {
|
||||||
|
try {
|
||||||
|
const response = await fetch(`${PADDLEOCR_VL_URL}/health`, {
|
||||||
|
method: 'GET',
|
||||||
|
signal: AbortSignal.timeout(5000),
|
||||||
|
});
|
||||||
|
return response.ok;
|
||||||
|
} catch {
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Extract with dual-VLM consensus
|
||||||
|
* Strategy:
|
||||||
|
* Pass 1 = MiniCPM-V visual extraction
|
||||||
|
* Pass 2 = PaddleOCR-VL table recognition (if available)
|
||||||
|
* Pass 3+ = MiniCPM-V visual (fallback)
|
||||||
|
*/
|
||||||
|
async function extractWithConsensus(
|
||||||
|
images: string[],
|
||||||
|
maxPasses: number = 5
|
||||||
|
): Promise<ITransaction[]> {
|
||||||
|
const results: Array<{ transactions: ITransaction[]; hash: string }> = [];
|
||||||
|
const hashCounts: Map<string, number> = new Map();
|
||||||
|
|
||||||
|
const addResult = (transactions: ITransaction[], passLabel: string): number => {
|
||||||
|
const hash = hashTransactions(transactions);
|
||||||
|
results.push({ transactions, hash });
|
||||||
|
hashCounts.set(hash, (hashCounts.get(hash) || 0) + 1);
|
||||||
|
console.log(
|
||||||
|
`[${passLabel}] Got ${transactions.length} transactions (hash: ${hash.substring(0, 20)}...)`
|
||||||
|
);
|
||||||
|
return hashCounts.get(hash)!;
|
||||||
|
};
|
||||||
|
|
||||||
|
// Check if PaddleOCR-VL is available
|
||||||
|
const paddleOCRVLAvailable = await isPaddleOCRVLAvailable();
|
||||||
|
if (paddleOCRVLAvailable) {
|
||||||
|
console.log('[Setup] PaddleOCR-VL service available - using dual-VLM consensus');
|
||||||
|
} else {
|
||||||
|
console.log('[Setup] PaddleOCR-VL not available - using MiniCPM-V only');
|
||||||
|
}
|
||||||
|
|
||||||
|
// Pass 1: MiniCPM-V visual extraction
|
||||||
|
try {
|
||||||
|
const pass1Result = await extractWithMiniCPM(images, 'Pass 1 MiniCPM-V');
|
||||||
|
addResult(pass1Result, 'Pass 1 MiniCPM-V');
|
||||||
|
} catch (err) {
|
||||||
|
console.log(`[Pass 1] Error: ${err}`);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Pass 2: PaddleOCR-VL table recognition (if available)
|
||||||
|
if (paddleOCRVLAvailable) {
|
||||||
|
try {
|
||||||
|
const pass2Result = await extractWithPaddleOCRVL(images, 'Pass 2 PaddleOCR-VL');
|
||||||
|
const count = addResult(pass2Result, 'Pass 2 PaddleOCR-VL');
|
||||||
|
if (count >= 2) {
|
||||||
|
console.log('[Consensus] MiniCPM-V and PaddleOCR-VL extractions match!');
|
||||||
|
return pass2Result;
|
||||||
|
}
|
||||||
|
} catch (err) {
|
||||||
|
console.log(`[Pass 2 PaddleOCR-VL] Error: ${err}`);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Pass 3+: Continue with MiniCPM-V visual passes
|
||||||
|
const startPass = paddleOCRVLAvailable ? 3 : 2;
|
||||||
|
for (let pass = startPass; pass <= maxPasses; pass++) {
|
||||||
|
try {
|
||||||
|
const transactions = await extractWithMiniCPM(images, `Pass ${pass} MiniCPM-V`);
|
||||||
|
const count = addResult(transactions, `Pass ${pass} MiniCPM-V`);
|
||||||
|
|
||||||
|
if (count >= 2) {
|
||||||
|
console.log(`[Consensus] Reached after ${pass} passes`);
|
||||||
|
return transactions;
|
||||||
|
}
|
||||||
|
|
||||||
|
console.log(`[Pass ${pass}] No consensus yet, trying again...`);
|
||||||
|
} catch (err) {
|
||||||
|
console.log(`[Pass ${pass}] Error: ${err}`);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// No consensus reached - return the most common result
|
||||||
|
let bestHash = '';
|
||||||
|
let bestCount = 0;
|
||||||
|
for (const [hash, count] of hashCounts) {
|
||||||
|
if (count > bestCount) {
|
||||||
|
bestCount = count;
|
||||||
|
bestHash = hash;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if (!bestHash) {
|
||||||
|
throw new Error('No valid results obtained');
|
||||||
|
}
|
||||||
|
|
||||||
|
const best = results.find((r) => r.hash === bestHash)!;
|
||||||
|
console.log(`[No consensus] Using most common result (${bestCount}/${maxPasses} passes)`);
|
||||||
|
return best.transactions;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Compare extracted transactions against expected
|
||||||
|
*/
|
||||||
|
function compareTransactions(
|
||||||
|
extracted: ITransaction[],
|
||||||
|
expected: ITransaction[]
|
||||||
|
): { matches: number; total: number; errors: string[] } {
|
||||||
|
const errors: string[] = [];
|
||||||
|
let matches = 0;
|
||||||
|
|
||||||
|
for (let i = 0; i < expected.length; i++) {
|
||||||
|
const exp = expected[i];
|
||||||
|
const ext = extracted[i];
|
||||||
|
|
||||||
|
if (!ext) {
|
||||||
|
errors.push(`Missing transaction ${i}: ${exp.date} ${exp.counterparty}`);
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
|
||||||
|
const dateMatch = ext.date === exp.date;
|
||||||
|
const amountMatch = Math.abs(ext.amount - exp.amount) < 0.01;
|
||||||
|
|
||||||
|
if (dateMatch && amountMatch) {
|
||||||
|
matches++;
|
||||||
|
} else {
|
||||||
|
errors.push(
|
||||||
|
`Mismatch at ${i}: expected ${exp.date}/${exp.amount}, got ${ext.date}/${ext.amount}`
|
||||||
|
);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if (extracted.length > expected.length) {
|
||||||
|
errors.push(`Extra transactions: ${extracted.length - expected.length}`);
|
||||||
|
}
|
||||||
|
|
||||||
|
return { matches, total: expected.length, errors };
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Find all test cases (PDF + JSON pairs) in .nogit/
|
||||||
|
*/
|
||||||
|
function findTestCases(): Array<{ name: string; pdfPath: string; jsonPath: string }> {
|
||||||
|
const testDir = path.join(process.cwd(), '.nogit');
|
||||||
|
if (!fs.existsSync(testDir)) {
|
||||||
|
return [];
|
||||||
|
}
|
||||||
|
|
||||||
|
const files = fs.readdirSync(testDir);
|
||||||
|
const pdfFiles = files.filter((f: string) => f.endsWith('.pdf'));
|
||||||
|
const testCases: Array<{ name: string; pdfPath: string; jsonPath: string }> = [];
|
||||||
|
|
||||||
|
for (const pdf of pdfFiles) {
|
||||||
|
const baseName = pdf.replace('.pdf', '');
|
||||||
|
const jsonFile = `${baseName}.json`;
|
||||||
|
if (files.includes(jsonFile)) {
|
||||||
|
testCases.push({
|
||||||
|
name: baseName,
|
||||||
|
pdfPath: path.join(testDir, pdf),
|
||||||
|
jsonPath: path.join(testDir, jsonFile),
|
||||||
|
});
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return testCases;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Tests
|
||||||
|
|
||||||
|
tap.test('setup: ensure Docker containers are running', async () => {
|
||||||
|
console.log('\n[Setup] Checking Docker containers...\n');
|
||||||
|
|
||||||
|
// Ensure PaddleOCR-VL is running (auto-detects GPU/CPU)
|
||||||
|
const paddleOk = await ensurePaddleOcrVl();
|
||||||
|
expect(paddleOk).toBeTrue();
|
||||||
|
|
||||||
|
// Ensure MiniCPM is running
|
||||||
|
const minicpmOk = await ensureMiniCpm();
|
||||||
|
expect(minicpmOk).toBeTrue();
|
||||||
|
|
||||||
|
console.log('\n[Setup] All containers ready!\n');
|
||||||
|
});
|
||||||
|
|
||||||
|
tap.test('should have MiniCPM-V 4.5 model loaded', async () => {
|
||||||
|
const response = await fetch(`${OLLAMA_URL}/api/tags`);
|
||||||
|
const data = await response.json();
|
||||||
|
const modelNames = data.models.map((m: { name: string }) => m.name);
|
||||||
|
expect(modelNames.some((name: string) => name.includes('minicpm-v4.5'))).toBeTrue();
|
||||||
|
});
|
||||||
|
|
||||||
|
tap.test('should check PaddleOCR-VL availability', async () => {
|
||||||
|
const available = await isPaddleOCRVLAvailable();
|
||||||
|
console.log(`PaddleOCR-VL available: ${available}`);
|
||||||
|
expect(available).toBeTrue();
|
||||||
|
});
|
||||||
|
|
||||||
|
// Dynamic test for each PDF/JSON pair
|
||||||
|
const testCases = findTestCases();
|
||||||
|
for (const testCase of testCases) {
|
||||||
|
tap.test(`should extract transactions from ${testCase.name}`, async () => {
|
||||||
|
// Load expected transactions
|
||||||
|
const expected: ITransaction[] = JSON.parse(fs.readFileSync(testCase.jsonPath, 'utf-8'));
|
||||||
|
console.log(`\n=== ${testCase.name} ===`);
|
||||||
|
console.log(`Expected: ${expected.length} transactions`);
|
||||||
|
|
||||||
|
// Convert PDF to images
|
||||||
|
console.log('Converting PDF to images...');
|
||||||
|
const images = convertPdfToImages(testCase.pdfPath);
|
||||||
|
console.log(`Converted: ${images.length} pages\n`);
|
||||||
|
|
||||||
|
// Extract with dual-VLM consensus
|
||||||
|
const extracted = await extractWithConsensus(images);
|
||||||
|
console.log(`\nFinal: ${extracted.length} transactions`);
|
||||||
|
|
||||||
|
// Compare results
|
||||||
|
const result = compareTransactions(extracted, expected);
|
||||||
|
console.log(`Accuracy: ${result.matches}/${result.total}`);
|
||||||
|
|
||||||
|
if (result.errors.length > 0) {
|
||||||
|
console.log('Errors:');
|
||||||
|
result.errors.forEach((e) => console.log(` - ${e}`));
|
||||||
|
}
|
||||||
|
|
||||||
|
// Assert high accuracy
|
||||||
|
const accuracy = result.matches / result.total;
|
||||||
|
expect(accuracy).toBeGreaterThan(0.95);
|
||||||
|
expect(extracted.length).toEqual(expected.length);
|
||||||
|
});
|
||||||
|
}
|
||||||
|
|
||||||
|
export default tap.start();
|
||||||
@@ -1,13 +1,25 @@
|
|||||||
|
/**
|
||||||
|
* Bank statement extraction test using MiniCPM-V only (visual extraction)
|
||||||
|
*
|
||||||
|
* This tests MiniCPM-V's ability to extract bank transactions directly from images
|
||||||
|
* without any OCR augmentation.
|
||||||
|
*/
|
||||||
import { tap, expect } from '@git.zone/tstest/tapbundle';
|
import { tap, expect } from '@git.zone/tstest/tapbundle';
|
||||||
import * as fs from 'fs';
|
import * as fs from 'fs';
|
||||||
import * as path from 'path';
|
import * as path from 'path';
|
||||||
import { execSync } from 'child_process';
|
import { execSync } from 'child_process';
|
||||||
import * as os from 'os';
|
import * as os from 'os';
|
||||||
|
import { ensureMiniCpm } from './helpers/docker.js';
|
||||||
|
|
||||||
|
// Service URL
|
||||||
const OLLAMA_URL = 'http://localhost:11434';
|
const OLLAMA_URL = 'http://localhost:11434';
|
||||||
const MODEL = 'openbmb/minicpm-v4.5:q8_0';
|
|
||||||
|
|
||||||
const EXTRACT_PROMPT = `You are a bank statement parser. Extract EVERY transaction from the table.
|
// Model
|
||||||
|
const MINICPM_MODEL = 'minicpm-v:latest';
|
||||||
|
|
||||||
|
// Prompt for MiniCPM-V visual extraction
|
||||||
|
const MINICPM_EXTRACT_PROMPT = `/nothink
|
||||||
|
You are a bank statement parser. Extract EVERY transaction from the table.
|
||||||
|
|
||||||
Read the Amount column carefully:
|
Read the Amount column carefully:
|
||||||
- "- 21,47 €" means DEBIT, output as: -21.47
|
- "- 21,47 €" means DEBIT, output as: -21.47
|
||||||
@@ -37,7 +49,7 @@ function convertPdfToImages(pdfPath: string): string[] {
|
|||||||
{ stdio: 'pipe' }
|
{ stdio: 'pipe' }
|
||||||
);
|
);
|
||||||
|
|
||||||
const files = fs.readdirSync(tempDir).filter((f) => f.endsWith('.png')).sort();
|
const files = fs.readdirSync(tempDir).filter((f: string) => f.endsWith('.png')).sort();
|
||||||
const images: string[] = [];
|
const images: string[] = [];
|
||||||
|
|
||||||
for (const file of files) {
|
for (const file of files) {
|
||||||
@@ -53,12 +65,12 @@ function convertPdfToImages(pdfPath: string): string[] {
|
|||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Single extraction pass
|
* Extract using MiniCPM-V via Ollama
|
||||||
*/
|
*/
|
||||||
async function extractOnce(images: string[], passNum: number): Promise<ITransaction[]> {
|
async function extractWithMiniCPM(images: string[], passLabel: string): Promise<ITransaction[]> {
|
||||||
const payload = {
|
const payload = {
|
||||||
model: MODEL,
|
model: MINICPM_MODEL,
|
||||||
prompt: EXTRACT_PROMPT,
|
prompt: MINICPM_EXTRACT_PROMPT,
|
||||||
images,
|
images,
|
||||||
stream: true,
|
stream: true,
|
||||||
options: {
|
options: {
|
||||||
@@ -86,7 +98,7 @@ async function extractOnce(images: string[], passNum: number): Promise<ITransact
|
|||||||
let fullText = '';
|
let fullText = '';
|
||||||
let lineBuffer = '';
|
let lineBuffer = '';
|
||||||
|
|
||||||
console.log(`[Pass ${passNum}] Extracting...`);
|
console.log(`[${passLabel}] Extracting with MiniCPM-V...`);
|
||||||
|
|
||||||
while (true) {
|
while (true) {
|
||||||
const { done, value } = await reader.read();
|
const { done, value } = await reader.read();
|
||||||
@@ -102,7 +114,6 @@ async function extractOnce(images: string[], passNum: number): Promise<ITransact
|
|||||||
fullText += json.response;
|
fullText += json.response;
|
||||||
lineBuffer += json.response;
|
lineBuffer += json.response;
|
||||||
|
|
||||||
// Print complete lines
|
|
||||||
if (lineBuffer.includes('\n')) {
|
if (lineBuffer.includes('\n')) {
|
||||||
const parts = lineBuffer.split('\n');
|
const parts = lineBuffer.split('\n');
|
||||||
for (let i = 0; i < parts.length - 1; i++) {
|
for (let i = 0; i < parts.length - 1; i++) {
|
||||||
@@ -143,31 +154,40 @@ function hashTransactions(transactions: ITransaction[]): string {
|
|||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Extract with majority voting - run until 2 passes match
|
* Extract with consensus voting using MiniCPM-V only
|
||||||
*/
|
*/
|
||||||
async function extractWithConsensus(images: string[], maxPasses: number = 5): Promise<ITransaction[]> {
|
async function extractWithConsensus(
|
||||||
|
images: string[],
|
||||||
|
maxPasses: number = 5
|
||||||
|
): Promise<ITransaction[]> {
|
||||||
const results: Array<{ transactions: ITransaction[]; hash: string }> = [];
|
const results: Array<{ transactions: ITransaction[]; hash: string }> = [];
|
||||||
const hashCounts: Map<string, number> = new Map();
|
const hashCounts: Map<string, number> = new Map();
|
||||||
|
|
||||||
for (let pass = 1; pass <= maxPasses; pass++) {
|
const addResult = (transactions: ITransaction[], passLabel: string): number => {
|
||||||
const transactions = await extractOnce(images, pass);
|
|
||||||
const hash = hashTransactions(transactions);
|
const hash = hashTransactions(transactions);
|
||||||
|
|
||||||
results.push({ transactions, hash });
|
results.push({ transactions, hash });
|
||||||
hashCounts.set(hash, (hashCounts.get(hash) || 0) + 1);
|
hashCounts.set(hash, (hashCounts.get(hash) || 0) + 1);
|
||||||
|
console.log(
|
||||||
|
`[${passLabel}] Got ${transactions.length} transactions (hash: ${hash.substring(0, 20)}...)`
|
||||||
|
);
|
||||||
|
return hashCounts.get(hash)!;
|
||||||
|
};
|
||||||
|
|
||||||
console.log(`[Pass ${pass}] Got ${transactions.length} transactions (hash: ${hash.substring(0, 20)}...)`);
|
console.log('[Setup] Using MiniCPM-V only');
|
||||||
|
|
||||||
|
for (let pass = 1; pass <= maxPasses; pass++) {
|
||||||
|
try {
|
||||||
|
const transactions = await extractWithMiniCPM(images, `Pass ${pass} MiniCPM-V`);
|
||||||
|
const count = addResult(transactions, `Pass ${pass} MiniCPM-V`);
|
||||||
|
|
||||||
// Check if we have consensus (2+ matching)
|
|
||||||
const count = hashCounts.get(hash)!;
|
|
||||||
if (count >= 2) {
|
if (count >= 2) {
|
||||||
console.log(`[Consensus] Reached after ${pass} passes (${count} matching results)`);
|
console.log(`[Consensus] Reached after ${pass} passes`);
|
||||||
return transactions;
|
return transactions;
|
||||||
}
|
}
|
||||||
|
|
||||||
// After 2 passes, if no match yet, continue
|
|
||||||
if (pass >= 2) {
|
|
||||||
console.log(`[Pass ${pass}] No consensus yet, trying again...`);
|
console.log(`[Pass ${pass}] No consensus yet, trying again...`);
|
||||||
|
} catch (err) {
|
||||||
|
console.log(`[Pass ${pass}] Error: ${err}`);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@@ -181,6 +201,10 @@ async function extractWithConsensus(images: string[], maxPasses: number = 5): Pr
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
if (!bestHash) {
|
||||||
|
throw new Error('No valid results obtained');
|
||||||
|
}
|
||||||
|
|
||||||
const best = results.find((r) => r.hash === bestHash)!;
|
const best = results.find((r) => r.hash === bestHash)!;
|
||||||
console.log(`[No consensus] Using most common result (${bestCount}/${maxPasses} passes)`);
|
console.log(`[No consensus] Using most common result (${bestCount}/${maxPasses} passes)`);
|
||||||
return best.transactions;
|
return best.transactions;
|
||||||
@@ -234,7 +258,7 @@ function findTestCases(): Array<{ name: string; pdfPath: string; jsonPath: strin
|
|||||||
}
|
}
|
||||||
|
|
||||||
const files = fs.readdirSync(testDir);
|
const files = fs.readdirSync(testDir);
|
||||||
const pdfFiles = files.filter((f) => f.endsWith('.pdf'));
|
const pdfFiles = files.filter((f: string) => f.endsWith('.pdf'));
|
||||||
const testCases: Array<{ name: string; pdfPath: string; jsonPath: string }> = [];
|
const testCases: Array<{ name: string; pdfPath: string; jsonPath: string }> = [];
|
||||||
|
|
||||||
for (const pdf of pdfFiles) {
|
for (const pdf of pdfFiles) {
|
||||||
@@ -254,11 +278,14 @@ function findTestCases(): Array<{ name: string; pdfPath: string; jsonPath: strin
|
|||||||
|
|
||||||
// Tests
|
// Tests
|
||||||
|
|
||||||
tap.test('should connect to Ollama API', async () => {
|
tap.test('setup: ensure Docker containers are running', async () => {
|
||||||
const response = await fetch(`${OLLAMA_URL}/api/tags`);
|
console.log('\n[Setup] Checking Docker containers...\n');
|
||||||
expect(response.ok).toBeTrue();
|
|
||||||
const data = await response.json();
|
// Ensure MiniCPM is running
|
||||||
expect(data.models).toBeArray();
|
const minicpmOk = await ensureMiniCpm();
|
||||||
|
expect(minicpmOk).toBeTrue();
|
||||||
|
|
||||||
|
console.log('\n[Setup] All containers ready!\n');
|
||||||
});
|
});
|
||||||
|
|
||||||
tap.test('should have MiniCPM-V 4.5 model loaded', async () => {
|
tap.test('should have MiniCPM-V 4.5 model loaded', async () => {
|
||||||
@@ -270,6 +297,8 @@ tap.test('should have MiniCPM-V 4.5 model loaded', async () => {
|
|||||||
|
|
||||||
// Dynamic test for each PDF/JSON pair
|
// Dynamic test for each PDF/JSON pair
|
||||||
const testCases = findTestCases();
|
const testCases = findTestCases();
|
||||||
|
console.log(`\nFound ${testCases.length} bank statement test cases (MiniCPM-V only)\n`);
|
||||||
|
|
||||||
for (const testCase of testCases) {
|
for (const testCase of testCases) {
|
||||||
tap.test(`should extract transactions from ${testCase.name}`, async () => {
|
tap.test(`should extract transactions from ${testCase.name}`, async () => {
|
||||||
// Load expected transactions
|
// Load expected transactions
|
||||||
@@ -282,7 +311,7 @@ for (const testCase of testCases) {
|
|||||||
const images = convertPdfToImages(testCase.pdfPath);
|
const images = convertPdfToImages(testCase.pdfPath);
|
||||||
console.log(`Converted: ${images.length} pages\n`);
|
console.log(`Converted: ${images.length} pages\n`);
|
||||||
|
|
||||||
// Extract with consensus voting
|
// Extract with consensus (MiniCPM-V only)
|
||||||
const extracted = await extractWithConsensus(images);
|
const extracted = await extractWithConsensus(images);
|
||||||
console.log(`\nFinal: ${extracted.length} transactions`);
|
console.log(`\nFinal: ${extracted.length} transactions`);
|
||||||
|
|
||||||
346
test/test.bankstatements.paddleocr-vl.ts
Normal file
346
test/test.bankstatements.paddleocr-vl.ts
Normal file
@@ -0,0 +1,346 @@
|
|||||||
|
/**
|
||||||
|
* Bank statement extraction test using PaddleOCR-VL Full Pipeline
|
||||||
|
*
|
||||||
|
* This tests the complete PaddleOCR-VL pipeline for bank statements:
|
||||||
|
* 1. PP-DocLayoutV2 for layout detection
|
||||||
|
* 2. PaddleOCR-VL for recognition (tables with proper structure)
|
||||||
|
* 3. Structured Markdown output with tables
|
||||||
|
* 4. MiniCPM extracts transactions from structured tables
|
||||||
|
*
|
||||||
|
* The structured Markdown has properly formatted tables,
|
||||||
|
* making it much easier for MiniCPM to extract transaction data.
|
||||||
|
*/
|
||||||
|
import { tap, expect } from '@git.zone/tstest/tapbundle';
|
||||||
|
import * as fs from 'fs';
|
||||||
|
import * as path from 'path';
|
||||||
|
import { execSync } from 'child_process';
|
||||||
|
import * as os from 'os';
|
||||||
|
import { ensurePaddleOcrVlFull, ensureMiniCpm } from './helpers/docker.js';
|
||||||
|
|
||||||
|
const PADDLEOCR_VL_URL = 'http://localhost:8000';
|
||||||
|
const OLLAMA_URL = 'http://localhost:11434';
|
||||||
|
const MINICPM_MODEL = 'minicpm-v:latest';
|
||||||
|
|
||||||
|
interface ITransaction {
|
||||||
|
date: string;
|
||||||
|
counterparty: string;
|
||||||
|
amount: number;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Convert PDF to PNG images using ImageMagick
|
||||||
|
*/
|
||||||
|
function convertPdfToImages(pdfPath: string): string[] {
|
||||||
|
const tempDir = fs.mkdtempSync(path.join(os.tmpdir(), 'pdf-convert-'));
|
||||||
|
const outputPattern = path.join(tempDir, 'page-%d.png');
|
||||||
|
|
||||||
|
try {
|
||||||
|
execSync(
|
||||||
|
`convert -density 300 -quality 100 "${pdfPath}" -background white -alpha remove "${outputPattern}"`,
|
||||||
|
{ stdio: 'pipe' }
|
||||||
|
);
|
||||||
|
|
||||||
|
const files = fs.readdirSync(tempDir).filter((f: string) => f.endsWith('.png')).sort();
|
||||||
|
const images: string[] = [];
|
||||||
|
|
||||||
|
for (const file of files) {
|
||||||
|
const imagePath = path.join(tempDir, file);
|
||||||
|
const imageData = fs.readFileSync(imagePath);
|
||||||
|
images.push(imageData.toString('base64'));
|
||||||
|
}
|
||||||
|
|
||||||
|
return images;
|
||||||
|
} finally {
|
||||||
|
fs.rmSync(tempDir, { recursive: true, force: true });
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Parse document using PaddleOCR-VL Full Pipeline (returns structured Markdown)
|
||||||
|
*/
|
||||||
|
async function parseDocument(imageBase64: string): Promise<string> {
|
||||||
|
const response = await fetch(`${PADDLEOCR_VL_URL}/parse`, {
|
||||||
|
method: 'POST',
|
||||||
|
headers: { 'Content-Type': 'application/json' },
|
||||||
|
body: JSON.stringify({
|
||||||
|
image: imageBase64,
|
||||||
|
output_format: 'markdown',
|
||||||
|
}),
|
||||||
|
});
|
||||||
|
|
||||||
|
if (!response.ok) {
|
||||||
|
const text = await response.text();
|
||||||
|
throw new Error(`PaddleOCR-VL API error: ${response.status} - ${text}`);
|
||||||
|
}
|
||||||
|
|
||||||
|
const data = await response.json();
|
||||||
|
|
||||||
|
if (!data.success) {
|
||||||
|
throw new Error(`PaddleOCR-VL error: ${data.error}`);
|
||||||
|
}
|
||||||
|
|
||||||
|
return data.result?.markdown || '';
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Extract transactions from structured Markdown using MiniCPM
|
||||||
|
*/
|
||||||
|
async function extractTransactionsFromMarkdown(markdown: string): Promise<ITransaction[]> {
|
||||||
|
console.log(` [Extract] Processing ${markdown.length} chars of Markdown`);
|
||||||
|
|
||||||
|
const prompt = `/nothink
|
||||||
|
Convert this bank statement to a JSON array of transactions.
|
||||||
|
|
||||||
|
Read the Amount values carefully:
|
||||||
|
- "- 21,47 €" means DEBIT, output as: -21.47
|
||||||
|
- "+ 1.000,00 €" means CREDIT, output as: 1000.00
|
||||||
|
- European format: comma = decimal point, dot = thousands
|
||||||
|
|
||||||
|
For each transaction output: {"date":"YYYY-MM-DD","counterparty":"NAME","amount":-21.47}
|
||||||
|
|
||||||
|
Return ONLY the JSON array, no explanation.
|
||||||
|
|
||||||
|
Document:
|
||||||
|
${markdown}`;
|
||||||
|
|
||||||
|
const payload = {
|
||||||
|
model: MINICPM_MODEL,
|
||||||
|
prompt,
|
||||||
|
stream: true,
|
||||||
|
options: {
|
||||||
|
num_predict: 16384,
|
||||||
|
temperature: 0.1,
|
||||||
|
},
|
||||||
|
};
|
||||||
|
|
||||||
|
const response = await fetch(`${OLLAMA_URL}/api/generate`, {
|
||||||
|
method: 'POST',
|
||||||
|
headers: { 'Content-Type': 'application/json' },
|
||||||
|
body: JSON.stringify(payload),
|
||||||
|
});
|
||||||
|
|
||||||
|
if (!response.ok) {
|
||||||
|
throw new Error(`Ollama API error: ${response.status}`);
|
||||||
|
}
|
||||||
|
|
||||||
|
const reader = response.body?.getReader();
|
||||||
|
if (!reader) {
|
||||||
|
throw new Error('No response body');
|
||||||
|
}
|
||||||
|
|
||||||
|
const decoder = new TextDecoder();
|
||||||
|
let fullText = '';
|
||||||
|
|
||||||
|
while (true) {
|
||||||
|
const { done, value } = await reader.read();
|
||||||
|
if (done) break;
|
||||||
|
|
||||||
|
const chunk = decoder.decode(value, { stream: true });
|
||||||
|
const lines = chunk.split('\n').filter((l) => l.trim());
|
||||||
|
|
||||||
|
for (const line of lines) {
|
||||||
|
try {
|
||||||
|
const json = JSON.parse(line);
|
||||||
|
if (json.response) {
|
||||||
|
fullText += json.response;
|
||||||
|
}
|
||||||
|
} catch {
|
||||||
|
// Skip invalid JSON lines
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Extract JSON array from response
|
||||||
|
const startIdx = fullText.indexOf('[');
|
||||||
|
const endIdx = fullText.lastIndexOf(']') + 1;
|
||||||
|
|
||||||
|
if (startIdx < 0 || endIdx <= startIdx) {
|
||||||
|
throw new Error(`No JSON array found in response: ${fullText.substring(0, 200)}`);
|
||||||
|
}
|
||||||
|
|
||||||
|
const jsonStr = fullText.substring(startIdx, endIdx);
|
||||||
|
return JSON.parse(jsonStr);
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Extract transactions from all pages of a bank statement
|
||||||
|
*/
|
||||||
|
async function extractAllTransactions(images: string[]): Promise<ITransaction[]> {
|
||||||
|
const allTransactions: ITransaction[] = [];
|
||||||
|
|
||||||
|
for (let i = 0; i < images.length; i++) {
|
||||||
|
console.log(` Processing page ${i + 1}/${images.length}...`);
|
||||||
|
|
||||||
|
// Parse with full pipeline
|
||||||
|
const markdown = await parseDocument(images[i]);
|
||||||
|
console.log(` [Parse] Got ${markdown.split('\n').length} lines of Markdown`);
|
||||||
|
|
||||||
|
// Extract transactions
|
||||||
|
try {
|
||||||
|
const transactions = await extractTransactionsFromMarkdown(markdown);
|
||||||
|
console.log(` [Extracted] ${transactions.length} transactions`);
|
||||||
|
allTransactions.push(...transactions);
|
||||||
|
} catch (err) {
|
||||||
|
console.log(` [Error] ${err}`);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return allTransactions;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Compare transactions - find matching transaction in expected list
|
||||||
|
*/
|
||||||
|
function findMatchingTransaction(
|
||||||
|
tx: ITransaction,
|
||||||
|
expectedList: ITransaction[]
|
||||||
|
): ITransaction | undefined {
|
||||||
|
return expectedList.find((exp) => {
|
||||||
|
const dateMatch = tx.date === exp.date;
|
||||||
|
const amountMatch = Math.abs(tx.amount - exp.amount) < 0.02;
|
||||||
|
const counterpartyMatch =
|
||||||
|
tx.counterparty?.toLowerCase().includes(exp.counterparty?.toLowerCase().slice(0, 10)) ||
|
||||||
|
exp.counterparty?.toLowerCase().includes(tx.counterparty?.toLowerCase().slice(0, 10));
|
||||||
|
return dateMatch && amountMatch && counterpartyMatch;
|
||||||
|
});
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Calculate extraction accuracy
|
||||||
|
*/
|
||||||
|
function calculateAccuracy(
|
||||||
|
extracted: ITransaction[],
|
||||||
|
expected: ITransaction[]
|
||||||
|
): { matched: number; total: number; accuracy: number } {
|
||||||
|
let matched = 0;
|
||||||
|
const usedExpected = new Set<number>();
|
||||||
|
|
||||||
|
for (const tx of extracted) {
|
||||||
|
for (let i = 0; i < expected.length; i++) {
|
||||||
|
if (usedExpected.has(i)) continue;
|
||||||
|
|
||||||
|
const exp = expected[i];
|
||||||
|
const dateMatch = tx.date === exp.date;
|
||||||
|
const amountMatch = Math.abs(tx.amount - exp.amount) < 0.02;
|
||||||
|
|
||||||
|
if (dateMatch && amountMatch) {
|
||||||
|
matched++;
|
||||||
|
usedExpected.add(i);
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return {
|
||||||
|
matched,
|
||||||
|
total: expected.length,
|
||||||
|
accuracy: expected.length > 0 ? (matched / expected.length) * 100 : 0,
|
||||||
|
};
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Find all test cases (PDF + JSON pairs) in .nogit/bankstatements/
|
||||||
|
*/
|
||||||
|
function findTestCases(): Array<{ name: string; pdfPath: string; jsonPath: string }> {
|
||||||
|
const testDir = path.join(process.cwd(), '.nogit/bankstatements');
|
||||||
|
if (!fs.existsSync(testDir)) {
|
||||||
|
return [];
|
||||||
|
}
|
||||||
|
|
||||||
|
const files = fs.readdirSync(testDir);
|
||||||
|
const pdfFiles = files.filter((f) => f.endsWith('.pdf'));
|
||||||
|
const testCases: Array<{ name: string; pdfPath: string; jsonPath: string }> = [];
|
||||||
|
|
||||||
|
for (const pdf of pdfFiles) {
|
||||||
|
const baseName = pdf.replace('.pdf', '');
|
||||||
|
const jsonFile = `${baseName}.json`;
|
||||||
|
if (files.includes(jsonFile)) {
|
||||||
|
testCases.push({
|
||||||
|
name: baseName,
|
||||||
|
pdfPath: path.join(testDir, pdf),
|
||||||
|
jsonPath: path.join(testDir, jsonFile),
|
||||||
|
});
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
testCases.sort((a, b) => a.name.localeCompare(b.name));
|
||||||
|
return testCases;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Tests
|
||||||
|
|
||||||
|
tap.test('setup: ensure Docker containers are running', async () => {
|
||||||
|
console.log('\n[Setup] Checking Docker containers...\n');
|
||||||
|
|
||||||
|
// Ensure PaddleOCR-VL Full Pipeline is running
|
||||||
|
const paddleOk = await ensurePaddleOcrVlFull();
|
||||||
|
expect(paddleOk).toBeTrue();
|
||||||
|
|
||||||
|
// Ensure MiniCPM is running (for field extraction from Markdown)
|
||||||
|
const minicpmOk = await ensureMiniCpm();
|
||||||
|
expect(minicpmOk).toBeTrue();
|
||||||
|
|
||||||
|
console.log('\n[Setup] All containers ready!\n');
|
||||||
|
});
|
||||||
|
|
||||||
|
// Dynamic test for each PDF/JSON pair
|
||||||
|
const testCases = findTestCases();
|
||||||
|
console.log(`\nFound ${testCases.length} bank statement test cases (PaddleOCR-VL Full Pipeline)\n`);
|
||||||
|
|
||||||
|
const results: Array<{ name: string; accuracy: number; matched: number; total: number }> = [];
|
||||||
|
|
||||||
|
for (const testCase of testCases) {
|
||||||
|
tap.test(`should extract bank statement: ${testCase.name}`, async () => {
|
||||||
|
// Load expected data
|
||||||
|
const expected: ITransaction[] = JSON.parse(fs.readFileSync(testCase.jsonPath, 'utf-8'));
|
||||||
|
console.log(`\n=== ${testCase.name} ===`);
|
||||||
|
console.log(`Expected: ${expected.length} transactions`);
|
||||||
|
|
||||||
|
const startTime = Date.now();
|
||||||
|
|
||||||
|
// Convert PDF to images
|
||||||
|
const images = convertPdfToImages(testCase.pdfPath);
|
||||||
|
console.log(` Pages: ${images.length}`);
|
||||||
|
|
||||||
|
// Extract all transactions
|
||||||
|
const extracted = await extractAllTransactions(images);
|
||||||
|
|
||||||
|
const endTime = Date.now();
|
||||||
|
const elapsedMs = endTime - startTime;
|
||||||
|
|
||||||
|
// Calculate accuracy
|
||||||
|
const accuracy = calculateAccuracy(extracted, expected);
|
||||||
|
results.push({
|
||||||
|
name: testCase.name,
|
||||||
|
accuracy: accuracy.accuracy,
|
||||||
|
matched: accuracy.matched,
|
||||||
|
total: accuracy.total,
|
||||||
|
});
|
||||||
|
|
||||||
|
console.log(` Extracted: ${extracted.length} transactions`);
|
||||||
|
console.log(` Matched: ${accuracy.matched}/${accuracy.total} (${accuracy.accuracy.toFixed(1)}%)`);
|
||||||
|
console.log(` Time: ${(elapsedMs / 1000).toFixed(1)}s`);
|
||||||
|
|
||||||
|
// We expect at least 50% accuracy
|
||||||
|
expect(accuracy.accuracy).toBeGreaterThan(50);
|
||||||
|
});
|
||||||
|
}
|
||||||
|
|
||||||
|
tap.test('summary', async () => {
|
||||||
|
const totalStatements = results.length;
|
||||||
|
const avgAccuracy =
|
||||||
|
results.length > 0 ? results.reduce((a, b) => a + b.accuracy, 0) / results.length : 0;
|
||||||
|
const totalMatched = results.reduce((a, b) => a + b.matched, 0);
|
||||||
|
const totalExpected = results.reduce((a, b) => a + b.total, 0);
|
||||||
|
|
||||||
|
console.log(`\n======================================================`);
|
||||||
|
console.log(` Bank Statement Extraction Summary (PaddleOCR-VL Full)`);
|
||||||
|
console.log(`======================================================`);
|
||||||
|
console.log(` Method: PaddleOCR-VL Full Pipeline -> MiniCPM`);
|
||||||
|
console.log(` Statements: ${totalStatements}`);
|
||||||
|
console.log(` Transactions: ${totalMatched}/${totalExpected} matched`);
|
||||||
|
console.log(` Avg accuracy: ${avgAccuracy.toFixed(1)}%`);
|
||||||
|
console.log(`======================================================\n`);
|
||||||
|
});
|
||||||
|
|
||||||
|
export default tap.start();
|
||||||
@@ -1,12 +1,20 @@
|
|||||||
|
/**
|
||||||
|
* Invoice extraction test using MiniCPM-V (visual) + PaddleOCR-VL (OCR augmentation)
|
||||||
|
*
|
||||||
|
* This is the combined approach that uses both models for best accuracy:
|
||||||
|
* - MiniCPM-V for visual understanding
|
||||||
|
* - PaddleOCR-VL for OCR text to augment prompts
|
||||||
|
*/
|
||||||
import { tap, expect } from '@git.zone/tstest/tapbundle';
|
import { tap, expect } from '@git.zone/tstest/tapbundle';
|
||||||
import * as fs from 'fs';
|
import * as fs from 'fs';
|
||||||
import * as path from 'path';
|
import * as path from 'path';
|
||||||
import { execSync } from 'child_process';
|
import { execSync } from 'child_process';
|
||||||
import * as os from 'os';
|
import * as os from 'os';
|
||||||
|
import { ensurePaddleOcrVl, ensureMiniCpm } from './helpers/docker.js';
|
||||||
|
|
||||||
const OLLAMA_URL = 'http://localhost:11434';
|
const OLLAMA_URL = 'http://localhost:11434';
|
||||||
const MODEL = 'openbmb/minicpm-v4.5:q8_0';
|
const MODEL = 'minicpm-v:latest';
|
||||||
const PADDLEOCR_URL = 'http://localhost:5000';
|
const PADDLEOCR_VL_URL = 'http://localhost:8000';
|
||||||
|
|
||||||
interface IInvoice {
|
interface IInvoice {
|
||||||
invoice_number: string;
|
invoice_number: string;
|
||||||
@@ -19,24 +27,33 @@ interface IInvoice {
|
|||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Extract OCR text from an image using PaddleOCR
|
* Extract OCR text from an image using PaddleOCR-VL (OpenAI-compatible API)
|
||||||
*/
|
*/
|
||||||
async function extractOcrText(imageBase64: string): Promise<string> {
|
async function extractOcrText(imageBase64: string): Promise<string> {
|
||||||
try {
|
try {
|
||||||
const response = await fetch(`${PADDLEOCR_URL}/ocr`, {
|
const response = await fetch(`${PADDLEOCR_VL_URL}/v1/chat/completions`, {
|
||||||
method: 'POST',
|
method: 'POST',
|
||||||
headers: { 'Content-Type': 'application/json' },
|
headers: { 'Content-Type': 'application/json' },
|
||||||
body: JSON.stringify({ image: imageBase64 }),
|
body: JSON.stringify({
|
||||||
|
model: 'paddleocr-vl',
|
||||||
|
messages: [{
|
||||||
|
role: 'user',
|
||||||
|
content: [
|
||||||
|
{ type: 'image_url', image_url: { url: `data:image/png;base64,${imageBase64}` } },
|
||||||
|
{ type: 'text', text: 'OCR:' }
|
||||||
|
]
|
||||||
|
}],
|
||||||
|
temperature: 0.0,
|
||||||
|
max_tokens: 4096
|
||||||
|
}),
|
||||||
});
|
});
|
||||||
|
|
||||||
if (!response.ok) return '';
|
if (!response.ok) return '';
|
||||||
|
|
||||||
const data = await response.json();
|
const data = await response.json();
|
||||||
if (data.success && data.results) {
|
return data.choices?.[0]?.message?.content || '';
|
||||||
return data.results.map((r: { text: string }) => r.text).join('\n');
|
|
||||||
}
|
|
||||||
} catch {
|
} catch {
|
||||||
// PaddleOCR unavailable
|
// PaddleOCR-VL unavailable
|
||||||
}
|
}
|
||||||
return '';
|
return '';
|
||||||
}
|
}
|
||||||
@@ -45,7 +62,8 @@ async function extractOcrText(imageBase64: string): Promise<string> {
|
|||||||
* Build prompt with optional OCR text
|
* Build prompt with optional OCR text
|
||||||
*/
|
*/
|
||||||
function buildPrompt(ocrText: string): string {
|
function buildPrompt(ocrText: string): string {
|
||||||
const base = `You are an invoice parser. Extract the following fields from this invoice:
|
const base = `/nothink
|
||||||
|
You are an invoice parser. Extract the following fields from this invoice:
|
||||||
|
|
||||||
1. invoice_number: The invoice/receipt number
|
1. invoice_number: The invoice/receipt number
|
||||||
2. invoice_date: Date in YYYY-MM-DD format
|
2. invoice_date: Date in YYYY-MM-DD format
|
||||||
@@ -62,11 +80,17 @@ If a field is not visible, use null for strings or 0 for numbers.
|
|||||||
No explanation, just the JSON object.`;
|
No explanation, just the JSON object.`;
|
||||||
|
|
||||||
if (ocrText) {
|
if (ocrText) {
|
||||||
|
// Limit OCR text to prevent context overflow
|
||||||
|
const maxOcrLength = 4000;
|
||||||
|
const truncatedOcr = ocrText.length > maxOcrLength
|
||||||
|
? ocrText.substring(0, maxOcrLength) + '\n... (truncated)'
|
||||||
|
: ocrText;
|
||||||
|
|
||||||
return `${base}
|
return `${base}
|
||||||
|
|
||||||
OCR text extracted from the invoice:
|
OCR text extracted from the invoice (use for reference):
|
||||||
---
|
---
|
||||||
${ocrText}
|
${truncatedOcr}
|
||||||
---
|
---
|
||||||
|
|
||||||
Cross-reference the image with the OCR text above for accuracy.`;
|
Cross-reference the image with the OCR text above for accuracy.`;
|
||||||
@@ -342,11 +366,18 @@ function findTestCases(): Array<{ name: string; pdfPath: string; jsonPath: strin
|
|||||||
|
|
||||||
// Tests
|
// Tests
|
||||||
|
|
||||||
tap.test('should connect to Ollama API', async () => {
|
tap.test('setup: ensure Docker containers are running', async () => {
|
||||||
const response = await fetch(`${OLLAMA_URL}/api/tags`);
|
console.log('\n[Setup] Checking Docker containers...\n');
|
||||||
expect(response.ok).toBeTrue();
|
|
||||||
const data = await response.json();
|
// Ensure PaddleOCR-VL is running (auto-detects GPU/CPU)
|
||||||
expect(data.models).toBeArray();
|
const paddleOk = await ensurePaddleOcrVl();
|
||||||
|
expect(paddleOk).toBeTrue();
|
||||||
|
|
||||||
|
// Ensure MiniCPM is running
|
||||||
|
const minicpmOk = await ensureMiniCpm();
|
||||||
|
expect(minicpmOk).toBeTrue();
|
||||||
|
|
||||||
|
console.log('\n[Setup] All containers ready!\n');
|
||||||
});
|
});
|
||||||
|
|
||||||
tap.test('should have MiniCPM-V 4.5 model loaded', async () => {
|
tap.test('should have MiniCPM-V 4.5 model loaded', async () => {
|
||||||
345
test/test.invoices.minicpm.ts
Normal file
345
test/test.invoices.minicpm.ts
Normal file
@@ -0,0 +1,345 @@
|
|||||||
|
/**
|
||||||
|
* Invoice extraction test using MiniCPM-V only (visual extraction)
|
||||||
|
*
|
||||||
|
* This tests MiniCPM-V's ability to extract invoice data directly from images
|
||||||
|
* without any OCR augmentation.
|
||||||
|
*/
|
||||||
|
import { tap, expect } from '@git.zone/tstest/tapbundle';
|
||||||
|
import * as fs from 'fs';
|
||||||
|
import * as path from 'path';
|
||||||
|
import { execSync } from 'child_process';
|
||||||
|
import * as os from 'os';
|
||||||
|
import { ensureMiniCpm } from './helpers/docker.js';
|
||||||
|
|
||||||
|
const OLLAMA_URL = 'http://localhost:11434';
|
||||||
|
const MODEL = 'minicpm-v:latest';
|
||||||
|
|
||||||
|
interface IInvoice {
|
||||||
|
invoice_number: string;
|
||||||
|
invoice_date: string;
|
||||||
|
vendor_name: string;
|
||||||
|
currency: string;
|
||||||
|
net_amount: number;
|
||||||
|
vat_amount: number;
|
||||||
|
total_amount: number;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Build extraction prompt (MiniCPM-V only, no OCR augmentation)
|
||||||
|
*/
|
||||||
|
function buildPrompt(): string {
|
||||||
|
return `/nothink
|
||||||
|
You are an invoice parser. Extract the following fields from this invoice:
|
||||||
|
|
||||||
|
1. invoice_number: The invoice/receipt number
|
||||||
|
2. invoice_date: Date in YYYY-MM-DD format
|
||||||
|
3. vendor_name: Company that issued the invoice
|
||||||
|
4. currency: EUR, USD, etc.
|
||||||
|
5. net_amount: Amount before tax (if shown)
|
||||||
|
6. vat_amount: Tax/VAT amount (if shown, 0 if reverse charge or no tax)
|
||||||
|
7. total_amount: Final amount due
|
||||||
|
|
||||||
|
Return ONLY valid JSON in this exact format:
|
||||||
|
{"invoice_number":"XXX","invoice_date":"YYYY-MM-DD","vendor_name":"Company Name","currency":"EUR","net_amount":100.00,"vat_amount":19.00,"total_amount":119.00}
|
||||||
|
|
||||||
|
If a field is not visible, use null for strings or 0 for numbers.
|
||||||
|
No explanation, just the JSON object.`;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Convert PDF to PNG images using ImageMagick
|
||||||
|
*/
|
||||||
|
function convertPdfToImages(pdfPath: string): string[] {
|
||||||
|
const tempDir = fs.mkdtempSync(path.join(os.tmpdir(), 'pdf-convert-'));
|
||||||
|
const outputPattern = path.join(tempDir, 'page-%d.png');
|
||||||
|
|
||||||
|
try {
|
||||||
|
execSync(
|
||||||
|
`convert -density 200 -quality 90 "${pdfPath}" -background white -alpha remove "${outputPattern}"`,
|
||||||
|
{ stdio: 'pipe' }
|
||||||
|
);
|
||||||
|
|
||||||
|
const files = fs.readdirSync(tempDir).filter((f) => f.endsWith('.png')).sort();
|
||||||
|
const images: string[] = [];
|
||||||
|
|
||||||
|
for (const file of files) {
|
||||||
|
const imagePath = path.join(tempDir, file);
|
||||||
|
const imageData = fs.readFileSync(imagePath);
|
||||||
|
images.push(imageData.toString('base64'));
|
||||||
|
}
|
||||||
|
|
||||||
|
return images;
|
||||||
|
} finally {
|
||||||
|
fs.rmSync(tempDir, { recursive: true, force: true });
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Single extraction pass with MiniCPM-V
|
||||||
|
*/
|
||||||
|
async function extractOnce(images: string[], passNum: number): Promise<IInvoice> {
|
||||||
|
const payload = {
|
||||||
|
model: MODEL,
|
||||||
|
prompt: buildPrompt(),
|
||||||
|
images,
|
||||||
|
stream: true,
|
||||||
|
options: {
|
||||||
|
num_predict: 2048,
|
||||||
|
temperature: 0.1,
|
||||||
|
},
|
||||||
|
};
|
||||||
|
|
||||||
|
const response = await fetch(`${OLLAMA_URL}/api/generate`, {
|
||||||
|
method: 'POST',
|
||||||
|
headers: { 'Content-Type': 'application/json' },
|
||||||
|
body: JSON.stringify(payload),
|
||||||
|
});
|
||||||
|
|
||||||
|
if (!response.ok) {
|
||||||
|
throw new Error(`Ollama API error: ${response.status}`);
|
||||||
|
}
|
||||||
|
|
||||||
|
const reader = response.body?.getReader();
|
||||||
|
if (!reader) {
|
||||||
|
throw new Error('No response body');
|
||||||
|
}
|
||||||
|
|
||||||
|
const decoder = new TextDecoder();
|
||||||
|
let fullText = '';
|
||||||
|
|
||||||
|
while (true) {
|
||||||
|
const { done, value } = await reader.read();
|
||||||
|
if (done) break;
|
||||||
|
|
||||||
|
const chunk = decoder.decode(value, { stream: true });
|
||||||
|
const lines = chunk.split('\n').filter((l) => l.trim());
|
||||||
|
|
||||||
|
for (const line of lines) {
|
||||||
|
try {
|
||||||
|
const json = JSON.parse(line);
|
||||||
|
if (json.response) {
|
||||||
|
fullText += json.response;
|
||||||
|
}
|
||||||
|
} catch {
|
||||||
|
// Skip invalid JSON lines
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Extract JSON from response
|
||||||
|
const startIdx = fullText.indexOf('{');
|
||||||
|
const endIdx = fullText.lastIndexOf('}') + 1;
|
||||||
|
|
||||||
|
if (startIdx < 0 || endIdx <= startIdx) {
|
||||||
|
throw new Error(`No JSON object found in response: ${fullText.substring(0, 200)}`);
|
||||||
|
}
|
||||||
|
|
||||||
|
const jsonStr = fullText.substring(startIdx, endIdx);
|
||||||
|
return JSON.parse(jsonStr);
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Create a hash of invoice for comparison (using key fields)
|
||||||
|
*/
|
||||||
|
function hashInvoice(invoice: IInvoice): string {
|
||||||
|
return `${invoice.invoice_number}|${invoice.invoice_date}|${invoice.total_amount.toFixed(2)}`;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Extract with consensus voting using MiniCPM-V only
|
||||||
|
*/
|
||||||
|
async function extractWithConsensus(images: string[], invoiceName: string, maxPasses: number = 5): Promise<IInvoice> {
|
||||||
|
const results: Array<{ invoice: IInvoice; hash: string }> = [];
|
||||||
|
const hashCounts: Map<string, number> = new Map();
|
||||||
|
|
||||||
|
const addResult = (invoice: IInvoice, passLabel: string): number => {
|
||||||
|
const hash = hashInvoice(invoice);
|
||||||
|
results.push({ invoice, hash });
|
||||||
|
hashCounts.set(hash, (hashCounts.get(hash) || 0) + 1);
|
||||||
|
console.log(` [${passLabel}] ${invoice.invoice_number} | ${invoice.invoice_date} | ${invoice.total_amount} ${invoice.currency}`);
|
||||||
|
return hashCounts.get(hash)!;
|
||||||
|
};
|
||||||
|
|
||||||
|
for (let pass = 1; pass <= maxPasses; pass++) {
|
||||||
|
try {
|
||||||
|
const invoice = await extractOnce(images, pass);
|
||||||
|
const count = addResult(invoice, `Pass ${pass}`);
|
||||||
|
|
||||||
|
if (count >= 2) {
|
||||||
|
console.log(` [Consensus] Reached after ${pass} passes`);
|
||||||
|
return invoice;
|
||||||
|
}
|
||||||
|
} catch (err) {
|
||||||
|
console.log(` [Pass ${pass}] Error: ${err}`);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// No consensus reached - return the most common result
|
||||||
|
let bestHash = '';
|
||||||
|
let bestCount = 0;
|
||||||
|
for (const [hash, count] of hashCounts) {
|
||||||
|
if (count > bestCount) {
|
||||||
|
bestCount = count;
|
||||||
|
bestHash = hash;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if (!bestHash) {
|
||||||
|
throw new Error(`No valid results for ${invoiceName}`);
|
||||||
|
}
|
||||||
|
|
||||||
|
const best = results.find((r) => r.hash === bestHash)!;
|
||||||
|
console.log(` [No consensus] Using most common result (${bestCount}/${maxPasses} passes)`);
|
||||||
|
return best.invoice;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Compare extracted invoice against expected
|
||||||
|
*/
|
||||||
|
function compareInvoice(
|
||||||
|
extracted: IInvoice,
|
||||||
|
expected: IInvoice
|
||||||
|
): { match: boolean; errors: string[] } {
|
||||||
|
const errors: string[] = [];
|
||||||
|
|
||||||
|
// Compare invoice number (normalize by removing spaces and case)
|
||||||
|
const extNum = extracted.invoice_number?.replace(/\s/g, '').toLowerCase() || '';
|
||||||
|
const expNum = expected.invoice_number?.replace(/\s/g, '').toLowerCase() || '';
|
||||||
|
if (extNum !== expNum) {
|
||||||
|
errors.push(`invoice_number: expected "${expected.invoice_number}", got "${extracted.invoice_number}"`);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Compare date
|
||||||
|
if (extracted.invoice_date !== expected.invoice_date) {
|
||||||
|
errors.push(`invoice_date: expected "${expected.invoice_date}", got "${extracted.invoice_date}"`);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Compare total amount (with tolerance)
|
||||||
|
if (Math.abs(extracted.total_amount - expected.total_amount) > 0.02) {
|
||||||
|
errors.push(`total_amount: expected ${expected.total_amount}, got ${extracted.total_amount}`);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Compare currency
|
||||||
|
if (extracted.currency?.toUpperCase() !== expected.currency?.toUpperCase()) {
|
||||||
|
errors.push(`currency: expected "${expected.currency}", got "${extracted.currency}"`);
|
||||||
|
}
|
||||||
|
|
||||||
|
return { match: errors.length === 0, errors };
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Find all test cases (PDF + JSON pairs) in .nogit/invoices/
|
||||||
|
*/
|
||||||
|
function findTestCases(): Array<{ name: string; pdfPath: string; jsonPath: string }> {
|
||||||
|
const testDir = path.join(process.cwd(), '.nogit/invoices');
|
||||||
|
if (!fs.existsSync(testDir)) {
|
||||||
|
return [];
|
||||||
|
}
|
||||||
|
|
||||||
|
const files = fs.readdirSync(testDir);
|
||||||
|
const pdfFiles = files.filter((f) => f.endsWith('.pdf'));
|
||||||
|
const testCases: Array<{ name: string; pdfPath: string; jsonPath: string }> = [];
|
||||||
|
|
||||||
|
for (const pdf of pdfFiles) {
|
||||||
|
const baseName = pdf.replace('.pdf', '');
|
||||||
|
const jsonFile = `${baseName}.json`;
|
||||||
|
if (files.includes(jsonFile)) {
|
||||||
|
testCases.push({
|
||||||
|
name: baseName,
|
||||||
|
pdfPath: path.join(testDir, pdf),
|
||||||
|
jsonPath: path.join(testDir, jsonFile),
|
||||||
|
});
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Sort alphabetically
|
||||||
|
testCases.sort((a, b) => a.name.localeCompare(b.name));
|
||||||
|
|
||||||
|
return testCases;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Tests
|
||||||
|
|
||||||
|
tap.test('setup: ensure Docker containers are running', async () => {
|
||||||
|
console.log('\n[Setup] Checking Docker containers...\n');
|
||||||
|
|
||||||
|
// Ensure MiniCPM is running
|
||||||
|
const minicpmOk = await ensureMiniCpm();
|
||||||
|
expect(minicpmOk).toBeTrue();
|
||||||
|
|
||||||
|
console.log('\n[Setup] All containers ready!\n');
|
||||||
|
});
|
||||||
|
|
||||||
|
tap.test('should have MiniCPM-V 4.5 model loaded', async () => {
|
||||||
|
const response = await fetch(`${OLLAMA_URL}/api/tags`);
|
||||||
|
const data = await response.json();
|
||||||
|
const modelNames = data.models.map((m: { name: string }) => m.name);
|
||||||
|
expect(modelNames.some((name: string) => name.includes('minicpm-v4.5'))).toBeTrue();
|
||||||
|
});
|
||||||
|
|
||||||
|
// Dynamic test for each PDF/JSON pair
|
||||||
|
const testCases = findTestCases();
|
||||||
|
console.log(`\nFound ${testCases.length} invoice test cases (MiniCPM-V only)\n`);
|
||||||
|
|
||||||
|
let passedCount = 0;
|
||||||
|
let failedCount = 0;
|
||||||
|
const processingTimes: number[] = [];
|
||||||
|
|
||||||
|
for (const testCase of testCases) {
|
||||||
|
tap.test(`should extract invoice: ${testCase.name}`, async () => {
|
||||||
|
// Load expected data
|
||||||
|
const expected: IInvoice = JSON.parse(fs.readFileSync(testCase.jsonPath, 'utf-8'));
|
||||||
|
console.log(`\n=== ${testCase.name} ===`);
|
||||||
|
console.log(`Expected: ${expected.invoice_number} | ${expected.invoice_date} | ${expected.total_amount} ${expected.currency}`);
|
||||||
|
|
||||||
|
const startTime = Date.now();
|
||||||
|
|
||||||
|
// Convert PDF to images
|
||||||
|
const images = convertPdfToImages(testCase.pdfPath);
|
||||||
|
console.log(` Pages: ${images.length}`);
|
||||||
|
|
||||||
|
// Extract with consensus voting (MiniCPM-V only)
|
||||||
|
const extracted = await extractWithConsensus(images, testCase.name);
|
||||||
|
|
||||||
|
const endTime = Date.now();
|
||||||
|
const elapsedMs = endTime - startTime;
|
||||||
|
processingTimes.push(elapsedMs);
|
||||||
|
|
||||||
|
// Compare results
|
||||||
|
const result = compareInvoice(extracted, expected);
|
||||||
|
|
||||||
|
if (result.match) {
|
||||||
|
passedCount++;
|
||||||
|
console.log(` Result: MATCH (${(elapsedMs / 1000).toFixed(1)}s)`);
|
||||||
|
} else {
|
||||||
|
failedCount++;
|
||||||
|
console.log(` Result: MISMATCH (${(elapsedMs / 1000).toFixed(1)}s)`);
|
||||||
|
result.errors.forEach((e) => console.log(` - ${e}`));
|
||||||
|
}
|
||||||
|
|
||||||
|
// Assert match
|
||||||
|
expect(result.match).toBeTrue();
|
||||||
|
});
|
||||||
|
}
|
||||||
|
|
||||||
|
tap.test('summary', async () => {
|
||||||
|
const totalInvoices = testCases.length;
|
||||||
|
const accuracy = totalInvoices > 0 ? (passedCount / totalInvoices) * 100 : 0;
|
||||||
|
const totalTimeMs = processingTimes.reduce((a, b) => a + b, 0);
|
||||||
|
const avgTimeMs = processingTimes.length > 0 ? totalTimeMs / processingTimes.length : 0;
|
||||||
|
const avgTimeSec = avgTimeMs / 1000;
|
||||||
|
const totalTimeSec = totalTimeMs / 1000;
|
||||||
|
|
||||||
|
console.log(`\n========================================`);
|
||||||
|
console.log(` Invoice Extraction Summary (MiniCPM)`);
|
||||||
|
console.log(`========================================`);
|
||||||
|
console.log(` Passed: ${passedCount}/${totalInvoices}`);
|
||||||
|
console.log(` Failed: ${failedCount}/${totalInvoices}`);
|
||||||
|
console.log(` Accuracy: ${accuracy.toFixed(1)}%`);
|
||||||
|
console.log(`----------------------------------------`);
|
||||||
|
console.log(` Total time: ${totalTimeSec.toFixed(1)}s`);
|
||||||
|
console.log(` Avg per inv: ${avgTimeSec.toFixed(1)}s`);
|
||||||
|
console.log(`========================================\n`);
|
||||||
|
});
|
||||||
|
|
||||||
|
export default tap.start();
|
||||||
451
test/test.invoices.paddleocr-vl.ts
Normal file
451
test/test.invoices.paddleocr-vl.ts
Normal file
@@ -0,0 +1,451 @@
|
|||||||
|
/**
|
||||||
|
* Invoice extraction test using PaddleOCR-VL Full Pipeline
|
||||||
|
*
|
||||||
|
* This tests the complete PaddleOCR-VL pipeline:
|
||||||
|
* 1. PP-DocLayoutV2 for layout detection
|
||||||
|
* 2. PaddleOCR-VL for recognition
|
||||||
|
* 3. Structured Markdown output
|
||||||
|
* 4. MiniCPM extracts invoice fields from structured Markdown
|
||||||
|
*
|
||||||
|
* The structured Markdown has proper tables and formatting,
|
||||||
|
* making it much easier for MiniCPM to extract invoice data.
|
||||||
|
*/
|
||||||
|
import { tap, expect } from '@git.zone/tstest/tapbundle';
|
||||||
|
import * as fs from 'fs';
|
||||||
|
import * as path from 'path';
|
||||||
|
import { execSync } from 'child_process';
|
||||||
|
import * as os from 'os';
|
||||||
|
import { ensurePaddleOcrVlFull, ensureQwen25 } from './helpers/docker.js';
|
||||||
|
|
||||||
|
const PADDLEOCR_VL_URL = 'http://localhost:8000';
|
||||||
|
const OLLAMA_URL = 'http://localhost:11434';
|
||||||
|
// Use Qwen2.5 for text-only JSON extraction (not MiniCPM which is vision-focused)
|
||||||
|
const TEXT_MODEL = 'qwen2.5:7b';
|
||||||
|
|
||||||
|
interface IInvoice {
|
||||||
|
invoice_number: string;
|
||||||
|
invoice_date: string;
|
||||||
|
vendor_name: string;
|
||||||
|
currency: string;
|
||||||
|
net_amount: number;
|
||||||
|
vat_amount: number;
|
||||||
|
total_amount: number;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Convert PDF to PNG images using ImageMagick
|
||||||
|
*/
|
||||||
|
function convertPdfToImages(pdfPath: string): string[] {
|
||||||
|
const tempDir = fs.mkdtempSync(path.join(os.tmpdir(), 'pdf-convert-'));
|
||||||
|
const outputPattern = path.join(tempDir, 'page-%d.png');
|
||||||
|
|
||||||
|
try {
|
||||||
|
execSync(
|
||||||
|
`convert -density 200 -quality 90 "${pdfPath}" -background white -alpha remove "${outputPattern}"`,
|
||||||
|
{ stdio: 'pipe' }
|
||||||
|
);
|
||||||
|
|
||||||
|
const files = fs.readdirSync(tempDir).filter((f) => f.endsWith('.png')).sort();
|
||||||
|
const images: string[] = [];
|
||||||
|
|
||||||
|
for (const file of files) {
|
||||||
|
const imagePath = path.join(tempDir, file);
|
||||||
|
const imageData = fs.readFileSync(imagePath);
|
||||||
|
images.push(imageData.toString('base64'));
|
||||||
|
}
|
||||||
|
|
||||||
|
return images;
|
||||||
|
} finally {
|
||||||
|
fs.rmSync(tempDir, { recursive: true, force: true });
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Parse document using PaddleOCR-VL Full Pipeline (returns structured Markdown)
|
||||||
|
*/
|
||||||
|
async function parseDocument(imageBase64: string): Promise<string> {
|
||||||
|
const response = await fetch(`${PADDLEOCR_VL_URL}/parse`, {
|
||||||
|
method: 'POST',
|
||||||
|
headers: { 'Content-Type': 'application/json' },
|
||||||
|
body: JSON.stringify({
|
||||||
|
image: imageBase64,
|
||||||
|
output_format: 'markdown',
|
||||||
|
}),
|
||||||
|
});
|
||||||
|
|
||||||
|
if (!response.ok) {
|
||||||
|
const text = await response.text();
|
||||||
|
throw new Error(`PaddleOCR-VL API error: ${response.status} - ${text}`);
|
||||||
|
}
|
||||||
|
|
||||||
|
const data = await response.json();
|
||||||
|
|
||||||
|
if (!data.success) {
|
||||||
|
throw new Error(`PaddleOCR-VL error: ${data.error}`);
|
||||||
|
}
|
||||||
|
|
||||||
|
return data.result?.markdown || '';
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Extract invoice fields from structured Markdown using Qwen2.5 (text-only model)
|
||||||
|
*/
|
||||||
|
async function extractInvoiceFromMarkdown(markdown: string): Promise<IInvoice> {
|
||||||
|
// Truncate if too long
|
||||||
|
const truncated = markdown.length > 12000 ? markdown.slice(0, 12000) : markdown;
|
||||||
|
console.log(` [Extract] Processing ${truncated.length} chars of Markdown`);
|
||||||
|
|
||||||
|
const prompt = `You are an invoice data extractor. Extract the following fields from this OCR text and return ONLY a valid JSON object.
|
||||||
|
|
||||||
|
Required fields:
|
||||||
|
- invoice_number: The invoice/receipt/document number
|
||||||
|
- invoice_date: Date in YYYY-MM-DD format (convert from any format)
|
||||||
|
- vendor_name: Company that issued the invoice
|
||||||
|
- currency: EUR, USD, GBP, etc.
|
||||||
|
- net_amount: Amount before tax (number)
|
||||||
|
- vat_amount: Tax/VAT amount (number, use 0 if reverse charge or not shown)
|
||||||
|
- total_amount: Final total amount (number)
|
||||||
|
|
||||||
|
Example output format:
|
||||||
|
{"invoice_number":"INV-123","invoice_date":"2022-01-28","vendor_name":"Adobe","currency":"EUR","net_amount":24.99,"vat_amount":0,"total_amount":24.99}
|
||||||
|
|
||||||
|
Rules:
|
||||||
|
- Return ONLY the JSON object, no explanation or markdown
|
||||||
|
- Use null for missing string fields
|
||||||
|
- Use 0 for missing numeric fields
|
||||||
|
- Convert dates to YYYY-MM-DD format (e.g., "28-JAN-2022" becomes "2022-01-28")
|
||||||
|
- Extract numbers without currency symbols
|
||||||
|
|
||||||
|
OCR Text:
|
||||||
|
${truncated}
|
||||||
|
|
||||||
|
JSON:`;
|
||||||
|
|
||||||
|
const payload = {
|
||||||
|
model: TEXT_MODEL,
|
||||||
|
prompt,
|
||||||
|
stream: true,
|
||||||
|
options: {
|
||||||
|
num_predict: 512,
|
||||||
|
temperature: 0.1,
|
||||||
|
},
|
||||||
|
};
|
||||||
|
|
||||||
|
const response = await fetch(`${OLLAMA_URL}/api/generate`, {
|
||||||
|
method: 'POST',
|
||||||
|
headers: { 'Content-Type': 'application/json' },
|
||||||
|
body: JSON.stringify(payload),
|
||||||
|
});
|
||||||
|
|
||||||
|
if (!response.ok) {
|
||||||
|
throw new Error(`Ollama API error: ${response.status}`);
|
||||||
|
}
|
||||||
|
|
||||||
|
const reader = response.body?.getReader();
|
||||||
|
if (!reader) {
|
||||||
|
throw new Error('No response body');
|
||||||
|
}
|
||||||
|
|
||||||
|
const decoder = new TextDecoder();
|
||||||
|
let fullText = '';
|
||||||
|
|
||||||
|
while (true) {
|
||||||
|
const { done, value } = await reader.read();
|
||||||
|
if (done) break;
|
||||||
|
|
||||||
|
const chunk = decoder.decode(value, { stream: true });
|
||||||
|
const lines = chunk.split('\n').filter((l) => l.trim());
|
||||||
|
|
||||||
|
for (const line of lines) {
|
||||||
|
try {
|
||||||
|
const json = JSON.parse(line);
|
||||||
|
if (json.response) {
|
||||||
|
fullText += json.response;
|
||||||
|
}
|
||||||
|
} catch {
|
||||||
|
// Skip invalid JSON lines
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Extract JSON from response
|
||||||
|
const startIdx = fullText.indexOf('{');
|
||||||
|
const endIdx = fullText.lastIndexOf('}') + 1;
|
||||||
|
|
||||||
|
if (startIdx < 0 || endIdx <= startIdx) {
|
||||||
|
throw new Error(`No JSON object found in response: ${fullText.substring(0, 200)}`);
|
||||||
|
}
|
||||||
|
|
||||||
|
const jsonStr = fullText.substring(startIdx, endIdx);
|
||||||
|
const parsed = JSON.parse(jsonStr);
|
||||||
|
|
||||||
|
// Ensure numeric fields are actually numbers
|
||||||
|
return {
|
||||||
|
invoice_number: parsed.invoice_number || null,
|
||||||
|
invoice_date: parsed.invoice_date || null,
|
||||||
|
vendor_name: parsed.vendor_name || null,
|
||||||
|
currency: parsed.currency || 'EUR',
|
||||||
|
net_amount: parseFloat(parsed.net_amount) || 0,
|
||||||
|
vat_amount: parseFloat(parsed.vat_amount) || 0,
|
||||||
|
total_amount: parseFloat(parsed.total_amount) || 0,
|
||||||
|
};
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Single extraction pass: Parse with PaddleOCR-VL Full, extract with Qwen2.5 (text-only)
|
||||||
|
*/
|
||||||
|
async function extractOnce(images: string[], passNum: number): Promise<IInvoice> {
|
||||||
|
// Parse document with full pipeline (PaddleOCR-VL)
|
||||||
|
const markdown = await parseDocument(images[0]);
|
||||||
|
console.log(` [Parse] Got ${markdown.split('\n').length} lines of Markdown`);
|
||||||
|
|
||||||
|
// Extract invoice fields from Markdown using text-only model (no images)
|
||||||
|
return extractInvoiceFromMarkdown(markdown);
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Create a hash of invoice for comparison (using key fields)
|
||||||
|
*/
|
||||||
|
function hashInvoice(invoice: IInvoice): string {
|
||||||
|
// Ensure total_amount is a number
|
||||||
|
const amount = typeof invoice.total_amount === 'number'
|
||||||
|
? invoice.total_amount.toFixed(2)
|
||||||
|
: String(invoice.total_amount || 0);
|
||||||
|
return `${invoice.invoice_number}|${invoice.invoice_date}|${amount}`;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Extract with consensus voting
|
||||||
|
*/
|
||||||
|
async function extractWithConsensus(images: string[], invoiceName: string, maxPasses: number = 5): Promise<IInvoice> {
|
||||||
|
const results: Array<{ invoice: IInvoice; hash: string }> = [];
|
||||||
|
const hashCounts: Map<string, number> = new Map();
|
||||||
|
|
||||||
|
const addResult = (invoice: IInvoice, passLabel: string): number => {
|
||||||
|
const hash = hashInvoice(invoice);
|
||||||
|
results.push({ invoice, hash });
|
||||||
|
hashCounts.set(hash, (hashCounts.get(hash) || 0) + 1);
|
||||||
|
console.log(` [${passLabel}] ${invoice.invoice_number} | ${invoice.invoice_date} | ${invoice.total_amount} ${invoice.currency}`);
|
||||||
|
return hashCounts.get(hash)!;
|
||||||
|
};
|
||||||
|
|
||||||
|
for (let pass = 1; pass <= maxPasses; pass++) {
|
||||||
|
try {
|
||||||
|
const invoice = await extractOnce(images, pass);
|
||||||
|
const count = addResult(invoice, `Pass ${pass}`);
|
||||||
|
|
||||||
|
if (count >= 2) {
|
||||||
|
console.log(` [Consensus] Reached after ${pass} passes`);
|
||||||
|
return invoice;
|
||||||
|
}
|
||||||
|
} catch (err) {
|
||||||
|
console.log(` [Pass ${pass}] Error: ${err}`);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// No consensus reached - return the most common result
|
||||||
|
let bestHash = '';
|
||||||
|
let bestCount = 0;
|
||||||
|
for (const [hash, count] of hashCounts) {
|
||||||
|
if (count > bestCount) {
|
||||||
|
bestCount = count;
|
||||||
|
bestHash = hash;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if (!bestHash) {
|
||||||
|
throw new Error(`No valid results for ${invoiceName}`);
|
||||||
|
}
|
||||||
|
|
||||||
|
const best = results.find((r) => r.hash === bestHash)!;
|
||||||
|
console.log(` [No consensus] Using most common result (${bestCount}/${maxPasses} passes)`);
|
||||||
|
return best.invoice;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Normalize date to YYYY-MM-DD format
|
||||||
|
*/
|
||||||
|
function normalizeDate(dateStr: string | null): string {
|
||||||
|
if (!dateStr) return '';
|
||||||
|
|
||||||
|
// Already in correct format
|
||||||
|
if (/^\d{4}-\d{2}-\d{2}$/.test(dateStr)) {
|
||||||
|
return dateStr;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Handle DD-MMM-YYYY format (e.g., "28-JUN-2022")
|
||||||
|
const monthMap: Record<string, string> = {
|
||||||
|
JAN: '01', FEB: '02', MAR: '03', APR: '04', MAY: '05', JUN: '06',
|
||||||
|
JUL: '07', AUG: '08', SEP: '09', OCT: '10', NOV: '11', DEC: '12',
|
||||||
|
};
|
||||||
|
|
||||||
|
const match = dateStr.match(/^(\d{1,2})-([A-Z]{3})-(\d{4})$/i);
|
||||||
|
if (match) {
|
||||||
|
const day = match[1].padStart(2, '0');
|
||||||
|
const month = monthMap[match[2].toUpperCase()] || '01';
|
||||||
|
const year = match[3];
|
||||||
|
return `${year}-${month}-${day}`;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Handle DD/MM/YYYY or DD.MM.YYYY
|
||||||
|
const match2 = dateStr.match(/^(\d{1,2})[\/.](\d{1,2})[\/.](\d{4})$/);
|
||||||
|
if (match2) {
|
||||||
|
const day = match2[1].padStart(2, '0');
|
||||||
|
const month = match2[2].padStart(2, '0');
|
||||||
|
const year = match2[3];
|
||||||
|
return `${year}-${month}-${day}`;
|
||||||
|
}
|
||||||
|
|
||||||
|
return dateStr;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Compare extracted invoice against expected
|
||||||
|
*/
|
||||||
|
function compareInvoice(
|
||||||
|
extracted: IInvoice,
|
||||||
|
expected: IInvoice
|
||||||
|
): { match: boolean; errors: string[] } {
|
||||||
|
const errors: string[] = [];
|
||||||
|
|
||||||
|
// Compare invoice number (normalize by removing spaces and case)
|
||||||
|
const extNum = extracted.invoice_number?.replace(/\s/g, '').toLowerCase() || '';
|
||||||
|
const expNum = expected.invoice_number?.replace(/\s/g, '').toLowerCase() || '';
|
||||||
|
if (extNum !== expNum) {
|
||||||
|
errors.push(`invoice_number: expected "${expected.invoice_number}", got "${extracted.invoice_number}"`);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Compare date (normalize format first)
|
||||||
|
const extDate = normalizeDate(extracted.invoice_date);
|
||||||
|
const expDate = normalizeDate(expected.invoice_date);
|
||||||
|
if (extDate !== expDate) {
|
||||||
|
errors.push(`invoice_date: expected "${expected.invoice_date}", got "${extracted.invoice_date}"`);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Compare total amount (with tolerance)
|
||||||
|
if (Math.abs(extracted.total_amount - expected.total_amount) > 0.02) {
|
||||||
|
errors.push(`total_amount: expected ${expected.total_amount}, got ${extracted.total_amount}`);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Compare currency
|
||||||
|
if (extracted.currency?.toUpperCase() !== expected.currency?.toUpperCase()) {
|
||||||
|
errors.push(`currency: expected "${expected.currency}", got "${extracted.currency}"`);
|
||||||
|
}
|
||||||
|
|
||||||
|
return { match: errors.length === 0, errors };
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Find all test cases (PDF + JSON pairs) in .nogit/invoices/
|
||||||
|
*/
|
||||||
|
function findTestCases(): Array<{ name: string; pdfPath: string; jsonPath: string }> {
|
||||||
|
const testDir = path.join(process.cwd(), '.nogit/invoices');
|
||||||
|
if (!fs.existsSync(testDir)) {
|
||||||
|
return [];
|
||||||
|
}
|
||||||
|
|
||||||
|
const files = fs.readdirSync(testDir);
|
||||||
|
const pdfFiles = files.filter((f) => f.endsWith('.pdf'));
|
||||||
|
const testCases: Array<{ name: string; pdfPath: string; jsonPath: string }> = [];
|
||||||
|
|
||||||
|
for (const pdf of pdfFiles) {
|
||||||
|
const baseName = pdf.replace('.pdf', '');
|
||||||
|
const jsonFile = `${baseName}.json`;
|
||||||
|
if (files.includes(jsonFile)) {
|
||||||
|
testCases.push({
|
||||||
|
name: baseName,
|
||||||
|
pdfPath: path.join(testDir, pdf),
|
||||||
|
jsonPath: path.join(testDir, jsonFile),
|
||||||
|
});
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Sort alphabetically
|
||||||
|
testCases.sort((a, b) => a.name.localeCompare(b.name));
|
||||||
|
|
||||||
|
return testCases;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Tests
|
||||||
|
|
||||||
|
tap.test('setup: ensure Docker containers are running', async () => {
|
||||||
|
console.log('\n[Setup] Checking Docker containers...\n');
|
||||||
|
|
||||||
|
// Ensure PaddleOCR-VL Full Pipeline is running
|
||||||
|
const paddleOk = await ensurePaddleOcrVlFull();
|
||||||
|
expect(paddleOk).toBeTrue();
|
||||||
|
|
||||||
|
// Ensure Qwen2.5 is available (for text-only JSON extraction)
|
||||||
|
const qwenOk = await ensureQwen25();
|
||||||
|
expect(qwenOk).toBeTrue();
|
||||||
|
|
||||||
|
console.log('\n[Setup] All containers ready!\n');
|
||||||
|
});
|
||||||
|
|
||||||
|
// Dynamic test for each PDF/JSON pair
|
||||||
|
const testCases = findTestCases();
|
||||||
|
console.log(`\nFound ${testCases.length} invoice test cases (PaddleOCR-VL Full Pipeline)\n`);
|
||||||
|
|
||||||
|
let passedCount = 0;
|
||||||
|
let failedCount = 0;
|
||||||
|
const processingTimes: number[] = [];
|
||||||
|
|
||||||
|
for (const testCase of testCases) {
|
||||||
|
tap.test(`should extract invoice: ${testCase.name}`, async () => {
|
||||||
|
// Load expected data
|
||||||
|
const expected: IInvoice = JSON.parse(fs.readFileSync(testCase.jsonPath, 'utf-8'));
|
||||||
|
console.log(`\n=== ${testCase.name} ===`);
|
||||||
|
console.log(`Expected: ${expected.invoice_number} | ${expected.invoice_date} | ${expected.total_amount} ${expected.currency}`);
|
||||||
|
|
||||||
|
const startTime = Date.now();
|
||||||
|
|
||||||
|
// Convert PDF to images
|
||||||
|
const images = convertPdfToImages(testCase.pdfPath);
|
||||||
|
console.log(` Pages: ${images.length}`);
|
||||||
|
|
||||||
|
// Extract with consensus voting (PaddleOCR-VL Full -> MiniCPM)
|
||||||
|
const extracted = await extractWithConsensus(images, testCase.name);
|
||||||
|
|
||||||
|
const endTime = Date.now();
|
||||||
|
const elapsedMs = endTime - startTime;
|
||||||
|
processingTimes.push(elapsedMs);
|
||||||
|
|
||||||
|
// Compare results
|
||||||
|
const result = compareInvoice(extracted, expected);
|
||||||
|
|
||||||
|
if (result.match) {
|
||||||
|
passedCount++;
|
||||||
|
console.log(` Result: MATCH (${(elapsedMs / 1000).toFixed(1)}s)`);
|
||||||
|
} else {
|
||||||
|
failedCount++;
|
||||||
|
console.log(` Result: MISMATCH (${(elapsedMs / 1000).toFixed(1)}s)`);
|
||||||
|
result.errors.forEach((e) => console.log(` - ${e}`));
|
||||||
|
}
|
||||||
|
|
||||||
|
// Assert match
|
||||||
|
expect(result.match).toBeTrue();
|
||||||
|
});
|
||||||
|
}
|
||||||
|
|
||||||
|
tap.test('summary', async () => {
|
||||||
|
const totalInvoices = testCases.length;
|
||||||
|
const accuracy = totalInvoices > 0 ? (passedCount / totalInvoices) * 100 : 0;
|
||||||
|
const totalTimeMs = processingTimes.reduce((a, b) => a + b, 0);
|
||||||
|
const avgTimeMs = processingTimes.length > 0 ? totalTimeMs / processingTimes.length : 0;
|
||||||
|
const avgTimeSec = avgTimeMs / 1000;
|
||||||
|
const totalTimeSec = totalTimeMs / 1000;
|
||||||
|
|
||||||
|
console.log(`\n======================================================`);
|
||||||
|
console.log(` Invoice Extraction Summary (PaddleOCR-VL Full)`);
|
||||||
|
console.log(`======================================================`);
|
||||||
|
console.log(` Method: PaddleOCR-VL Full Pipeline -> Qwen2.5 (text-only)`);
|
||||||
|
console.log(` Passed: ${passedCount}/${totalInvoices}`);
|
||||||
|
console.log(` Failed: ${failedCount}/${totalInvoices}`);
|
||||||
|
console.log(` Accuracy: ${accuracy.toFixed(1)}%`);
|
||||||
|
console.log(`------------------------------------------------------`);
|
||||||
|
console.log(` Total time: ${totalTimeSec.toFixed(1)}s`);
|
||||||
|
console.log(` Avg per inv: ${avgTimeSec.toFixed(1)}s`);
|
||||||
|
console.log(`======================================================\n`);
|
||||||
|
});
|
||||||
|
|
||||||
|
export default tap.start();
|
||||||
@@ -1,258 +0,0 @@
|
|||||||
import { tap, expect } from '@git.zone/tstest/tapbundle';
|
|
||||||
import * as fs from 'fs';
|
|
||||||
import * as path from 'path';
|
|
||||||
import { execSync } from 'child_process';
|
|
||||||
import * as os from 'os';
|
|
||||||
|
|
||||||
const PADDLEOCR_URL = 'http://localhost:5000';
|
|
||||||
|
|
||||||
interface IOCRResult {
|
|
||||||
text: string;
|
|
||||||
confidence: number;
|
|
||||||
box: number[][];
|
|
||||||
}
|
|
||||||
|
|
||||||
interface IOCRResponse {
|
|
||||||
success: boolean;
|
|
||||||
results: IOCRResult[];
|
|
||||||
error?: string;
|
|
||||||
}
|
|
||||||
|
|
||||||
interface IHealthResponse {
|
|
||||||
status: string;
|
|
||||||
model: string;
|
|
||||||
language: string;
|
|
||||||
gpu_enabled: boolean;
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Convert PDF first page to PNG using ImageMagick
|
|
||||||
*/
|
|
||||||
function convertPdfToImage(pdfPath: string): string {
|
|
||||||
const tempDir = fs.mkdtempSync(path.join(os.tmpdir(), 'pdf-convert-'));
|
|
||||||
const outputPath = path.join(tempDir, 'page.png');
|
|
||||||
|
|
||||||
try {
|
|
||||||
execSync(
|
|
||||||
`convert -density 200 -quality 90 "${pdfPath}[0]" -background white -alpha remove "${outputPath}"`,
|
|
||||||
{ stdio: 'pipe' }
|
|
||||||
);
|
|
||||||
|
|
||||||
const imageData = fs.readFileSync(outputPath);
|
|
||||||
return imageData.toString('base64');
|
|
||||||
} finally {
|
|
||||||
fs.rmSync(tempDir, { recursive: true, force: true });
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Create a simple test image with text using ImageMagick
|
|
||||||
*/
|
|
||||||
function createTestImage(text: string): string {
|
|
||||||
const tempDir = fs.mkdtempSync(path.join(os.tmpdir(), 'test-image-'));
|
|
||||||
const outputPath = path.join(tempDir, 'test.png');
|
|
||||||
|
|
||||||
try {
|
|
||||||
execSync(
|
|
||||||
`convert -size 400x100 xc:white -font DejaVu-Sans -pointsize 24 -fill black -gravity center -annotate 0 "${text}" "${outputPath}"`,
|
|
||||||
{ stdio: 'pipe' }
|
|
||||||
);
|
|
||||||
|
|
||||||
const imageData = fs.readFileSync(outputPath);
|
|
||||||
return imageData.toString('base64');
|
|
||||||
} finally {
|
|
||||||
fs.rmSync(tempDir, { recursive: true, force: true });
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// Health check test
|
|
||||||
tap.test('should respond to health check', async () => {
|
|
||||||
const response = await fetch(`${PADDLEOCR_URL}/health`);
|
|
||||||
expect(response.ok).toBeTrue();
|
|
||||||
|
|
||||||
const data: IHealthResponse = await response.json();
|
|
||||||
expect(data.status).toEqual('healthy');
|
|
||||||
expect(data.model).toEqual('PP-OCRv4');
|
|
||||||
expect(data.language).toBeTypeofString();
|
|
||||||
expect(data.gpu_enabled).toBeTypeofBoolean();
|
|
||||||
|
|
||||||
console.log(`PaddleOCR Status: ${data.status}`);
|
|
||||||
console.log(` Model: ${data.model}`);
|
|
||||||
console.log(` Language: ${data.language}`);
|
|
||||||
console.log(` GPU Enabled: ${data.gpu_enabled}`);
|
|
||||||
});
|
|
||||||
|
|
||||||
// Base64 OCR test
|
|
||||||
tap.test('should perform OCR on base64 image', async () => {
|
|
||||||
// Create a test image with known text
|
|
||||||
const testText = 'Hello World 12345';
|
|
||||||
console.log(`Creating test image with text: "${testText}"`);
|
|
||||||
|
|
||||||
const imageBase64 = createTestImage(testText);
|
|
||||||
|
|
||||||
const response = await fetch(`${PADDLEOCR_URL}/ocr`, {
|
|
||||||
method: 'POST',
|
|
||||||
headers: { 'Content-Type': 'application/json' },
|
|
||||||
body: JSON.stringify({ image: imageBase64 }),
|
|
||||||
});
|
|
||||||
|
|
||||||
expect(response.ok).toBeTrue();
|
|
||||||
|
|
||||||
const data: IOCRResponse = await response.json();
|
|
||||||
expect(data.success).toBeTrue();
|
|
||||||
expect(data.results).toBeArray();
|
|
||||||
|
|
||||||
const extractedText = data.results.map((r) => r.text).join(' ');
|
|
||||||
console.log(`Extracted text: "${extractedText}"`);
|
|
||||||
|
|
||||||
// Check that we got some text back
|
|
||||||
expect(data.results.length).toBeGreaterThan(0);
|
|
||||||
|
|
||||||
// Check that at least some of the expected text was found
|
|
||||||
const normalizedExtracted = extractedText.toLowerCase().replace(/\s+/g, '');
|
|
||||||
const normalizedExpected = testText.toLowerCase().replace(/\s+/g, '');
|
|
||||||
const hasPartialMatch =
|
|
||||||
normalizedExtracted.includes('hello') ||
|
|
||||||
normalizedExtracted.includes('world') ||
|
|
||||||
normalizedExtracted.includes('12345');
|
|
||||||
|
|
||||||
expect(hasPartialMatch).toBeTrue();
|
|
||||||
});
|
|
||||||
|
|
||||||
// File upload OCR test
|
|
||||||
tap.test('should perform OCR via file upload', async () => {
|
|
||||||
const testText = 'Invoice Number 98765';
|
|
||||||
console.log(`Creating test image with text: "${testText}"`);
|
|
||||||
|
|
||||||
const imageBase64 = createTestImage(testText);
|
|
||||||
const imageBuffer = Buffer.from(imageBase64, 'base64');
|
|
||||||
|
|
||||||
const formData = new FormData();
|
|
||||||
const blob = new Blob([imageBuffer], { type: 'image/png' });
|
|
||||||
formData.append('img', blob, 'test.png');
|
|
||||||
|
|
||||||
const response = await fetch(`${PADDLEOCR_URL}/ocr/upload`, {
|
|
||||||
method: 'POST',
|
|
||||||
body: formData,
|
|
||||||
});
|
|
||||||
|
|
||||||
expect(response.ok).toBeTrue();
|
|
||||||
|
|
||||||
const data: IOCRResponse = await response.json();
|
|
||||||
expect(data.success).toBeTrue();
|
|
||||||
expect(data.results).toBeArray();
|
|
||||||
|
|
||||||
const extractedText = data.results.map((r) => r.text).join(' ');
|
|
||||||
console.log(`Extracted text: "${extractedText}"`);
|
|
||||||
|
|
||||||
// Check that we got some text back
|
|
||||||
expect(data.results.length).toBeGreaterThan(0);
|
|
||||||
});
|
|
||||||
|
|
||||||
// OCR result structure test
|
|
||||||
tap.test('should return proper OCR result structure', async () => {
|
|
||||||
const testText = 'Test 123';
|
|
||||||
const imageBase64 = createTestImage(testText);
|
|
||||||
|
|
||||||
const response = await fetch(`${PADDLEOCR_URL}/ocr`, {
|
|
||||||
method: 'POST',
|
|
||||||
headers: { 'Content-Type': 'application/json' },
|
|
||||||
body: JSON.stringify({ image: imageBase64 }),
|
|
||||||
});
|
|
||||||
|
|
||||||
const data: IOCRResponse = await response.json();
|
|
||||||
|
|
||||||
if (data.results.length > 0) {
|
|
||||||
const result = data.results[0];
|
|
||||||
|
|
||||||
// Check result has required fields
|
|
||||||
expect(result.text).toBeTypeofString();
|
|
||||||
expect(result.confidence).toBeTypeofNumber();
|
|
||||||
expect(result.box).toBeArray();
|
|
||||||
|
|
||||||
// Check bounding box structure (4 points, each with x,y)
|
|
||||||
expect(result.box.length).toEqual(4);
|
|
||||||
for (const point of result.box) {
|
|
||||||
expect(point.length).toEqual(2);
|
|
||||||
expect(point[0]).toBeTypeofNumber();
|
|
||||||
expect(point[1]).toBeTypeofNumber();
|
|
||||||
}
|
|
||||||
|
|
||||||
// Confidence should be between 0 and 1
|
|
||||||
expect(result.confidence).toBeGreaterThan(0);
|
|
||||||
expect(result.confidence).toBeLessThanOrEqual(1);
|
|
||||||
|
|
||||||
console.log(`Result structure valid:`);
|
|
||||||
console.log(` Text: "${result.text}"`);
|
|
||||||
console.log(` Confidence: ${(result.confidence * 100).toFixed(1)}%`);
|
|
||||||
console.log(` Box: ${JSON.stringify(result.box)}`);
|
|
||||||
}
|
|
||||||
});
|
|
||||||
|
|
||||||
// Test with actual invoice if available
|
|
||||||
const invoiceDir = path.join(process.cwd(), '.nogit/invoices');
|
|
||||||
if (fs.existsSync(invoiceDir)) {
|
|
||||||
const pdfFiles = fs.readdirSync(invoiceDir).filter((f) => f.endsWith('.pdf'));
|
|
||||||
|
|
||||||
if (pdfFiles.length > 0) {
|
|
||||||
const testPdf = pdfFiles[0];
|
|
||||||
tap.test(`should extract text from invoice: ${testPdf}`, async () => {
|
|
||||||
const pdfPath = path.join(invoiceDir, testPdf);
|
|
||||||
console.log(`Converting ${testPdf} to image...`);
|
|
||||||
|
|
||||||
const imageBase64 = convertPdfToImage(pdfPath);
|
|
||||||
console.log(`Image size: ${(imageBase64.length / 1024).toFixed(1)} KB`);
|
|
||||||
|
|
||||||
const startTime = Date.now();
|
|
||||||
|
|
||||||
const response = await fetch(`${PADDLEOCR_URL}/ocr`, {
|
|
||||||
method: 'POST',
|
|
||||||
headers: { 'Content-Type': 'application/json' },
|
|
||||||
body: JSON.stringify({ image: imageBase64 }),
|
|
||||||
});
|
|
||||||
|
|
||||||
const endTime = Date.now();
|
|
||||||
const elapsedMs = endTime - startTime;
|
|
||||||
|
|
||||||
expect(response.ok).toBeTrue();
|
|
||||||
|
|
||||||
const data: IOCRResponse = await response.json();
|
|
||||||
expect(data.success).toBeTrue();
|
|
||||||
|
|
||||||
console.log(`OCR completed in ${(elapsedMs / 1000).toFixed(2)}s`);
|
|
||||||
console.log(`Found ${data.results.length} text regions`);
|
|
||||||
|
|
||||||
// Print first 10 results
|
|
||||||
const preview = data.results.slice(0, 10);
|
|
||||||
console.log(`\nFirst ${preview.length} results:`);
|
|
||||||
for (const result of preview) {
|
|
||||||
console.log(` [${(result.confidence * 100).toFixed(0)}%] ${result.text}`);
|
|
||||||
}
|
|
||||||
|
|
||||||
if (data.results.length > 10) {
|
|
||||||
console.log(` ... and ${data.results.length - 10} more`);
|
|
||||||
}
|
|
||||||
|
|
||||||
// Should find text in an invoice
|
|
||||||
expect(data.results.length).toBeGreaterThan(5);
|
|
||||||
});
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// Error handling test
|
|
||||||
tap.test('should handle invalid base64 gracefully', async () => {
|
|
||||||
const response = await fetch(`${PADDLEOCR_URL}/ocr`, {
|
|
||||||
method: 'POST',
|
|
||||||
headers: { 'Content-Type': 'application/json' },
|
|
||||||
body: JSON.stringify({ image: 'not-valid-base64!!!' }),
|
|
||||||
});
|
|
||||||
|
|
||||||
const data: IOCRResponse = await response.json();
|
|
||||||
|
|
||||||
// Should return success: false with error message
|
|
||||||
expect(data.success).toBeFalse();
|
|
||||||
expect(data.error).toBeTypeofString();
|
|
||||||
console.log(`Error handling works: ${data.error}`);
|
|
||||||
});
|
|
||||||
|
|
||||||
export default tap.start();
|
|
||||||
Reference in New Issue
Block a user