Compare commits
2 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
| 311e7a8fd4 | |||
| 80e6866442 |
90
Dockerfile_paddleocr_vl_full
Normal file
90
Dockerfile_paddleocr_vl_full
Normal file
@@ -0,0 +1,90 @@
|
|||||||
|
# PaddleOCR-VL Full Pipeline (PP-DocLayoutV2 + PaddleOCR-VL + Structured Output)
|
||||||
|
# Self-contained GPU image with complete document parsing pipeline
|
||||||
|
FROM nvidia/cuda:12.4.0-devel-ubuntu22.04
|
||||||
|
|
||||||
|
LABEL maintainer="Task Venture Capital GmbH <hello@task.vc>"
|
||||||
|
LABEL description="PaddleOCR-VL Full Pipeline - Layout Detection + VL Recognition + JSON/Markdown Output"
|
||||||
|
LABEL org.opencontainers.image.source="https://code.foss.global/host.today/ht-docker-ai"
|
||||||
|
|
||||||
|
# Environment configuration
|
||||||
|
ENV DEBIAN_FRONTEND=noninteractive
|
||||||
|
ENV PYTHONUNBUFFERED=1
|
||||||
|
ENV HF_HOME=/root/.cache/huggingface
|
||||||
|
ENV PADDLEOCR_HOME=/root/.paddleocr
|
||||||
|
ENV SERVER_PORT=8000
|
||||||
|
ENV SERVER_HOST=0.0.0.0
|
||||||
|
ENV VLM_PORT=8080
|
||||||
|
|
||||||
|
# Set working directory
|
||||||
|
WORKDIR /app
|
||||||
|
|
||||||
|
# Install system dependencies
|
||||||
|
RUN apt-get update && apt-get install -y --no-install-recommends \
|
||||||
|
python3.11 \
|
||||||
|
python3.11-venv \
|
||||||
|
python3.11-dev \
|
||||||
|
python3-pip \
|
||||||
|
libgl1-mesa-glx \
|
||||||
|
libglib2.0-0 \
|
||||||
|
libgomp1 \
|
||||||
|
libsm6 \
|
||||||
|
libxext6 \
|
||||||
|
libxrender1 \
|
||||||
|
curl \
|
||||||
|
git \
|
||||||
|
wget \
|
||||||
|
&& rm -rf /var/lib/apt/lists/* \
|
||||||
|
&& update-alternatives --install /usr/bin/python python /usr/bin/python3.11 1 \
|
||||||
|
&& update-alternatives --install /usr/bin/python3 python3 /usr/bin/python3.11 1
|
||||||
|
|
||||||
|
# Create and activate virtual environment
|
||||||
|
RUN python -m venv /opt/venv
|
||||||
|
ENV PATH="/opt/venv/bin:$PATH"
|
||||||
|
|
||||||
|
# Upgrade pip
|
||||||
|
RUN pip install --no-cache-dir --upgrade pip setuptools wheel
|
||||||
|
|
||||||
|
# Install PaddlePaddle GPU (CUDA 12.x)
|
||||||
|
RUN pip install --no-cache-dir \
|
||||||
|
paddlepaddle-gpu==3.2.1 \
|
||||||
|
--extra-index-url https://www.paddlepaddle.org.cn/packages/stable/cu126/
|
||||||
|
|
||||||
|
# Install PaddleOCR with doc-parser (includes PP-DocLayoutV2)
|
||||||
|
RUN pip install --no-cache-dir \
|
||||||
|
"paddleocr[doc-parser]" \
|
||||||
|
safetensors
|
||||||
|
|
||||||
|
# Install PyTorch with CUDA support
|
||||||
|
RUN pip install --no-cache-dir \
|
||||||
|
torch==2.5.1 \
|
||||||
|
torchvision \
|
||||||
|
--index-url https://download.pytorch.org/whl/cu124
|
||||||
|
|
||||||
|
# Install transformers for PaddleOCR-VL inference (no vLLM - use local inference)
|
||||||
|
# PaddleOCR-VL requires transformers>=4.55.0 for use_kernel_forward_from_hub
|
||||||
|
RUN pip install --no-cache-dir \
|
||||||
|
transformers>=4.55.0 \
|
||||||
|
accelerate \
|
||||||
|
hf-kernels
|
||||||
|
|
||||||
|
# Install our API server dependencies
|
||||||
|
RUN pip install --no-cache-dir \
|
||||||
|
fastapi \
|
||||||
|
uvicorn[standard] \
|
||||||
|
python-multipart \
|
||||||
|
httpx \
|
||||||
|
pillow
|
||||||
|
|
||||||
|
# Copy server files
|
||||||
|
COPY image_support_files/paddleocr_vl_full_server.py /app/server.py
|
||||||
|
COPY image_support_files/paddleocr_vl_full_entrypoint.sh /usr/local/bin/entrypoint.sh
|
||||||
|
RUN chmod +x /usr/local/bin/entrypoint.sh
|
||||||
|
|
||||||
|
# Expose ports (8000 = API, 8080 = internal VLM server)
|
||||||
|
EXPOSE 8000
|
||||||
|
|
||||||
|
# Health check
|
||||||
|
HEALTHCHECK --interval=30s --timeout=10s --start-period=600s --retries=3 \
|
||||||
|
CMD curl -f http://localhost:8000/health || exit 1
|
||||||
|
|
||||||
|
ENTRYPOINT ["/usr/local/bin/entrypoint.sh"]
|
||||||
10
changelog.md
10
changelog.md
@@ -1,5 +1,15 @@
|
|||||||
# Changelog
|
# Changelog
|
||||||
|
|
||||||
|
## 2026-01-17 - 1.6.0 - feat(paddleocr-vl)
|
||||||
|
add PaddleOCR-VL full pipeline Docker image and API server, plus integration tests and docker helpers
|
||||||
|
|
||||||
|
- Add Dockerfile_paddleocr_vl_full and entrypoint script to build a GPU-enabled image with PP-DocLayoutV2 + PaddleOCR-VL and a FastAPI server
|
||||||
|
- Introduce image_support_files/paddleocr_vl_full_server.py implementing the full pipeline API (/parse, OpenAI-compatible /v1/chat/completions) and a /formats endpoint
|
||||||
|
- Improve image handling: decode_image supports data URLs, HTTP(S), raw base64 and file paths; add optimize_image_resolution to auto-scale images into the recommended 1080-2048px range
|
||||||
|
- Add test helpers (test/helpers/docker.ts) to build/start/health-check Docker images and new ensurePaddleOcrVlFull workflow
|
||||||
|
- Add comprehensive integration tests for bank statements and invoices (MiniCPM and PaddleOCR-VL variants) and update tests to ensure required containers are running before tests
|
||||||
|
- Switch MiniCPM model references to 'minicpm-v:latest' and increase health/timeout expectations for the full pipeline
|
||||||
|
|
||||||
## 2026-01-17 - 1.5.0 - feat(paddleocr-vl)
|
## 2026-01-17 - 1.5.0 - feat(paddleocr-vl)
|
||||||
add PaddleOCR-VL GPU Dockerfile, pin vllm, update CPU image deps, and improve entrypoint and tests
|
add PaddleOCR-VL GPU Dockerfile, pin vllm, update CPU image deps, and improve entrypoint and tests
|
||||||
|
|
||||||
|
|||||||
12
image_support_files/paddleocr_vl_full_entrypoint.sh
Normal file
12
image_support_files/paddleocr_vl_full_entrypoint.sh
Normal file
@@ -0,0 +1,12 @@
|
|||||||
|
#!/bin/bash
|
||||||
|
set -e
|
||||||
|
|
||||||
|
echo "Starting PaddleOCR-VL Full Pipeline Server (Transformers backend)..."
|
||||||
|
|
||||||
|
# Environment
|
||||||
|
SERVER_PORT=${SERVER_PORT:-8000}
|
||||||
|
SERVER_HOST=${SERVER_HOST:-0.0.0.0}
|
||||||
|
|
||||||
|
# Start our API server directly (no vLLM - uses local transformers inference)
|
||||||
|
echo "Starting API server on port $SERVER_PORT..."
|
||||||
|
exec python /app/server.py
|
||||||
443
image_support_files/paddleocr_vl_full_server.py
Normal file
443
image_support_files/paddleocr_vl_full_server.py
Normal file
@@ -0,0 +1,443 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
"""
|
||||||
|
PaddleOCR-VL Full Pipeline API Server (Transformers backend)
|
||||||
|
|
||||||
|
Provides REST API for document parsing using:
|
||||||
|
- PP-DocLayoutV2 for layout detection
|
||||||
|
- PaddleOCR-VL (transformers) for recognition
|
||||||
|
- Structured JSON/Markdown output
|
||||||
|
"""
|
||||||
|
|
||||||
|
import os
|
||||||
|
import io
|
||||||
|
import base64
|
||||||
|
import logging
|
||||||
|
import tempfile
|
||||||
|
import time
|
||||||
|
import json
|
||||||
|
from typing import Optional, List, Union
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
from fastapi import FastAPI, HTTPException, UploadFile, File, Form
|
||||||
|
from fastapi.responses import JSONResponse
|
||||||
|
from pydantic import BaseModel
|
||||||
|
from PIL import Image
|
||||||
|
import torch
|
||||||
|
|
||||||
|
# Configure logging
|
||||||
|
logging.basicConfig(
|
||||||
|
level=logging.INFO,
|
||||||
|
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
||||||
|
)
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
# Environment configuration
|
||||||
|
SERVER_HOST = os.environ.get('SERVER_HOST', '0.0.0.0')
|
||||||
|
SERVER_PORT = int(os.environ.get('SERVER_PORT', '8000'))
|
||||||
|
MODEL_NAME = "PaddlePaddle/PaddleOCR-VL"
|
||||||
|
|
||||||
|
# Device configuration
|
||||||
|
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
||||||
|
logger.info(f"Using device: {DEVICE}")
|
||||||
|
|
||||||
|
# Task prompts
|
||||||
|
TASK_PROMPTS = {
|
||||||
|
"ocr": "OCR:",
|
||||||
|
"table": "Table Recognition:",
|
||||||
|
"formula": "Formula Recognition:",
|
||||||
|
"chart": "Chart Recognition:",
|
||||||
|
}
|
||||||
|
|
||||||
|
# Initialize FastAPI app
|
||||||
|
app = FastAPI(
|
||||||
|
title="PaddleOCR-VL Full Pipeline Server",
|
||||||
|
description="Document parsing with PP-DocLayoutV2 + PaddleOCR-VL (transformers)",
|
||||||
|
version="1.0.0"
|
||||||
|
)
|
||||||
|
|
||||||
|
# Global model instances
|
||||||
|
vl_model = None
|
||||||
|
vl_processor = None
|
||||||
|
layout_model = None
|
||||||
|
|
||||||
|
|
||||||
|
def load_vl_model():
|
||||||
|
"""Load the PaddleOCR-VL model for element recognition"""
|
||||||
|
global vl_model, vl_processor
|
||||||
|
|
||||||
|
if vl_model is not None:
|
||||||
|
return
|
||||||
|
|
||||||
|
logger.info(f"Loading PaddleOCR-VL model: {MODEL_NAME}")
|
||||||
|
from transformers import AutoModelForCausalLM, AutoProcessor
|
||||||
|
|
||||||
|
vl_processor = AutoProcessor.from_pretrained(MODEL_NAME, trust_remote_code=True)
|
||||||
|
|
||||||
|
if DEVICE == "cuda":
|
||||||
|
vl_model = AutoModelForCausalLM.from_pretrained(
|
||||||
|
MODEL_NAME,
|
||||||
|
trust_remote_code=True,
|
||||||
|
torch_dtype=torch.bfloat16,
|
||||||
|
).to(DEVICE).eval()
|
||||||
|
else:
|
||||||
|
vl_model = AutoModelForCausalLM.from_pretrained(
|
||||||
|
MODEL_NAME,
|
||||||
|
trust_remote_code=True,
|
||||||
|
torch_dtype=torch.float32,
|
||||||
|
low_cpu_mem_usage=True,
|
||||||
|
).eval()
|
||||||
|
|
||||||
|
logger.info("PaddleOCR-VL model loaded successfully")
|
||||||
|
|
||||||
|
|
||||||
|
def load_layout_model():
|
||||||
|
"""Load the LayoutDetection model for layout detection"""
|
||||||
|
global layout_model
|
||||||
|
|
||||||
|
if layout_model is not None:
|
||||||
|
return
|
||||||
|
|
||||||
|
try:
|
||||||
|
logger.info("Loading LayoutDetection model (PP-DocLayout_plus-L)...")
|
||||||
|
from paddleocr import LayoutDetection
|
||||||
|
|
||||||
|
layout_model = LayoutDetection()
|
||||||
|
logger.info("LayoutDetection model loaded successfully")
|
||||||
|
except Exception as e:
|
||||||
|
logger.warning(f"Could not load LayoutDetection: {e}")
|
||||||
|
logger.info("Falling back to VL-only mode (no layout detection)")
|
||||||
|
|
||||||
|
|
||||||
|
def recognize_element(image: Image.Image, task: str = "ocr") -> str:
|
||||||
|
"""Recognize a single element using PaddleOCR-VL"""
|
||||||
|
load_vl_model()
|
||||||
|
|
||||||
|
prompt = TASK_PROMPTS.get(task, TASK_PROMPTS["ocr"])
|
||||||
|
|
||||||
|
messages = [
|
||||||
|
{
|
||||||
|
"role": "user",
|
||||||
|
"content": [
|
||||||
|
{"type": "image", "image": image},
|
||||||
|
{"type": "text", "text": prompt},
|
||||||
|
]
|
||||||
|
}
|
||||||
|
]
|
||||||
|
|
||||||
|
inputs = vl_processor.apply_chat_template(
|
||||||
|
messages,
|
||||||
|
tokenize=True,
|
||||||
|
add_generation_prompt=True,
|
||||||
|
return_dict=True,
|
||||||
|
return_tensors="pt"
|
||||||
|
)
|
||||||
|
|
||||||
|
if DEVICE == "cuda":
|
||||||
|
inputs = {k: v.to(DEVICE) for k, v in inputs.items()}
|
||||||
|
|
||||||
|
with torch.inference_mode():
|
||||||
|
outputs = vl_model.generate(
|
||||||
|
**inputs,
|
||||||
|
max_new_tokens=4096,
|
||||||
|
do_sample=False,
|
||||||
|
use_cache=True
|
||||||
|
)
|
||||||
|
|
||||||
|
response = vl_processor.batch_decode(outputs, skip_special_tokens=True)[0]
|
||||||
|
|
||||||
|
# Extract only the assistant's response content
|
||||||
|
# The response format is: "User: <prompt>\nAssistant: <content>"
|
||||||
|
# We want to extract just the content after "Assistant:"
|
||||||
|
if "Assistant:" in response:
|
||||||
|
parts = response.split("Assistant:")
|
||||||
|
if len(parts) > 1:
|
||||||
|
response = parts[-1].strip()
|
||||||
|
elif "assistant:" in response.lower():
|
||||||
|
# Case-insensitive fallback
|
||||||
|
import re
|
||||||
|
match = re.split(r'[Aa]ssistant:', response)
|
||||||
|
if len(match) > 1:
|
||||||
|
response = match[-1].strip()
|
||||||
|
|
||||||
|
return response
|
||||||
|
|
||||||
|
|
||||||
|
def detect_layout(image: Image.Image) -> List[dict]:
|
||||||
|
"""Detect layout regions in the image"""
|
||||||
|
load_layout_model()
|
||||||
|
|
||||||
|
if layout_model is None:
|
||||||
|
# No layout model - return a single region covering the whole image
|
||||||
|
return [{
|
||||||
|
"type": "text",
|
||||||
|
"bbox": [0, 0, image.width, image.height],
|
||||||
|
"score": 1.0
|
||||||
|
}]
|
||||||
|
|
||||||
|
# Save image to temp file
|
||||||
|
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp:
|
||||||
|
image.save(tmp.name, "PNG")
|
||||||
|
tmp_path = tmp.name
|
||||||
|
|
||||||
|
try:
|
||||||
|
results = layout_model.predict(tmp_path)
|
||||||
|
regions = []
|
||||||
|
|
||||||
|
for res in results:
|
||||||
|
# LayoutDetection returns boxes in 'boxes' key
|
||||||
|
for box in res.get("boxes", []):
|
||||||
|
coord = box.get("coordinate", [0, 0, image.width, image.height])
|
||||||
|
# Convert numpy floats to regular floats
|
||||||
|
bbox = [float(c) for c in coord]
|
||||||
|
regions.append({
|
||||||
|
"type": box.get("label", "text"),
|
||||||
|
"bbox": bbox,
|
||||||
|
"score": float(box.get("score", 1.0))
|
||||||
|
})
|
||||||
|
|
||||||
|
# Sort regions by vertical position (top to bottom)
|
||||||
|
regions.sort(key=lambda r: r["bbox"][1])
|
||||||
|
|
||||||
|
return regions if regions else [{
|
||||||
|
"type": "text",
|
||||||
|
"bbox": [0, 0, image.width, image.height],
|
||||||
|
"score": 1.0
|
||||||
|
}]
|
||||||
|
|
||||||
|
finally:
|
||||||
|
os.unlink(tmp_path)
|
||||||
|
|
||||||
|
|
||||||
|
def process_document(image: Image.Image) -> dict:
|
||||||
|
"""Process a document through the full pipeline"""
|
||||||
|
logger.info(f"Processing document: {image.size}")
|
||||||
|
|
||||||
|
# Step 1: Detect layout
|
||||||
|
regions = detect_layout(image)
|
||||||
|
logger.info(f"Detected {len(regions)} layout regions")
|
||||||
|
|
||||||
|
# Step 2: Recognize each region
|
||||||
|
blocks = []
|
||||||
|
for i, region in enumerate(regions):
|
||||||
|
region_type = region["type"].lower()
|
||||||
|
bbox = region["bbox"]
|
||||||
|
|
||||||
|
# Crop region from image
|
||||||
|
x1, y1, x2, y2 = [int(c) for c in bbox]
|
||||||
|
region_image = image.crop((x1, y1, x2, y2))
|
||||||
|
|
||||||
|
# Determine task based on region type
|
||||||
|
if "table" in region_type:
|
||||||
|
task = "table"
|
||||||
|
elif "formula" in region_type or "math" in region_type:
|
||||||
|
task = "formula"
|
||||||
|
elif "chart" in region_type or "figure" in region_type:
|
||||||
|
task = "chart"
|
||||||
|
else:
|
||||||
|
task = "ocr"
|
||||||
|
|
||||||
|
# Recognize the region
|
||||||
|
try:
|
||||||
|
content = recognize_element(region_image, task)
|
||||||
|
blocks.append({
|
||||||
|
"index": i,
|
||||||
|
"type": region_type,
|
||||||
|
"bbox": bbox,
|
||||||
|
"content": content,
|
||||||
|
"task": task
|
||||||
|
})
|
||||||
|
logger.info(f" Region {i} ({region_type}): {len(content)} chars")
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f" Region {i} error: {e}")
|
||||||
|
blocks.append({
|
||||||
|
"index": i,
|
||||||
|
"type": region_type,
|
||||||
|
"bbox": bbox,
|
||||||
|
"content": "",
|
||||||
|
"error": str(e)
|
||||||
|
})
|
||||||
|
|
||||||
|
return {"blocks": blocks, "image_size": list(image.size)}
|
||||||
|
|
||||||
|
|
||||||
|
def result_to_markdown(result: dict) -> str:
|
||||||
|
"""Convert result to Markdown format"""
|
||||||
|
lines = []
|
||||||
|
|
||||||
|
for block in result.get("blocks", []):
|
||||||
|
block_type = block.get("type", "text")
|
||||||
|
content = block.get("content", "")
|
||||||
|
|
||||||
|
if "table" in block_type.lower():
|
||||||
|
lines.append(f"\n{content}\n")
|
||||||
|
elif "formula" in block_type.lower():
|
||||||
|
lines.append(f"\n$$\n{content}\n$$\n")
|
||||||
|
else:
|
||||||
|
lines.append(content)
|
||||||
|
|
||||||
|
return "\n\n".join(lines)
|
||||||
|
|
||||||
|
|
||||||
|
# Request/Response models
|
||||||
|
class ParseRequest(BaseModel):
|
||||||
|
image: str # base64 encoded image
|
||||||
|
output_format: Optional[str] = "json"
|
||||||
|
|
||||||
|
|
||||||
|
class ParseResponse(BaseModel):
|
||||||
|
success: bool
|
||||||
|
format: str
|
||||||
|
result: Union[dict, str]
|
||||||
|
processing_time: float
|
||||||
|
error: Optional[str] = None
|
||||||
|
|
||||||
|
|
||||||
|
def decode_image(image_source: str) -> Image.Image:
|
||||||
|
"""Decode image from base64 or data URL"""
|
||||||
|
if image_source.startswith("data:"):
|
||||||
|
header, data = image_source.split(",", 1)
|
||||||
|
image_data = base64.b64decode(data)
|
||||||
|
else:
|
||||||
|
image_data = base64.b64decode(image_source)
|
||||||
|
|
||||||
|
return Image.open(io.BytesIO(image_data)).convert("RGB")
|
||||||
|
|
||||||
|
|
||||||
|
@app.on_event("startup")
|
||||||
|
async def startup_event():
|
||||||
|
"""Pre-load models on startup"""
|
||||||
|
logger.info("Starting PaddleOCR-VL Full Pipeline Server...")
|
||||||
|
try:
|
||||||
|
load_vl_model()
|
||||||
|
load_layout_model()
|
||||||
|
logger.info("Models loaded successfully")
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Failed to pre-load models: {e}")
|
||||||
|
|
||||||
|
|
||||||
|
@app.get("/health")
|
||||||
|
async def health_check():
|
||||||
|
"""Health check endpoint"""
|
||||||
|
return {
|
||||||
|
"status": "healthy" if vl_model is not None else "loading",
|
||||||
|
"service": "PaddleOCR-VL Full Pipeline (Transformers)",
|
||||||
|
"device": DEVICE,
|
||||||
|
"vl_model_loaded": vl_model is not None,
|
||||||
|
"layout_model_loaded": layout_model is not None
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
@app.get("/formats")
|
||||||
|
async def supported_formats():
|
||||||
|
"""List supported output formats"""
|
||||||
|
return {
|
||||||
|
"output_formats": ["json", "markdown"],
|
||||||
|
"image_formats": ["PNG", "JPEG", "WebP", "BMP", "GIF", "TIFF"],
|
||||||
|
"capabilities": [
|
||||||
|
"Layout detection (PP-DocLayoutV2)",
|
||||||
|
"Text recognition (OCR)",
|
||||||
|
"Table recognition",
|
||||||
|
"Formula recognition (LaTeX)",
|
||||||
|
"Chart recognition",
|
||||||
|
"Multi-language support (109 languages)"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
@app.post("/parse", response_model=ParseResponse)
|
||||||
|
async def parse_document_endpoint(request: ParseRequest):
|
||||||
|
"""Parse a document image and return structured output"""
|
||||||
|
try:
|
||||||
|
start_time = time.time()
|
||||||
|
|
||||||
|
image = decode_image(request.image)
|
||||||
|
result = process_document(image)
|
||||||
|
|
||||||
|
if request.output_format == "markdown":
|
||||||
|
markdown = result_to_markdown(result)
|
||||||
|
output = {"markdown": markdown}
|
||||||
|
else:
|
||||||
|
output = result
|
||||||
|
|
||||||
|
elapsed = time.time() - start_time
|
||||||
|
logger.info(f"Processing complete in {elapsed:.2f}s")
|
||||||
|
|
||||||
|
return ParseResponse(
|
||||||
|
success=True,
|
||||||
|
format=request.output_format,
|
||||||
|
result=output,
|
||||||
|
processing_time=elapsed
|
||||||
|
)
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Error processing document: {e}", exc_info=True)
|
||||||
|
return ParseResponse(
|
||||||
|
success=False,
|
||||||
|
format=request.output_format,
|
||||||
|
result={},
|
||||||
|
processing_time=0,
|
||||||
|
error=str(e)
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
@app.post("/v1/chat/completions")
|
||||||
|
async def chat_completions(request: dict):
|
||||||
|
"""OpenAI-compatible chat completions endpoint"""
|
||||||
|
try:
|
||||||
|
messages = request.get("messages", [])
|
||||||
|
output_format = request.get("output_format", "json")
|
||||||
|
|
||||||
|
# Find user message with image
|
||||||
|
image = None
|
||||||
|
for msg in reversed(messages):
|
||||||
|
if msg.get("role") == "user":
|
||||||
|
content = msg.get("content", [])
|
||||||
|
if isinstance(content, list):
|
||||||
|
for item in content:
|
||||||
|
if item.get("type") == "image_url":
|
||||||
|
url = item.get("image_url", {}).get("url", "")
|
||||||
|
image = decode_image(url)
|
||||||
|
break
|
||||||
|
break
|
||||||
|
|
||||||
|
if image is None:
|
||||||
|
raise HTTPException(status_code=400, detail="No image provided")
|
||||||
|
|
||||||
|
start_time = time.time()
|
||||||
|
result = process_document(image)
|
||||||
|
|
||||||
|
if output_format == "markdown":
|
||||||
|
content = result_to_markdown(result)
|
||||||
|
else:
|
||||||
|
content = json.dumps(result, ensure_ascii=False, indent=2)
|
||||||
|
|
||||||
|
elapsed = time.time() - start_time
|
||||||
|
|
||||||
|
return {
|
||||||
|
"id": f"chatcmpl-{int(time.time()*1000)}",
|
||||||
|
"object": "chat.completion",
|
||||||
|
"created": int(time.time()),
|
||||||
|
"model": "paddleocr-vl-full",
|
||||||
|
"choices": [{
|
||||||
|
"index": 0,
|
||||||
|
"message": {"role": "assistant", "content": content},
|
||||||
|
"finish_reason": "stop"
|
||||||
|
}],
|
||||||
|
"usage": {
|
||||||
|
"prompt_tokens": 100,
|
||||||
|
"completion_tokens": len(content) // 4,
|
||||||
|
"total_tokens": 100 + len(content) // 4
|
||||||
|
},
|
||||||
|
"processing_time": elapsed
|
||||||
|
}
|
||||||
|
|
||||||
|
except HTTPException:
|
||||||
|
raise
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Error in chat completions: {e}", exc_info=True)
|
||||||
|
raise HTTPException(status_code=500, detail=str(e))
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
import uvicorn
|
||||||
|
uvicorn.run(app, host=SERVER_HOST, port=SERVER_PORT)
|
||||||
@@ -136,27 +136,82 @@ def load_model():
|
|||||||
logger.info("PaddleOCR-VL model loaded successfully")
|
logger.info("PaddleOCR-VL model loaded successfully")
|
||||||
|
|
||||||
|
|
||||||
def decode_image(image_source: str) -> Image.Image:
|
def optimize_image_resolution(image: Image.Image, max_size: int = 2048, min_size: int = 1080) -> Image.Image:
|
||||||
"""Decode image from URL or base64"""
|
"""
|
||||||
|
Optimize image resolution for PaddleOCR-VL.
|
||||||
|
|
||||||
|
Best results are achieved with images in the 1080p-2K range.
|
||||||
|
- Images larger than max_size are scaled down
|
||||||
|
- Very small images are scaled up to min_size
|
||||||
|
"""
|
||||||
|
width, height = image.size
|
||||||
|
max_dim = max(width, height)
|
||||||
|
min_dim = min(width, height)
|
||||||
|
|
||||||
|
# Scale down if too large (4K+ images often miss text)
|
||||||
|
if max_dim > max_size:
|
||||||
|
scale = max_size / max_dim
|
||||||
|
new_width = int(width * scale)
|
||||||
|
new_height = int(height * scale)
|
||||||
|
logger.info(f"Scaling down image from {width}x{height} to {new_width}x{new_height}")
|
||||||
|
image = image.resize((new_width, new_height), Image.Resampling.LANCZOS)
|
||||||
|
# Scale up if too small
|
||||||
|
elif max_dim < min_size and min_dim < min_size:
|
||||||
|
scale = min_size / max_dim
|
||||||
|
new_width = int(width * scale)
|
||||||
|
new_height = int(height * scale)
|
||||||
|
logger.info(f"Scaling up image from {width}x{height} to {new_width}x{new_height}")
|
||||||
|
image = image.resize((new_width, new_height), Image.Resampling.LANCZOS)
|
||||||
|
else:
|
||||||
|
logger.info(f"Image size {width}x{height} is optimal, no scaling needed")
|
||||||
|
|
||||||
|
return image
|
||||||
|
|
||||||
|
|
||||||
|
def decode_image(image_source: str, optimize: bool = True) -> Image.Image:
|
||||||
|
"""
|
||||||
|
Decode image from various sources.
|
||||||
|
|
||||||
|
Supported formats:
|
||||||
|
- Base64 data URL: data:image/png;base64,... or data:image/jpeg;base64,...
|
||||||
|
- HTTP/HTTPS URL: https://example.com/image.png
|
||||||
|
- Raw base64 string
|
||||||
|
- Local file path
|
||||||
|
|
||||||
|
Supported image types: PNG, JPEG, WebP, BMP, GIF, TIFF
|
||||||
|
"""
|
||||||
|
image = None
|
||||||
|
|
||||||
if image_source.startswith("data:"):
|
if image_source.startswith("data:"):
|
||||||
# Base64 encoded image
|
# Base64 encoded image with MIME type header
|
||||||
|
# Supports: data:image/png;base64,... data:image/jpeg;base64,... etc.
|
||||||
header, data = image_source.split(",", 1)
|
header, data = image_source.split(",", 1)
|
||||||
image_data = base64.b64decode(data)
|
image_data = base64.b64decode(data)
|
||||||
return Image.open(io.BytesIO(image_data)).convert("RGB")
|
image = Image.open(io.BytesIO(image_data)).convert("RGB")
|
||||||
|
logger.debug(f"Decoded base64 image with header: {header}")
|
||||||
elif image_source.startswith("http://") or image_source.startswith("https://"):
|
elif image_source.startswith("http://") or image_source.startswith("https://"):
|
||||||
# URL - fetch image
|
# URL - fetch image
|
||||||
import httpx
|
import httpx
|
||||||
response = httpx.get(image_source, timeout=30.0)
|
response = httpx.get(image_source, timeout=30.0)
|
||||||
response.raise_for_status()
|
response.raise_for_status()
|
||||||
return Image.open(io.BytesIO(response.content)).convert("RGB")
|
image = Image.open(io.BytesIO(response.content)).convert("RGB")
|
||||||
|
logger.debug(f"Fetched image from URL: {image_source[:50]}...")
|
||||||
else:
|
else:
|
||||||
# Assume it's a file path or raw base64
|
# Assume it's a file path or raw base64
|
||||||
try:
|
try:
|
||||||
image_data = base64.b64decode(image_source)
|
image_data = base64.b64decode(image_source)
|
||||||
return Image.open(io.BytesIO(image_data)).convert("RGB")
|
image = Image.open(io.BytesIO(image_data)).convert("RGB")
|
||||||
|
logger.debug("Decoded raw base64 image")
|
||||||
except:
|
except:
|
||||||
# Try as file path
|
# Try as file path
|
||||||
return Image.open(image_source).convert("RGB")
|
image = Image.open(image_source).convert("RGB")
|
||||||
|
logger.debug(f"Loaded image from file: {image_source}")
|
||||||
|
|
||||||
|
# Optimize resolution for best OCR results
|
||||||
|
if optimize:
|
||||||
|
image = optimize_image_resolution(image)
|
||||||
|
|
||||||
|
return image
|
||||||
|
|
||||||
|
|
||||||
def extract_image_and_text(content: Union[str, List[ContentItem]]) -> tuple:
|
def extract_image_and_text(content: Union[str, List[ContentItem]]) -> tuple:
|
||||||
@@ -242,6 +297,45 @@ async def health_check():
|
|||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
|
@app.get("/formats")
|
||||||
|
async def supported_formats():
|
||||||
|
"""List supported image formats and input methods"""
|
||||||
|
return {
|
||||||
|
"image_formats": {
|
||||||
|
"supported": ["PNG", "JPEG", "WebP", "BMP", "GIF", "TIFF"],
|
||||||
|
"recommended": ["PNG", "JPEG"],
|
||||||
|
"mime_types": [
|
||||||
|
"image/png",
|
||||||
|
"image/jpeg",
|
||||||
|
"image/webp",
|
||||||
|
"image/bmp",
|
||||||
|
"image/gif",
|
||||||
|
"image/tiff"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"input_methods": {
|
||||||
|
"base64_data_url": {
|
||||||
|
"description": "Base64 encoded image with MIME type header",
|
||||||
|
"example": "..."
|
||||||
|
},
|
||||||
|
"http_url": {
|
||||||
|
"description": "Direct HTTP/HTTPS URL to image",
|
||||||
|
"example": "https://example.com/image.png"
|
||||||
|
},
|
||||||
|
"raw_base64": {
|
||||||
|
"description": "Raw base64 string without header",
|
||||||
|
"example": "iVBORw0KGgo..."
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"resolution": {
|
||||||
|
"optimal_range": "1080p to 2K (1080-2048 pixels on longest side)",
|
||||||
|
"auto_scaling": True,
|
||||||
|
"note": "Images are automatically scaled to optimal range. 4K+ images are scaled down for better accuracy."
|
||||||
|
},
|
||||||
|
"task_prompts": TASK_PROMPTS
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
@app.get("/v1/models")
|
@app.get("/v1/models")
|
||||||
async def list_models():
|
async def list_models():
|
||||||
"""List available models (OpenAI-compatible)"""
|
"""List available models (OpenAI-compatible)"""
|
||||||
|
|||||||
@@ -1,6 +1,6 @@
|
|||||||
{
|
{
|
||||||
"name": "@host.today/ht-docker-ai",
|
"name": "@host.today/ht-docker-ai",
|
||||||
"version": "1.5.0",
|
"version": "1.6.0",
|
||||||
"type": "module",
|
"type": "module",
|
||||||
"private": false,
|
"private": false,
|
||||||
"description": "Docker images for AI vision-language models including MiniCPM-V 4.5",
|
"description": "Docker images for AI vision-language models including MiniCPM-V 4.5",
|
||||||
|
|||||||
297
test/helpers/docker.ts
Normal file
297
test/helpers/docker.ts
Normal file
@@ -0,0 +1,297 @@
|
|||||||
|
import { execSync } from 'child_process';
|
||||||
|
|
||||||
|
// Project container names (only manage these)
|
||||||
|
const PROJECT_CONTAINERS = [
|
||||||
|
'paddleocr-vl-test',
|
||||||
|
'paddleocr-vl-gpu-test',
|
||||||
|
'paddleocr-vl-cpu-test',
|
||||||
|
'paddleocr-vl-full-test',
|
||||||
|
'minicpm-test',
|
||||||
|
];
|
||||||
|
|
||||||
|
// Image configurations
|
||||||
|
export interface IImageConfig {
|
||||||
|
name: string;
|
||||||
|
dockerfile: string;
|
||||||
|
buildContext: string;
|
||||||
|
containerName: string;
|
||||||
|
ports: string[];
|
||||||
|
volumes?: string[];
|
||||||
|
gpus?: boolean;
|
||||||
|
healthEndpoint?: string;
|
||||||
|
healthTimeout?: number;
|
||||||
|
}
|
||||||
|
|
||||||
|
export const IMAGES = {
|
||||||
|
paddleocrVlGpu: {
|
||||||
|
name: 'paddleocr-vl-gpu',
|
||||||
|
dockerfile: 'Dockerfile_paddleocr_vl_gpu',
|
||||||
|
buildContext: '.',
|
||||||
|
containerName: 'paddleocr-vl-test',
|
||||||
|
ports: ['8000:8000'],
|
||||||
|
volumes: ['ht-huggingface-cache:/root/.cache/huggingface'],
|
||||||
|
gpus: true,
|
||||||
|
healthEndpoint: 'http://localhost:8000/health',
|
||||||
|
healthTimeout: 300000, // 5 minutes for model loading
|
||||||
|
} as IImageConfig,
|
||||||
|
|
||||||
|
paddleocrVlCpu: {
|
||||||
|
name: 'paddleocr-vl-cpu',
|
||||||
|
dockerfile: 'Dockerfile_paddleocr_vl_cpu',
|
||||||
|
buildContext: '.',
|
||||||
|
containerName: 'paddleocr-vl-test',
|
||||||
|
ports: ['8000:8000'],
|
||||||
|
volumes: ['ht-huggingface-cache:/root/.cache/huggingface'],
|
||||||
|
gpus: false,
|
||||||
|
healthEndpoint: 'http://localhost:8000/health',
|
||||||
|
healthTimeout: 300000,
|
||||||
|
} as IImageConfig,
|
||||||
|
|
||||||
|
minicpm: {
|
||||||
|
name: 'minicpm45v',
|
||||||
|
dockerfile: 'Dockerfile_minicpm45v',
|
||||||
|
buildContext: '.',
|
||||||
|
containerName: 'minicpm-test',
|
||||||
|
ports: ['11434:11434'],
|
||||||
|
volumes: ['ht-ollama-models:/root/.ollama'],
|
||||||
|
gpus: true,
|
||||||
|
healthEndpoint: 'http://localhost:11434/api/tags',
|
||||||
|
healthTimeout: 120000,
|
||||||
|
} as IImageConfig,
|
||||||
|
|
||||||
|
// Full PaddleOCR-VL pipeline with PP-DocLayoutV2 + structured JSON output
|
||||||
|
paddleocrVlFull: {
|
||||||
|
name: 'paddleocr-vl-full',
|
||||||
|
dockerfile: 'Dockerfile_paddleocr_vl_full',
|
||||||
|
buildContext: '.',
|
||||||
|
containerName: 'paddleocr-vl-full-test',
|
||||||
|
ports: ['8000:8000'],
|
||||||
|
volumes: [
|
||||||
|
'ht-huggingface-cache:/root/.cache/huggingface',
|
||||||
|
'ht-paddleocr-cache:/root/.paddleocr',
|
||||||
|
],
|
||||||
|
gpus: true,
|
||||||
|
healthEndpoint: 'http://localhost:8000/health',
|
||||||
|
healthTimeout: 600000, // 10 minutes for model loading (vLLM + PP-DocLayoutV2)
|
||||||
|
} as IImageConfig,
|
||||||
|
};
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Execute a shell command and return output
|
||||||
|
*/
|
||||||
|
function exec(command: string, silent = false): string {
|
||||||
|
try {
|
||||||
|
return execSync(command, {
|
||||||
|
encoding: 'utf-8',
|
||||||
|
stdio: silent ? 'pipe' : 'inherit',
|
||||||
|
});
|
||||||
|
} catch (err: unknown) {
|
||||||
|
if (silent) return '';
|
||||||
|
throw err;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Check if a Docker image exists locally
|
||||||
|
*/
|
||||||
|
export function imageExists(imageName: string): boolean {
|
||||||
|
const result = exec(`docker images -q ${imageName}`, true);
|
||||||
|
return result.trim().length > 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Check if a container is running
|
||||||
|
*/
|
||||||
|
export function isContainerRunning(containerName: string): boolean {
|
||||||
|
const result = exec(`docker ps --filter "name=^${containerName}$" --format "{{.Names}}"`, true);
|
||||||
|
return result.trim() === containerName;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Check if a container exists (running or stopped)
|
||||||
|
*/
|
||||||
|
export function containerExists(containerName: string): boolean {
|
||||||
|
const result = exec(`docker ps -a --filter "name=^${containerName}$" --format "{{.Names}}"`, true);
|
||||||
|
return result.trim() === containerName;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Stop and remove a container
|
||||||
|
*/
|
||||||
|
export function removeContainer(containerName: string): void {
|
||||||
|
if (containerExists(containerName)) {
|
||||||
|
console.log(`[Docker] Removing container: ${containerName}`);
|
||||||
|
exec(`docker rm -f ${containerName}`, true);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Stop all project containers that conflict with the required one
|
||||||
|
*/
|
||||||
|
export function stopConflictingContainers(requiredContainer: string, requiredPort: string): void {
|
||||||
|
// Stop project containers using the same port
|
||||||
|
for (const container of PROJECT_CONTAINERS) {
|
||||||
|
if (container === requiredContainer) continue;
|
||||||
|
|
||||||
|
if (isContainerRunning(container)) {
|
||||||
|
// Check if this container uses the same port
|
||||||
|
const ports = exec(`docker port ${container} 2>/dev/null || true`, true);
|
||||||
|
if (ports.includes(requiredPort.split(':')[0])) {
|
||||||
|
console.log(`[Docker] Stopping conflicting container: ${container}`);
|
||||||
|
exec(`docker stop ${container}`, true);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Build a Docker image
|
||||||
|
*/
|
||||||
|
export function buildImage(config: IImageConfig): void {
|
||||||
|
console.log(`[Docker] Building image: ${config.name}`);
|
||||||
|
const cmd = `docker build --load -f ${config.dockerfile} -t ${config.name} ${config.buildContext}`;
|
||||||
|
exec(cmd);
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Start a container from an image
|
||||||
|
*/
|
||||||
|
export function startContainer(config: IImageConfig): void {
|
||||||
|
// Remove existing container if it exists
|
||||||
|
removeContainer(config.containerName);
|
||||||
|
|
||||||
|
console.log(`[Docker] Starting container: ${config.containerName}`);
|
||||||
|
|
||||||
|
const portArgs = config.ports.map((p) => `-p ${p}`).join(' ');
|
||||||
|
const volumeArgs = config.volumes?.map((v) => `-v ${v}`).join(' ') || '';
|
||||||
|
const gpuArgs = config.gpus ? '--gpus all' : '';
|
||||||
|
|
||||||
|
const cmd = `docker run -d --name ${config.containerName} ${gpuArgs} ${portArgs} ${volumeArgs} ${config.name}`;
|
||||||
|
exec(cmd);
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Wait for a container to become healthy
|
||||||
|
*/
|
||||||
|
export async function waitForHealth(
|
||||||
|
endpoint: string,
|
||||||
|
timeoutMs: number = 120000,
|
||||||
|
intervalMs: number = 5000
|
||||||
|
): Promise<boolean> {
|
||||||
|
const startTime = Date.now();
|
||||||
|
console.log(`[Docker] Waiting for health: ${endpoint}`);
|
||||||
|
|
||||||
|
while (Date.now() - startTime < timeoutMs) {
|
||||||
|
try {
|
||||||
|
const response = await fetch(endpoint, {
|
||||||
|
method: 'GET',
|
||||||
|
signal: AbortSignal.timeout(5000),
|
||||||
|
});
|
||||||
|
if (response.ok) {
|
||||||
|
console.log(`[Docker] Service healthy!`);
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
} catch {
|
||||||
|
// Service not ready yet
|
||||||
|
}
|
||||||
|
|
||||||
|
const elapsed = Math.round((Date.now() - startTime) / 1000);
|
||||||
|
console.log(`[Docker] Waiting... (${elapsed}s)`);
|
||||||
|
await new Promise((resolve) => setTimeout(resolve, intervalMs));
|
||||||
|
}
|
||||||
|
|
||||||
|
console.log(`[Docker] Health check timeout after ${timeoutMs / 1000}s`);
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Ensure a service is running and healthy
|
||||||
|
* - Builds image if missing
|
||||||
|
* - Stops conflicting project containers
|
||||||
|
* - Starts container if not running
|
||||||
|
* - Waits for health check
|
||||||
|
*/
|
||||||
|
export async function ensureService(config: IImageConfig): Promise<boolean> {
|
||||||
|
console.log(`\n[Docker] Ensuring service: ${config.name}`);
|
||||||
|
|
||||||
|
// Build image if it doesn't exist
|
||||||
|
if (!imageExists(config.name)) {
|
||||||
|
console.log(`[Docker] Image not found, building...`);
|
||||||
|
buildImage(config);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Stop conflicting containers on the same port
|
||||||
|
const mainPort = config.ports[0];
|
||||||
|
stopConflictingContainers(config.containerName, mainPort);
|
||||||
|
|
||||||
|
// Start container if not running
|
||||||
|
if (!isContainerRunning(config.containerName)) {
|
||||||
|
startContainer(config);
|
||||||
|
} else {
|
||||||
|
console.log(`[Docker] Container already running: ${config.containerName}`);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Wait for health
|
||||||
|
if (config.healthEndpoint) {
|
||||||
|
return waitForHealth(config.healthEndpoint, config.healthTimeout);
|
||||||
|
}
|
||||||
|
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Ensure PaddleOCR-VL GPU service is running
|
||||||
|
*/
|
||||||
|
export async function ensurePaddleOcrVlGpu(): Promise<boolean> {
|
||||||
|
return ensureService(IMAGES.paddleocrVlGpu);
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Ensure PaddleOCR-VL CPU service is running
|
||||||
|
*/
|
||||||
|
export async function ensurePaddleOcrVlCpu(): Promise<boolean> {
|
||||||
|
return ensureService(IMAGES.paddleocrVlCpu);
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Ensure MiniCPM service is running
|
||||||
|
*/
|
||||||
|
export async function ensureMiniCpm(): Promise<boolean> {
|
||||||
|
return ensureService(IMAGES.minicpm);
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Check if GPU is available
|
||||||
|
*/
|
||||||
|
export function isGpuAvailable(): boolean {
|
||||||
|
try {
|
||||||
|
const result = exec('nvidia-smi --query-gpu=name --format=csv,noheader 2>/dev/null', true);
|
||||||
|
return result.trim().length > 0;
|
||||||
|
} catch {
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Ensure PaddleOCR-VL service (auto-detect GPU/CPU)
|
||||||
|
*/
|
||||||
|
export async function ensurePaddleOcrVl(): Promise<boolean> {
|
||||||
|
if (isGpuAvailable()) {
|
||||||
|
console.log('[Docker] GPU detected, using GPU image');
|
||||||
|
return ensurePaddleOcrVlGpu();
|
||||||
|
} else {
|
||||||
|
console.log('[Docker] No GPU detected, using CPU image');
|
||||||
|
return ensurePaddleOcrVlCpu();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Ensure PaddleOCR-VL Full Pipeline service (PP-DocLayoutV2 + structured output)
|
||||||
|
* This is the recommended service for production use - outputs structured JSON/Markdown
|
||||||
|
*/
|
||||||
|
export async function ensurePaddleOcrVlFull(): Promise<boolean> {
|
||||||
|
if (!isGpuAvailable()) {
|
||||||
|
console.log('[Docker] WARNING: Full pipeline requires GPU, but none detected');
|
||||||
|
}
|
||||||
|
return ensureService(IMAGES.paddleocrVlFull);
|
||||||
|
}
|
||||||
@@ -1,15 +1,23 @@
|
|||||||
|
/**
|
||||||
|
* Bank statement extraction test using MiniCPM-V (visual) + PaddleOCR-VL (table recognition)
|
||||||
|
*
|
||||||
|
* This is the combined/dual-VLM approach that uses both models for consensus:
|
||||||
|
* - MiniCPM-V for visual extraction
|
||||||
|
* - PaddleOCR-VL for table recognition
|
||||||
|
*/
|
||||||
import { tap, expect } from '@git.zone/tstest/tapbundle';
|
import { tap, expect } from '@git.zone/tstest/tapbundle';
|
||||||
import * as fs from 'fs';
|
import * as fs from 'fs';
|
||||||
import * as path from 'path';
|
import * as path from 'path';
|
||||||
import { execSync } from 'child_process';
|
import { execSync } from 'child_process';
|
||||||
import * as os from 'os';
|
import * as os from 'os';
|
||||||
|
import { ensurePaddleOcrVl, ensureMiniCpm } from './helpers/docker.js';
|
||||||
|
|
||||||
// Service URLs
|
// Service URLs
|
||||||
const OLLAMA_URL = 'http://localhost:11434';
|
const OLLAMA_URL = 'http://localhost:11434';
|
||||||
const PADDLEOCR_VL_URL = 'http://localhost:8000';
|
const PADDLEOCR_VL_URL = 'http://localhost:8000';
|
||||||
|
|
||||||
// Models
|
// Models
|
||||||
const MINICPM_MODEL = 'openbmb/minicpm-v4.5:q8_0';
|
const MINICPM_MODEL = 'minicpm-v:latest';
|
||||||
const PADDLEOCR_VL_MODEL = 'paddleocr-vl';
|
const PADDLEOCR_VL_MODEL = 'paddleocr-vl';
|
||||||
|
|
||||||
// Prompt for MiniCPM-V visual extraction
|
// Prompt for MiniCPM-V visual extraction
|
||||||
@@ -477,11 +485,18 @@ function findTestCases(): Array<{ name: string; pdfPath: string; jsonPath: strin
|
|||||||
|
|
||||||
// Tests
|
// Tests
|
||||||
|
|
||||||
tap.test('should connect to Ollama API', async () => {
|
tap.test('setup: ensure Docker containers are running', async () => {
|
||||||
const response = await fetch(`${OLLAMA_URL}/api/tags`);
|
console.log('\n[Setup] Checking Docker containers...\n');
|
||||||
expect(response.ok).toBeTrue();
|
|
||||||
const data = await response.json();
|
// Ensure PaddleOCR-VL is running (auto-detects GPU/CPU)
|
||||||
expect(data.models).toBeArray();
|
const paddleOk = await ensurePaddleOcrVl();
|
||||||
|
expect(paddleOk).toBeTrue();
|
||||||
|
|
||||||
|
// Ensure MiniCPM is running
|
||||||
|
const minicpmOk = await ensureMiniCpm();
|
||||||
|
expect(minicpmOk).toBeTrue();
|
||||||
|
|
||||||
|
console.log('\n[Setup] All containers ready!\n');
|
||||||
});
|
});
|
||||||
|
|
||||||
tap.test('should have MiniCPM-V 4.5 model loaded', async () => {
|
tap.test('should have MiniCPM-V 4.5 model loaded', async () => {
|
||||||
@@ -494,8 +509,7 @@ tap.test('should have MiniCPM-V 4.5 model loaded', async () => {
|
|||||||
tap.test('should check PaddleOCR-VL availability', async () => {
|
tap.test('should check PaddleOCR-VL availability', async () => {
|
||||||
const available = await isPaddleOCRVLAvailable();
|
const available = await isPaddleOCRVLAvailable();
|
||||||
console.log(`PaddleOCR-VL available: ${available}`);
|
console.log(`PaddleOCR-VL available: ${available}`);
|
||||||
// This test passes regardless - PaddleOCR-VL is optional
|
expect(available).toBeTrue();
|
||||||
expect(true).toBeTrue();
|
|
||||||
});
|
});
|
||||||
|
|
||||||
// Dynamic test for each PDF/JSON pair
|
// Dynamic test for each PDF/JSON pair
|
||||||
|
|||||||
334
test/test.bankstatements.minicpm.ts
Normal file
334
test/test.bankstatements.minicpm.ts
Normal file
@@ -0,0 +1,334 @@
|
|||||||
|
/**
|
||||||
|
* Bank statement extraction test using MiniCPM-V only (visual extraction)
|
||||||
|
*
|
||||||
|
* This tests MiniCPM-V's ability to extract bank transactions directly from images
|
||||||
|
* without any OCR augmentation.
|
||||||
|
*/
|
||||||
|
import { tap, expect } from '@git.zone/tstest/tapbundle';
|
||||||
|
import * as fs from 'fs';
|
||||||
|
import * as path from 'path';
|
||||||
|
import { execSync } from 'child_process';
|
||||||
|
import * as os from 'os';
|
||||||
|
import { ensureMiniCpm } from './helpers/docker.js';
|
||||||
|
|
||||||
|
// Service URL
|
||||||
|
const OLLAMA_URL = 'http://localhost:11434';
|
||||||
|
|
||||||
|
// Model
|
||||||
|
const MINICPM_MODEL = 'minicpm-v:latest';
|
||||||
|
|
||||||
|
// Prompt for MiniCPM-V visual extraction
|
||||||
|
const MINICPM_EXTRACT_PROMPT = `/nothink
|
||||||
|
You are a bank statement parser. Extract EVERY transaction from the table.
|
||||||
|
|
||||||
|
Read the Amount column carefully:
|
||||||
|
- "- 21,47 €" means DEBIT, output as: -21.47
|
||||||
|
- "+ 1.000,00 €" means CREDIT, output as: 1000.00
|
||||||
|
- European format: comma = decimal point
|
||||||
|
|
||||||
|
For each row output: {"date":"YYYY-MM-DD","counterparty":"NAME","amount":-21.47}
|
||||||
|
|
||||||
|
Do not skip any rows. Return ONLY the JSON array, no explanation.`;
|
||||||
|
|
||||||
|
interface ITransaction {
|
||||||
|
date: string;
|
||||||
|
counterparty: string;
|
||||||
|
amount: number;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Convert PDF to PNG images using ImageMagick
|
||||||
|
*/
|
||||||
|
function convertPdfToImages(pdfPath: string): string[] {
|
||||||
|
const tempDir = fs.mkdtempSync(path.join(os.tmpdir(), 'pdf-convert-'));
|
||||||
|
const outputPattern = path.join(tempDir, 'page-%d.png');
|
||||||
|
|
||||||
|
try {
|
||||||
|
execSync(
|
||||||
|
`convert -density 300 -quality 100 "${pdfPath}" -background white -alpha remove "${outputPattern}"`,
|
||||||
|
{ stdio: 'pipe' }
|
||||||
|
);
|
||||||
|
|
||||||
|
const files = fs.readdirSync(tempDir).filter((f: string) => f.endsWith('.png')).sort();
|
||||||
|
const images: string[] = [];
|
||||||
|
|
||||||
|
for (const file of files) {
|
||||||
|
const imagePath = path.join(tempDir, file);
|
||||||
|
const imageData = fs.readFileSync(imagePath);
|
||||||
|
images.push(imageData.toString('base64'));
|
||||||
|
}
|
||||||
|
|
||||||
|
return images;
|
||||||
|
} finally {
|
||||||
|
fs.rmSync(tempDir, { recursive: true, force: true });
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Extract using MiniCPM-V via Ollama
|
||||||
|
*/
|
||||||
|
async function extractWithMiniCPM(images: string[], passLabel: string): Promise<ITransaction[]> {
|
||||||
|
const payload = {
|
||||||
|
model: MINICPM_MODEL,
|
||||||
|
prompt: MINICPM_EXTRACT_PROMPT,
|
||||||
|
images,
|
||||||
|
stream: true,
|
||||||
|
options: {
|
||||||
|
num_predict: 16384,
|
||||||
|
temperature: 0.1,
|
||||||
|
},
|
||||||
|
};
|
||||||
|
|
||||||
|
const response = await fetch(`${OLLAMA_URL}/api/generate`, {
|
||||||
|
method: 'POST',
|
||||||
|
headers: { 'Content-Type': 'application/json' },
|
||||||
|
body: JSON.stringify(payload),
|
||||||
|
});
|
||||||
|
|
||||||
|
if (!response.ok) {
|
||||||
|
throw new Error(`Ollama API error: ${response.status}`);
|
||||||
|
}
|
||||||
|
|
||||||
|
const reader = response.body?.getReader();
|
||||||
|
if (!reader) {
|
||||||
|
throw new Error('No response body');
|
||||||
|
}
|
||||||
|
|
||||||
|
const decoder = new TextDecoder();
|
||||||
|
let fullText = '';
|
||||||
|
let lineBuffer = '';
|
||||||
|
|
||||||
|
console.log(`[${passLabel}] Extracting with MiniCPM-V...`);
|
||||||
|
|
||||||
|
while (true) {
|
||||||
|
const { done, value } = await reader.read();
|
||||||
|
if (done) break;
|
||||||
|
|
||||||
|
const chunk = decoder.decode(value, { stream: true });
|
||||||
|
const lines = chunk.split('\n').filter((l) => l.trim());
|
||||||
|
|
||||||
|
for (const line of lines) {
|
||||||
|
try {
|
||||||
|
const json = JSON.parse(line);
|
||||||
|
if (json.response) {
|
||||||
|
fullText += json.response;
|
||||||
|
lineBuffer += json.response;
|
||||||
|
|
||||||
|
if (lineBuffer.includes('\n')) {
|
||||||
|
const parts = lineBuffer.split('\n');
|
||||||
|
for (let i = 0; i < parts.length - 1; i++) {
|
||||||
|
console.log(parts[i]);
|
||||||
|
}
|
||||||
|
lineBuffer = parts[parts.length - 1];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
} catch {
|
||||||
|
// Skip invalid JSON lines
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if (lineBuffer) {
|
||||||
|
console.log(lineBuffer);
|
||||||
|
}
|
||||||
|
console.log('');
|
||||||
|
|
||||||
|
const startIdx = fullText.indexOf('[');
|
||||||
|
const endIdx = fullText.lastIndexOf(']') + 1;
|
||||||
|
|
||||||
|
if (startIdx < 0 || endIdx <= startIdx) {
|
||||||
|
throw new Error('No JSON array found in response');
|
||||||
|
}
|
||||||
|
|
||||||
|
return JSON.parse(fullText.substring(startIdx, endIdx));
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Create a hash of transactions for comparison
|
||||||
|
*/
|
||||||
|
function hashTransactions(transactions: ITransaction[]): string {
|
||||||
|
return transactions
|
||||||
|
.map((t) => `${t.date}|${t.amount.toFixed(2)}`)
|
||||||
|
.sort()
|
||||||
|
.join(';');
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Extract with consensus voting using MiniCPM-V only
|
||||||
|
*/
|
||||||
|
async function extractWithConsensus(
|
||||||
|
images: string[],
|
||||||
|
maxPasses: number = 5
|
||||||
|
): Promise<ITransaction[]> {
|
||||||
|
const results: Array<{ transactions: ITransaction[]; hash: string }> = [];
|
||||||
|
const hashCounts: Map<string, number> = new Map();
|
||||||
|
|
||||||
|
const addResult = (transactions: ITransaction[], passLabel: string): number => {
|
||||||
|
const hash = hashTransactions(transactions);
|
||||||
|
results.push({ transactions, hash });
|
||||||
|
hashCounts.set(hash, (hashCounts.get(hash) || 0) + 1);
|
||||||
|
console.log(
|
||||||
|
`[${passLabel}] Got ${transactions.length} transactions (hash: ${hash.substring(0, 20)}...)`
|
||||||
|
);
|
||||||
|
return hashCounts.get(hash)!;
|
||||||
|
};
|
||||||
|
|
||||||
|
console.log('[Setup] Using MiniCPM-V only');
|
||||||
|
|
||||||
|
for (let pass = 1; pass <= maxPasses; pass++) {
|
||||||
|
try {
|
||||||
|
const transactions = await extractWithMiniCPM(images, `Pass ${pass} MiniCPM-V`);
|
||||||
|
const count = addResult(transactions, `Pass ${pass} MiniCPM-V`);
|
||||||
|
|
||||||
|
if (count >= 2) {
|
||||||
|
console.log(`[Consensus] Reached after ${pass} passes`);
|
||||||
|
return transactions;
|
||||||
|
}
|
||||||
|
|
||||||
|
console.log(`[Pass ${pass}] No consensus yet, trying again...`);
|
||||||
|
} catch (err) {
|
||||||
|
console.log(`[Pass ${pass}] Error: ${err}`);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// No consensus reached - return the most common result
|
||||||
|
let bestHash = '';
|
||||||
|
let bestCount = 0;
|
||||||
|
for (const [hash, count] of hashCounts) {
|
||||||
|
if (count > bestCount) {
|
||||||
|
bestCount = count;
|
||||||
|
bestHash = hash;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if (!bestHash) {
|
||||||
|
throw new Error('No valid results obtained');
|
||||||
|
}
|
||||||
|
|
||||||
|
const best = results.find((r) => r.hash === bestHash)!;
|
||||||
|
console.log(`[No consensus] Using most common result (${bestCount}/${maxPasses} passes)`);
|
||||||
|
return best.transactions;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Compare extracted transactions against expected
|
||||||
|
*/
|
||||||
|
function compareTransactions(
|
||||||
|
extracted: ITransaction[],
|
||||||
|
expected: ITransaction[]
|
||||||
|
): { matches: number; total: number; errors: string[] } {
|
||||||
|
const errors: string[] = [];
|
||||||
|
let matches = 0;
|
||||||
|
|
||||||
|
for (let i = 0; i < expected.length; i++) {
|
||||||
|
const exp = expected[i];
|
||||||
|
const ext = extracted[i];
|
||||||
|
|
||||||
|
if (!ext) {
|
||||||
|
errors.push(`Missing transaction ${i}: ${exp.date} ${exp.counterparty}`);
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
|
||||||
|
const dateMatch = ext.date === exp.date;
|
||||||
|
const amountMatch = Math.abs(ext.amount - exp.amount) < 0.01;
|
||||||
|
|
||||||
|
if (dateMatch && amountMatch) {
|
||||||
|
matches++;
|
||||||
|
} else {
|
||||||
|
errors.push(
|
||||||
|
`Mismatch at ${i}: expected ${exp.date}/${exp.amount}, got ${ext.date}/${ext.amount}`
|
||||||
|
);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if (extracted.length > expected.length) {
|
||||||
|
errors.push(`Extra transactions: ${extracted.length - expected.length}`);
|
||||||
|
}
|
||||||
|
|
||||||
|
return { matches, total: expected.length, errors };
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Find all test cases (PDF + JSON pairs) in .nogit/
|
||||||
|
*/
|
||||||
|
function findTestCases(): Array<{ name: string; pdfPath: string; jsonPath: string }> {
|
||||||
|
const testDir = path.join(process.cwd(), '.nogit');
|
||||||
|
if (!fs.existsSync(testDir)) {
|
||||||
|
return [];
|
||||||
|
}
|
||||||
|
|
||||||
|
const files = fs.readdirSync(testDir);
|
||||||
|
const pdfFiles = files.filter((f: string) => f.endsWith('.pdf'));
|
||||||
|
const testCases: Array<{ name: string; pdfPath: string; jsonPath: string }> = [];
|
||||||
|
|
||||||
|
for (const pdf of pdfFiles) {
|
||||||
|
const baseName = pdf.replace('.pdf', '');
|
||||||
|
const jsonFile = `${baseName}.json`;
|
||||||
|
if (files.includes(jsonFile)) {
|
||||||
|
testCases.push({
|
||||||
|
name: baseName,
|
||||||
|
pdfPath: path.join(testDir, pdf),
|
||||||
|
jsonPath: path.join(testDir, jsonFile),
|
||||||
|
});
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return testCases;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Tests
|
||||||
|
|
||||||
|
tap.test('setup: ensure Docker containers are running', async () => {
|
||||||
|
console.log('\n[Setup] Checking Docker containers...\n');
|
||||||
|
|
||||||
|
// Ensure MiniCPM is running
|
||||||
|
const minicpmOk = await ensureMiniCpm();
|
||||||
|
expect(minicpmOk).toBeTrue();
|
||||||
|
|
||||||
|
console.log('\n[Setup] All containers ready!\n');
|
||||||
|
});
|
||||||
|
|
||||||
|
tap.test('should have MiniCPM-V 4.5 model loaded', async () => {
|
||||||
|
const response = await fetch(`${OLLAMA_URL}/api/tags`);
|
||||||
|
const data = await response.json();
|
||||||
|
const modelNames = data.models.map((m: { name: string }) => m.name);
|
||||||
|
expect(modelNames.some((name: string) => name.includes('minicpm-v4.5'))).toBeTrue();
|
||||||
|
});
|
||||||
|
|
||||||
|
// Dynamic test for each PDF/JSON pair
|
||||||
|
const testCases = findTestCases();
|
||||||
|
console.log(`\nFound ${testCases.length} bank statement test cases (MiniCPM-V only)\n`);
|
||||||
|
|
||||||
|
for (const testCase of testCases) {
|
||||||
|
tap.test(`should extract transactions from ${testCase.name}`, async () => {
|
||||||
|
// Load expected transactions
|
||||||
|
const expected: ITransaction[] = JSON.parse(fs.readFileSync(testCase.jsonPath, 'utf-8'));
|
||||||
|
console.log(`\n=== ${testCase.name} ===`);
|
||||||
|
console.log(`Expected: ${expected.length} transactions`);
|
||||||
|
|
||||||
|
// Convert PDF to images
|
||||||
|
console.log('Converting PDF to images...');
|
||||||
|
const images = convertPdfToImages(testCase.pdfPath);
|
||||||
|
console.log(`Converted: ${images.length} pages\n`);
|
||||||
|
|
||||||
|
// Extract with consensus (MiniCPM-V only)
|
||||||
|
const extracted = await extractWithConsensus(images);
|
||||||
|
console.log(`\nFinal: ${extracted.length} transactions`);
|
||||||
|
|
||||||
|
// Compare results
|
||||||
|
const result = compareTransactions(extracted, expected);
|
||||||
|
console.log(`Accuracy: ${result.matches}/${result.total}`);
|
||||||
|
|
||||||
|
if (result.errors.length > 0) {
|
||||||
|
console.log('Errors:');
|
||||||
|
result.errors.forEach((e) => console.log(` - ${e}`));
|
||||||
|
}
|
||||||
|
|
||||||
|
// Assert high accuracy
|
||||||
|
const accuracy = result.matches / result.total;
|
||||||
|
expect(accuracy).toBeGreaterThan(0.95);
|
||||||
|
expect(extracted.length).toEqual(expected.length);
|
||||||
|
});
|
||||||
|
}
|
||||||
|
|
||||||
|
export default tap.start();
|
||||||
346
test/test.bankstatements.paddleocr-vl.ts
Normal file
346
test/test.bankstatements.paddleocr-vl.ts
Normal file
@@ -0,0 +1,346 @@
|
|||||||
|
/**
|
||||||
|
* Bank statement extraction test using PaddleOCR-VL Full Pipeline
|
||||||
|
*
|
||||||
|
* This tests the complete PaddleOCR-VL pipeline for bank statements:
|
||||||
|
* 1. PP-DocLayoutV2 for layout detection
|
||||||
|
* 2. PaddleOCR-VL for recognition (tables with proper structure)
|
||||||
|
* 3. Structured Markdown output with tables
|
||||||
|
* 4. MiniCPM extracts transactions from structured tables
|
||||||
|
*
|
||||||
|
* The structured Markdown has properly formatted tables,
|
||||||
|
* making it much easier for MiniCPM to extract transaction data.
|
||||||
|
*/
|
||||||
|
import { tap, expect } from '@git.zone/tstest/tapbundle';
|
||||||
|
import * as fs from 'fs';
|
||||||
|
import * as path from 'path';
|
||||||
|
import { execSync } from 'child_process';
|
||||||
|
import * as os from 'os';
|
||||||
|
import { ensurePaddleOcrVlFull, ensureMiniCpm } from './helpers/docker.js';
|
||||||
|
|
||||||
|
const PADDLEOCR_VL_URL = 'http://localhost:8000';
|
||||||
|
const OLLAMA_URL = 'http://localhost:11434';
|
||||||
|
const MINICPM_MODEL = 'minicpm-v:latest';
|
||||||
|
|
||||||
|
interface ITransaction {
|
||||||
|
date: string;
|
||||||
|
counterparty: string;
|
||||||
|
amount: number;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Convert PDF to PNG images using ImageMagick
|
||||||
|
*/
|
||||||
|
function convertPdfToImages(pdfPath: string): string[] {
|
||||||
|
const tempDir = fs.mkdtempSync(path.join(os.tmpdir(), 'pdf-convert-'));
|
||||||
|
const outputPattern = path.join(tempDir, 'page-%d.png');
|
||||||
|
|
||||||
|
try {
|
||||||
|
execSync(
|
||||||
|
`convert -density 300 -quality 100 "${pdfPath}" -background white -alpha remove "${outputPattern}"`,
|
||||||
|
{ stdio: 'pipe' }
|
||||||
|
);
|
||||||
|
|
||||||
|
const files = fs.readdirSync(tempDir).filter((f: string) => f.endsWith('.png')).sort();
|
||||||
|
const images: string[] = [];
|
||||||
|
|
||||||
|
for (const file of files) {
|
||||||
|
const imagePath = path.join(tempDir, file);
|
||||||
|
const imageData = fs.readFileSync(imagePath);
|
||||||
|
images.push(imageData.toString('base64'));
|
||||||
|
}
|
||||||
|
|
||||||
|
return images;
|
||||||
|
} finally {
|
||||||
|
fs.rmSync(tempDir, { recursive: true, force: true });
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Parse document using PaddleOCR-VL Full Pipeline (returns structured Markdown)
|
||||||
|
*/
|
||||||
|
async function parseDocument(imageBase64: string): Promise<string> {
|
||||||
|
const response = await fetch(`${PADDLEOCR_VL_URL}/parse`, {
|
||||||
|
method: 'POST',
|
||||||
|
headers: { 'Content-Type': 'application/json' },
|
||||||
|
body: JSON.stringify({
|
||||||
|
image: imageBase64,
|
||||||
|
output_format: 'markdown',
|
||||||
|
}),
|
||||||
|
});
|
||||||
|
|
||||||
|
if (!response.ok) {
|
||||||
|
const text = await response.text();
|
||||||
|
throw new Error(`PaddleOCR-VL API error: ${response.status} - ${text}`);
|
||||||
|
}
|
||||||
|
|
||||||
|
const data = await response.json();
|
||||||
|
|
||||||
|
if (!data.success) {
|
||||||
|
throw new Error(`PaddleOCR-VL error: ${data.error}`);
|
||||||
|
}
|
||||||
|
|
||||||
|
return data.result?.markdown || '';
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Extract transactions from structured Markdown using MiniCPM
|
||||||
|
*/
|
||||||
|
async function extractTransactionsFromMarkdown(markdown: string): Promise<ITransaction[]> {
|
||||||
|
console.log(` [Extract] Processing ${markdown.length} chars of Markdown`);
|
||||||
|
|
||||||
|
const prompt = `/nothink
|
||||||
|
Convert this bank statement to a JSON array of transactions.
|
||||||
|
|
||||||
|
Read the Amount values carefully:
|
||||||
|
- "- 21,47 €" means DEBIT, output as: -21.47
|
||||||
|
- "+ 1.000,00 €" means CREDIT, output as: 1000.00
|
||||||
|
- European format: comma = decimal point, dot = thousands
|
||||||
|
|
||||||
|
For each transaction output: {"date":"YYYY-MM-DD","counterparty":"NAME","amount":-21.47}
|
||||||
|
|
||||||
|
Return ONLY the JSON array, no explanation.
|
||||||
|
|
||||||
|
Document:
|
||||||
|
${markdown}`;
|
||||||
|
|
||||||
|
const payload = {
|
||||||
|
model: MINICPM_MODEL,
|
||||||
|
prompt,
|
||||||
|
stream: true,
|
||||||
|
options: {
|
||||||
|
num_predict: 16384,
|
||||||
|
temperature: 0.1,
|
||||||
|
},
|
||||||
|
};
|
||||||
|
|
||||||
|
const response = await fetch(`${OLLAMA_URL}/api/generate`, {
|
||||||
|
method: 'POST',
|
||||||
|
headers: { 'Content-Type': 'application/json' },
|
||||||
|
body: JSON.stringify(payload),
|
||||||
|
});
|
||||||
|
|
||||||
|
if (!response.ok) {
|
||||||
|
throw new Error(`Ollama API error: ${response.status}`);
|
||||||
|
}
|
||||||
|
|
||||||
|
const reader = response.body?.getReader();
|
||||||
|
if (!reader) {
|
||||||
|
throw new Error('No response body');
|
||||||
|
}
|
||||||
|
|
||||||
|
const decoder = new TextDecoder();
|
||||||
|
let fullText = '';
|
||||||
|
|
||||||
|
while (true) {
|
||||||
|
const { done, value } = await reader.read();
|
||||||
|
if (done) break;
|
||||||
|
|
||||||
|
const chunk = decoder.decode(value, { stream: true });
|
||||||
|
const lines = chunk.split('\n').filter((l) => l.trim());
|
||||||
|
|
||||||
|
for (const line of lines) {
|
||||||
|
try {
|
||||||
|
const json = JSON.parse(line);
|
||||||
|
if (json.response) {
|
||||||
|
fullText += json.response;
|
||||||
|
}
|
||||||
|
} catch {
|
||||||
|
// Skip invalid JSON lines
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Extract JSON array from response
|
||||||
|
const startIdx = fullText.indexOf('[');
|
||||||
|
const endIdx = fullText.lastIndexOf(']') + 1;
|
||||||
|
|
||||||
|
if (startIdx < 0 || endIdx <= startIdx) {
|
||||||
|
throw new Error(`No JSON array found in response: ${fullText.substring(0, 200)}`);
|
||||||
|
}
|
||||||
|
|
||||||
|
const jsonStr = fullText.substring(startIdx, endIdx);
|
||||||
|
return JSON.parse(jsonStr);
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Extract transactions from all pages of a bank statement
|
||||||
|
*/
|
||||||
|
async function extractAllTransactions(images: string[]): Promise<ITransaction[]> {
|
||||||
|
const allTransactions: ITransaction[] = [];
|
||||||
|
|
||||||
|
for (let i = 0; i < images.length; i++) {
|
||||||
|
console.log(` Processing page ${i + 1}/${images.length}...`);
|
||||||
|
|
||||||
|
// Parse with full pipeline
|
||||||
|
const markdown = await parseDocument(images[i]);
|
||||||
|
console.log(` [Parse] Got ${markdown.split('\n').length} lines of Markdown`);
|
||||||
|
|
||||||
|
// Extract transactions
|
||||||
|
try {
|
||||||
|
const transactions = await extractTransactionsFromMarkdown(markdown);
|
||||||
|
console.log(` [Extracted] ${transactions.length} transactions`);
|
||||||
|
allTransactions.push(...transactions);
|
||||||
|
} catch (err) {
|
||||||
|
console.log(` [Error] ${err}`);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return allTransactions;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Compare transactions - find matching transaction in expected list
|
||||||
|
*/
|
||||||
|
function findMatchingTransaction(
|
||||||
|
tx: ITransaction,
|
||||||
|
expectedList: ITransaction[]
|
||||||
|
): ITransaction | undefined {
|
||||||
|
return expectedList.find((exp) => {
|
||||||
|
const dateMatch = tx.date === exp.date;
|
||||||
|
const amountMatch = Math.abs(tx.amount - exp.amount) < 0.02;
|
||||||
|
const counterpartyMatch =
|
||||||
|
tx.counterparty?.toLowerCase().includes(exp.counterparty?.toLowerCase().slice(0, 10)) ||
|
||||||
|
exp.counterparty?.toLowerCase().includes(tx.counterparty?.toLowerCase().slice(0, 10));
|
||||||
|
return dateMatch && amountMatch && counterpartyMatch;
|
||||||
|
});
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Calculate extraction accuracy
|
||||||
|
*/
|
||||||
|
function calculateAccuracy(
|
||||||
|
extracted: ITransaction[],
|
||||||
|
expected: ITransaction[]
|
||||||
|
): { matched: number; total: number; accuracy: number } {
|
||||||
|
let matched = 0;
|
||||||
|
const usedExpected = new Set<number>();
|
||||||
|
|
||||||
|
for (const tx of extracted) {
|
||||||
|
for (let i = 0; i < expected.length; i++) {
|
||||||
|
if (usedExpected.has(i)) continue;
|
||||||
|
|
||||||
|
const exp = expected[i];
|
||||||
|
const dateMatch = tx.date === exp.date;
|
||||||
|
const amountMatch = Math.abs(tx.amount - exp.amount) < 0.02;
|
||||||
|
|
||||||
|
if (dateMatch && amountMatch) {
|
||||||
|
matched++;
|
||||||
|
usedExpected.add(i);
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return {
|
||||||
|
matched,
|
||||||
|
total: expected.length,
|
||||||
|
accuracy: expected.length > 0 ? (matched / expected.length) * 100 : 0,
|
||||||
|
};
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Find all test cases (PDF + JSON pairs) in .nogit/bankstatements/
|
||||||
|
*/
|
||||||
|
function findTestCases(): Array<{ name: string; pdfPath: string; jsonPath: string }> {
|
||||||
|
const testDir = path.join(process.cwd(), '.nogit/bankstatements');
|
||||||
|
if (!fs.existsSync(testDir)) {
|
||||||
|
return [];
|
||||||
|
}
|
||||||
|
|
||||||
|
const files = fs.readdirSync(testDir);
|
||||||
|
const pdfFiles = files.filter((f) => f.endsWith('.pdf'));
|
||||||
|
const testCases: Array<{ name: string; pdfPath: string; jsonPath: string }> = [];
|
||||||
|
|
||||||
|
for (const pdf of pdfFiles) {
|
||||||
|
const baseName = pdf.replace('.pdf', '');
|
||||||
|
const jsonFile = `${baseName}.json`;
|
||||||
|
if (files.includes(jsonFile)) {
|
||||||
|
testCases.push({
|
||||||
|
name: baseName,
|
||||||
|
pdfPath: path.join(testDir, pdf),
|
||||||
|
jsonPath: path.join(testDir, jsonFile),
|
||||||
|
});
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
testCases.sort((a, b) => a.name.localeCompare(b.name));
|
||||||
|
return testCases;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Tests
|
||||||
|
|
||||||
|
tap.test('setup: ensure Docker containers are running', async () => {
|
||||||
|
console.log('\n[Setup] Checking Docker containers...\n');
|
||||||
|
|
||||||
|
// Ensure PaddleOCR-VL Full Pipeline is running
|
||||||
|
const paddleOk = await ensurePaddleOcrVlFull();
|
||||||
|
expect(paddleOk).toBeTrue();
|
||||||
|
|
||||||
|
// Ensure MiniCPM is running (for field extraction from Markdown)
|
||||||
|
const minicpmOk = await ensureMiniCpm();
|
||||||
|
expect(minicpmOk).toBeTrue();
|
||||||
|
|
||||||
|
console.log('\n[Setup] All containers ready!\n');
|
||||||
|
});
|
||||||
|
|
||||||
|
// Dynamic test for each PDF/JSON pair
|
||||||
|
const testCases = findTestCases();
|
||||||
|
console.log(`\nFound ${testCases.length} bank statement test cases (PaddleOCR-VL Full Pipeline)\n`);
|
||||||
|
|
||||||
|
const results: Array<{ name: string; accuracy: number; matched: number; total: number }> = [];
|
||||||
|
|
||||||
|
for (const testCase of testCases) {
|
||||||
|
tap.test(`should extract bank statement: ${testCase.name}`, async () => {
|
||||||
|
// Load expected data
|
||||||
|
const expected: ITransaction[] = JSON.parse(fs.readFileSync(testCase.jsonPath, 'utf-8'));
|
||||||
|
console.log(`\n=== ${testCase.name} ===`);
|
||||||
|
console.log(`Expected: ${expected.length} transactions`);
|
||||||
|
|
||||||
|
const startTime = Date.now();
|
||||||
|
|
||||||
|
// Convert PDF to images
|
||||||
|
const images = convertPdfToImages(testCase.pdfPath);
|
||||||
|
console.log(` Pages: ${images.length}`);
|
||||||
|
|
||||||
|
// Extract all transactions
|
||||||
|
const extracted = await extractAllTransactions(images);
|
||||||
|
|
||||||
|
const endTime = Date.now();
|
||||||
|
const elapsedMs = endTime - startTime;
|
||||||
|
|
||||||
|
// Calculate accuracy
|
||||||
|
const accuracy = calculateAccuracy(extracted, expected);
|
||||||
|
results.push({
|
||||||
|
name: testCase.name,
|
||||||
|
accuracy: accuracy.accuracy,
|
||||||
|
matched: accuracy.matched,
|
||||||
|
total: accuracy.total,
|
||||||
|
});
|
||||||
|
|
||||||
|
console.log(` Extracted: ${extracted.length} transactions`);
|
||||||
|
console.log(` Matched: ${accuracy.matched}/${accuracy.total} (${accuracy.accuracy.toFixed(1)}%)`);
|
||||||
|
console.log(` Time: ${(elapsedMs / 1000).toFixed(1)}s`);
|
||||||
|
|
||||||
|
// We expect at least 50% accuracy
|
||||||
|
expect(accuracy.accuracy).toBeGreaterThan(50);
|
||||||
|
});
|
||||||
|
}
|
||||||
|
|
||||||
|
tap.test('summary', async () => {
|
||||||
|
const totalStatements = results.length;
|
||||||
|
const avgAccuracy =
|
||||||
|
results.length > 0 ? results.reduce((a, b) => a + b.accuracy, 0) / results.length : 0;
|
||||||
|
const totalMatched = results.reduce((a, b) => a + b.matched, 0);
|
||||||
|
const totalExpected = results.reduce((a, b) => a + b.total, 0);
|
||||||
|
|
||||||
|
console.log(`\n======================================================`);
|
||||||
|
console.log(` Bank Statement Extraction Summary (PaddleOCR-VL Full)`);
|
||||||
|
console.log(`======================================================`);
|
||||||
|
console.log(` Method: PaddleOCR-VL Full Pipeline -> MiniCPM`);
|
||||||
|
console.log(` Statements: ${totalStatements}`);
|
||||||
|
console.log(` Transactions: ${totalMatched}/${totalExpected} matched`);
|
||||||
|
console.log(` Avg accuracy: ${avgAccuracy.toFixed(1)}%`);
|
||||||
|
console.log(`======================================================\n`);
|
||||||
|
});
|
||||||
|
|
||||||
|
export default tap.start();
|
||||||
@@ -1,11 +1,19 @@
|
|||||||
|
/**
|
||||||
|
* Invoice extraction test using MiniCPM-V (visual) + PaddleOCR-VL (OCR augmentation)
|
||||||
|
*
|
||||||
|
* This is the combined approach that uses both models for best accuracy:
|
||||||
|
* - MiniCPM-V for visual understanding
|
||||||
|
* - PaddleOCR-VL for OCR text to augment prompts
|
||||||
|
*/
|
||||||
import { tap, expect } from '@git.zone/tstest/tapbundle';
|
import { tap, expect } from '@git.zone/tstest/tapbundle';
|
||||||
import * as fs from 'fs';
|
import * as fs from 'fs';
|
||||||
import * as path from 'path';
|
import * as path from 'path';
|
||||||
import { execSync } from 'child_process';
|
import { execSync } from 'child_process';
|
||||||
import * as os from 'os';
|
import * as os from 'os';
|
||||||
|
import { ensurePaddleOcrVl, ensureMiniCpm } from './helpers/docker.js';
|
||||||
|
|
||||||
const OLLAMA_URL = 'http://localhost:11434';
|
const OLLAMA_URL = 'http://localhost:11434';
|
||||||
const MODEL = 'openbmb/minicpm-v4.5:q8_0';
|
const MODEL = 'minicpm-v:latest';
|
||||||
const PADDLEOCR_VL_URL = 'http://localhost:8000';
|
const PADDLEOCR_VL_URL = 'http://localhost:8000';
|
||||||
|
|
||||||
interface IInvoice {
|
interface IInvoice {
|
||||||
@@ -358,11 +366,18 @@ function findTestCases(): Array<{ name: string; pdfPath: string; jsonPath: strin
|
|||||||
|
|
||||||
// Tests
|
// Tests
|
||||||
|
|
||||||
tap.test('should connect to Ollama API', async () => {
|
tap.test('setup: ensure Docker containers are running', async () => {
|
||||||
const response = await fetch(`${OLLAMA_URL}/api/tags`);
|
console.log('\n[Setup] Checking Docker containers...\n');
|
||||||
expect(response.ok).toBeTrue();
|
|
||||||
const data = await response.json();
|
// Ensure PaddleOCR-VL is running (auto-detects GPU/CPU)
|
||||||
expect(data.models).toBeArray();
|
const paddleOk = await ensurePaddleOcrVl();
|
||||||
|
expect(paddleOk).toBeTrue();
|
||||||
|
|
||||||
|
// Ensure MiniCPM is running
|
||||||
|
const minicpmOk = await ensureMiniCpm();
|
||||||
|
expect(minicpmOk).toBeTrue();
|
||||||
|
|
||||||
|
console.log('\n[Setup] All containers ready!\n');
|
||||||
});
|
});
|
||||||
|
|
||||||
tap.test('should have MiniCPM-V 4.5 model loaded', async () => {
|
tap.test('should have MiniCPM-V 4.5 model loaded', async () => {
|
||||||
|
|||||||
345
test/test.invoices.minicpm.ts
Normal file
345
test/test.invoices.minicpm.ts
Normal file
@@ -0,0 +1,345 @@
|
|||||||
|
/**
|
||||||
|
* Invoice extraction test using MiniCPM-V only (visual extraction)
|
||||||
|
*
|
||||||
|
* This tests MiniCPM-V's ability to extract invoice data directly from images
|
||||||
|
* without any OCR augmentation.
|
||||||
|
*/
|
||||||
|
import { tap, expect } from '@git.zone/tstest/tapbundle';
|
||||||
|
import * as fs from 'fs';
|
||||||
|
import * as path from 'path';
|
||||||
|
import { execSync } from 'child_process';
|
||||||
|
import * as os from 'os';
|
||||||
|
import { ensureMiniCpm } from './helpers/docker.js';
|
||||||
|
|
||||||
|
const OLLAMA_URL = 'http://localhost:11434';
|
||||||
|
const MODEL = 'minicpm-v:latest';
|
||||||
|
|
||||||
|
interface IInvoice {
|
||||||
|
invoice_number: string;
|
||||||
|
invoice_date: string;
|
||||||
|
vendor_name: string;
|
||||||
|
currency: string;
|
||||||
|
net_amount: number;
|
||||||
|
vat_amount: number;
|
||||||
|
total_amount: number;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Build extraction prompt (MiniCPM-V only, no OCR augmentation)
|
||||||
|
*/
|
||||||
|
function buildPrompt(): string {
|
||||||
|
return `/nothink
|
||||||
|
You are an invoice parser. Extract the following fields from this invoice:
|
||||||
|
|
||||||
|
1. invoice_number: The invoice/receipt number
|
||||||
|
2. invoice_date: Date in YYYY-MM-DD format
|
||||||
|
3. vendor_name: Company that issued the invoice
|
||||||
|
4. currency: EUR, USD, etc.
|
||||||
|
5. net_amount: Amount before tax (if shown)
|
||||||
|
6. vat_amount: Tax/VAT amount (if shown, 0 if reverse charge or no tax)
|
||||||
|
7. total_amount: Final amount due
|
||||||
|
|
||||||
|
Return ONLY valid JSON in this exact format:
|
||||||
|
{"invoice_number":"XXX","invoice_date":"YYYY-MM-DD","vendor_name":"Company Name","currency":"EUR","net_amount":100.00,"vat_amount":19.00,"total_amount":119.00}
|
||||||
|
|
||||||
|
If a field is not visible, use null for strings or 0 for numbers.
|
||||||
|
No explanation, just the JSON object.`;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Convert PDF to PNG images using ImageMagick
|
||||||
|
*/
|
||||||
|
function convertPdfToImages(pdfPath: string): string[] {
|
||||||
|
const tempDir = fs.mkdtempSync(path.join(os.tmpdir(), 'pdf-convert-'));
|
||||||
|
const outputPattern = path.join(tempDir, 'page-%d.png');
|
||||||
|
|
||||||
|
try {
|
||||||
|
execSync(
|
||||||
|
`convert -density 200 -quality 90 "${pdfPath}" -background white -alpha remove "${outputPattern}"`,
|
||||||
|
{ stdio: 'pipe' }
|
||||||
|
);
|
||||||
|
|
||||||
|
const files = fs.readdirSync(tempDir).filter((f) => f.endsWith('.png')).sort();
|
||||||
|
const images: string[] = [];
|
||||||
|
|
||||||
|
for (const file of files) {
|
||||||
|
const imagePath = path.join(tempDir, file);
|
||||||
|
const imageData = fs.readFileSync(imagePath);
|
||||||
|
images.push(imageData.toString('base64'));
|
||||||
|
}
|
||||||
|
|
||||||
|
return images;
|
||||||
|
} finally {
|
||||||
|
fs.rmSync(tempDir, { recursive: true, force: true });
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Single extraction pass with MiniCPM-V
|
||||||
|
*/
|
||||||
|
async function extractOnce(images: string[], passNum: number): Promise<IInvoice> {
|
||||||
|
const payload = {
|
||||||
|
model: MODEL,
|
||||||
|
prompt: buildPrompt(),
|
||||||
|
images,
|
||||||
|
stream: true,
|
||||||
|
options: {
|
||||||
|
num_predict: 2048,
|
||||||
|
temperature: 0.1,
|
||||||
|
},
|
||||||
|
};
|
||||||
|
|
||||||
|
const response = await fetch(`${OLLAMA_URL}/api/generate`, {
|
||||||
|
method: 'POST',
|
||||||
|
headers: { 'Content-Type': 'application/json' },
|
||||||
|
body: JSON.stringify(payload),
|
||||||
|
});
|
||||||
|
|
||||||
|
if (!response.ok) {
|
||||||
|
throw new Error(`Ollama API error: ${response.status}`);
|
||||||
|
}
|
||||||
|
|
||||||
|
const reader = response.body?.getReader();
|
||||||
|
if (!reader) {
|
||||||
|
throw new Error('No response body');
|
||||||
|
}
|
||||||
|
|
||||||
|
const decoder = new TextDecoder();
|
||||||
|
let fullText = '';
|
||||||
|
|
||||||
|
while (true) {
|
||||||
|
const { done, value } = await reader.read();
|
||||||
|
if (done) break;
|
||||||
|
|
||||||
|
const chunk = decoder.decode(value, { stream: true });
|
||||||
|
const lines = chunk.split('\n').filter((l) => l.trim());
|
||||||
|
|
||||||
|
for (const line of lines) {
|
||||||
|
try {
|
||||||
|
const json = JSON.parse(line);
|
||||||
|
if (json.response) {
|
||||||
|
fullText += json.response;
|
||||||
|
}
|
||||||
|
} catch {
|
||||||
|
// Skip invalid JSON lines
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Extract JSON from response
|
||||||
|
const startIdx = fullText.indexOf('{');
|
||||||
|
const endIdx = fullText.lastIndexOf('}') + 1;
|
||||||
|
|
||||||
|
if (startIdx < 0 || endIdx <= startIdx) {
|
||||||
|
throw new Error(`No JSON object found in response: ${fullText.substring(0, 200)}`);
|
||||||
|
}
|
||||||
|
|
||||||
|
const jsonStr = fullText.substring(startIdx, endIdx);
|
||||||
|
return JSON.parse(jsonStr);
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Create a hash of invoice for comparison (using key fields)
|
||||||
|
*/
|
||||||
|
function hashInvoice(invoice: IInvoice): string {
|
||||||
|
return `${invoice.invoice_number}|${invoice.invoice_date}|${invoice.total_amount.toFixed(2)}`;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Extract with consensus voting using MiniCPM-V only
|
||||||
|
*/
|
||||||
|
async function extractWithConsensus(images: string[], invoiceName: string, maxPasses: number = 5): Promise<IInvoice> {
|
||||||
|
const results: Array<{ invoice: IInvoice; hash: string }> = [];
|
||||||
|
const hashCounts: Map<string, number> = new Map();
|
||||||
|
|
||||||
|
const addResult = (invoice: IInvoice, passLabel: string): number => {
|
||||||
|
const hash = hashInvoice(invoice);
|
||||||
|
results.push({ invoice, hash });
|
||||||
|
hashCounts.set(hash, (hashCounts.get(hash) || 0) + 1);
|
||||||
|
console.log(` [${passLabel}] ${invoice.invoice_number} | ${invoice.invoice_date} | ${invoice.total_amount} ${invoice.currency}`);
|
||||||
|
return hashCounts.get(hash)!;
|
||||||
|
};
|
||||||
|
|
||||||
|
for (let pass = 1; pass <= maxPasses; pass++) {
|
||||||
|
try {
|
||||||
|
const invoice = await extractOnce(images, pass);
|
||||||
|
const count = addResult(invoice, `Pass ${pass}`);
|
||||||
|
|
||||||
|
if (count >= 2) {
|
||||||
|
console.log(` [Consensus] Reached after ${pass} passes`);
|
||||||
|
return invoice;
|
||||||
|
}
|
||||||
|
} catch (err) {
|
||||||
|
console.log(` [Pass ${pass}] Error: ${err}`);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// No consensus reached - return the most common result
|
||||||
|
let bestHash = '';
|
||||||
|
let bestCount = 0;
|
||||||
|
for (const [hash, count] of hashCounts) {
|
||||||
|
if (count > bestCount) {
|
||||||
|
bestCount = count;
|
||||||
|
bestHash = hash;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if (!bestHash) {
|
||||||
|
throw new Error(`No valid results for ${invoiceName}`);
|
||||||
|
}
|
||||||
|
|
||||||
|
const best = results.find((r) => r.hash === bestHash)!;
|
||||||
|
console.log(` [No consensus] Using most common result (${bestCount}/${maxPasses} passes)`);
|
||||||
|
return best.invoice;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Compare extracted invoice against expected
|
||||||
|
*/
|
||||||
|
function compareInvoice(
|
||||||
|
extracted: IInvoice,
|
||||||
|
expected: IInvoice
|
||||||
|
): { match: boolean; errors: string[] } {
|
||||||
|
const errors: string[] = [];
|
||||||
|
|
||||||
|
// Compare invoice number (normalize by removing spaces and case)
|
||||||
|
const extNum = extracted.invoice_number?.replace(/\s/g, '').toLowerCase() || '';
|
||||||
|
const expNum = expected.invoice_number?.replace(/\s/g, '').toLowerCase() || '';
|
||||||
|
if (extNum !== expNum) {
|
||||||
|
errors.push(`invoice_number: expected "${expected.invoice_number}", got "${extracted.invoice_number}"`);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Compare date
|
||||||
|
if (extracted.invoice_date !== expected.invoice_date) {
|
||||||
|
errors.push(`invoice_date: expected "${expected.invoice_date}", got "${extracted.invoice_date}"`);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Compare total amount (with tolerance)
|
||||||
|
if (Math.abs(extracted.total_amount - expected.total_amount) > 0.02) {
|
||||||
|
errors.push(`total_amount: expected ${expected.total_amount}, got ${extracted.total_amount}`);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Compare currency
|
||||||
|
if (extracted.currency?.toUpperCase() !== expected.currency?.toUpperCase()) {
|
||||||
|
errors.push(`currency: expected "${expected.currency}", got "${extracted.currency}"`);
|
||||||
|
}
|
||||||
|
|
||||||
|
return { match: errors.length === 0, errors };
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Find all test cases (PDF + JSON pairs) in .nogit/invoices/
|
||||||
|
*/
|
||||||
|
function findTestCases(): Array<{ name: string; pdfPath: string; jsonPath: string }> {
|
||||||
|
const testDir = path.join(process.cwd(), '.nogit/invoices');
|
||||||
|
if (!fs.existsSync(testDir)) {
|
||||||
|
return [];
|
||||||
|
}
|
||||||
|
|
||||||
|
const files = fs.readdirSync(testDir);
|
||||||
|
const pdfFiles = files.filter((f) => f.endsWith('.pdf'));
|
||||||
|
const testCases: Array<{ name: string; pdfPath: string; jsonPath: string }> = [];
|
||||||
|
|
||||||
|
for (const pdf of pdfFiles) {
|
||||||
|
const baseName = pdf.replace('.pdf', '');
|
||||||
|
const jsonFile = `${baseName}.json`;
|
||||||
|
if (files.includes(jsonFile)) {
|
||||||
|
testCases.push({
|
||||||
|
name: baseName,
|
||||||
|
pdfPath: path.join(testDir, pdf),
|
||||||
|
jsonPath: path.join(testDir, jsonFile),
|
||||||
|
});
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Sort alphabetically
|
||||||
|
testCases.sort((a, b) => a.name.localeCompare(b.name));
|
||||||
|
|
||||||
|
return testCases;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Tests
|
||||||
|
|
||||||
|
tap.test('setup: ensure Docker containers are running', async () => {
|
||||||
|
console.log('\n[Setup] Checking Docker containers...\n');
|
||||||
|
|
||||||
|
// Ensure MiniCPM is running
|
||||||
|
const minicpmOk = await ensureMiniCpm();
|
||||||
|
expect(minicpmOk).toBeTrue();
|
||||||
|
|
||||||
|
console.log('\n[Setup] All containers ready!\n');
|
||||||
|
});
|
||||||
|
|
||||||
|
tap.test('should have MiniCPM-V 4.5 model loaded', async () => {
|
||||||
|
const response = await fetch(`${OLLAMA_URL}/api/tags`);
|
||||||
|
const data = await response.json();
|
||||||
|
const modelNames = data.models.map((m: { name: string }) => m.name);
|
||||||
|
expect(modelNames.some((name: string) => name.includes('minicpm-v4.5'))).toBeTrue();
|
||||||
|
});
|
||||||
|
|
||||||
|
// Dynamic test for each PDF/JSON pair
|
||||||
|
const testCases = findTestCases();
|
||||||
|
console.log(`\nFound ${testCases.length} invoice test cases (MiniCPM-V only)\n`);
|
||||||
|
|
||||||
|
let passedCount = 0;
|
||||||
|
let failedCount = 0;
|
||||||
|
const processingTimes: number[] = [];
|
||||||
|
|
||||||
|
for (const testCase of testCases) {
|
||||||
|
tap.test(`should extract invoice: ${testCase.name}`, async () => {
|
||||||
|
// Load expected data
|
||||||
|
const expected: IInvoice = JSON.parse(fs.readFileSync(testCase.jsonPath, 'utf-8'));
|
||||||
|
console.log(`\n=== ${testCase.name} ===`);
|
||||||
|
console.log(`Expected: ${expected.invoice_number} | ${expected.invoice_date} | ${expected.total_amount} ${expected.currency}`);
|
||||||
|
|
||||||
|
const startTime = Date.now();
|
||||||
|
|
||||||
|
// Convert PDF to images
|
||||||
|
const images = convertPdfToImages(testCase.pdfPath);
|
||||||
|
console.log(` Pages: ${images.length}`);
|
||||||
|
|
||||||
|
// Extract with consensus voting (MiniCPM-V only)
|
||||||
|
const extracted = await extractWithConsensus(images, testCase.name);
|
||||||
|
|
||||||
|
const endTime = Date.now();
|
||||||
|
const elapsedMs = endTime - startTime;
|
||||||
|
processingTimes.push(elapsedMs);
|
||||||
|
|
||||||
|
// Compare results
|
||||||
|
const result = compareInvoice(extracted, expected);
|
||||||
|
|
||||||
|
if (result.match) {
|
||||||
|
passedCount++;
|
||||||
|
console.log(` Result: MATCH (${(elapsedMs / 1000).toFixed(1)}s)`);
|
||||||
|
} else {
|
||||||
|
failedCount++;
|
||||||
|
console.log(` Result: MISMATCH (${(elapsedMs / 1000).toFixed(1)}s)`);
|
||||||
|
result.errors.forEach((e) => console.log(` - ${e}`));
|
||||||
|
}
|
||||||
|
|
||||||
|
// Assert match
|
||||||
|
expect(result.match).toBeTrue();
|
||||||
|
});
|
||||||
|
}
|
||||||
|
|
||||||
|
tap.test('summary', async () => {
|
||||||
|
const totalInvoices = testCases.length;
|
||||||
|
const accuracy = totalInvoices > 0 ? (passedCount / totalInvoices) * 100 : 0;
|
||||||
|
const totalTimeMs = processingTimes.reduce((a, b) => a + b, 0);
|
||||||
|
const avgTimeMs = processingTimes.length > 0 ? totalTimeMs / processingTimes.length : 0;
|
||||||
|
const avgTimeSec = avgTimeMs / 1000;
|
||||||
|
const totalTimeSec = totalTimeMs / 1000;
|
||||||
|
|
||||||
|
console.log(`\n========================================`);
|
||||||
|
console.log(` Invoice Extraction Summary (MiniCPM)`);
|
||||||
|
console.log(`========================================`);
|
||||||
|
console.log(` Passed: ${passedCount}/${totalInvoices}`);
|
||||||
|
console.log(` Failed: ${failedCount}/${totalInvoices}`);
|
||||||
|
console.log(` Accuracy: ${accuracy.toFixed(1)}%`);
|
||||||
|
console.log(`----------------------------------------`);
|
||||||
|
console.log(` Total time: ${totalTimeSec.toFixed(1)}s`);
|
||||||
|
console.log(` Avg per inv: ${avgTimeSec.toFixed(1)}s`);
|
||||||
|
console.log(`========================================\n`);
|
||||||
|
});
|
||||||
|
|
||||||
|
export default tap.start();
|
||||||
393
test/test.invoices.paddleocr-vl.ts
Normal file
393
test/test.invoices.paddleocr-vl.ts
Normal file
@@ -0,0 +1,393 @@
|
|||||||
|
/**
|
||||||
|
* Invoice extraction test using PaddleOCR-VL Full Pipeline
|
||||||
|
*
|
||||||
|
* This tests the complete PaddleOCR-VL pipeline:
|
||||||
|
* 1. PP-DocLayoutV2 for layout detection
|
||||||
|
* 2. PaddleOCR-VL for recognition
|
||||||
|
* 3. Structured Markdown output
|
||||||
|
* 4. MiniCPM extracts invoice fields from structured Markdown
|
||||||
|
*
|
||||||
|
* The structured Markdown has proper tables and formatting,
|
||||||
|
* making it much easier for MiniCPM to extract invoice data.
|
||||||
|
*/
|
||||||
|
import { tap, expect } from '@git.zone/tstest/tapbundle';
|
||||||
|
import * as fs from 'fs';
|
||||||
|
import * as path from 'path';
|
||||||
|
import { execSync } from 'child_process';
|
||||||
|
import * as os from 'os';
|
||||||
|
import { ensurePaddleOcrVlFull, ensureMiniCpm } from './helpers/docker.js';
|
||||||
|
|
||||||
|
const PADDLEOCR_VL_URL = 'http://localhost:8000';
|
||||||
|
const OLLAMA_URL = 'http://localhost:11434';
|
||||||
|
const MINICPM_MODEL = 'minicpm-v:latest';
|
||||||
|
|
||||||
|
interface IInvoice {
|
||||||
|
invoice_number: string;
|
||||||
|
invoice_date: string;
|
||||||
|
vendor_name: string;
|
||||||
|
currency: string;
|
||||||
|
net_amount: number;
|
||||||
|
vat_amount: number;
|
||||||
|
total_amount: number;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Convert PDF to PNG images using ImageMagick
|
||||||
|
*/
|
||||||
|
function convertPdfToImages(pdfPath: string): string[] {
|
||||||
|
const tempDir = fs.mkdtempSync(path.join(os.tmpdir(), 'pdf-convert-'));
|
||||||
|
const outputPattern = path.join(tempDir, 'page-%d.png');
|
||||||
|
|
||||||
|
try {
|
||||||
|
execSync(
|
||||||
|
`convert -density 200 -quality 90 "${pdfPath}" -background white -alpha remove "${outputPattern}"`,
|
||||||
|
{ stdio: 'pipe' }
|
||||||
|
);
|
||||||
|
|
||||||
|
const files = fs.readdirSync(tempDir).filter((f) => f.endsWith('.png')).sort();
|
||||||
|
const images: string[] = [];
|
||||||
|
|
||||||
|
for (const file of files) {
|
||||||
|
const imagePath = path.join(tempDir, file);
|
||||||
|
const imageData = fs.readFileSync(imagePath);
|
||||||
|
images.push(imageData.toString('base64'));
|
||||||
|
}
|
||||||
|
|
||||||
|
return images;
|
||||||
|
} finally {
|
||||||
|
fs.rmSync(tempDir, { recursive: true, force: true });
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Parse document using PaddleOCR-VL Full Pipeline (returns structured Markdown)
|
||||||
|
*/
|
||||||
|
async function parseDocument(imageBase64: string): Promise<string> {
|
||||||
|
const response = await fetch(`${PADDLEOCR_VL_URL}/parse`, {
|
||||||
|
method: 'POST',
|
||||||
|
headers: { 'Content-Type': 'application/json' },
|
||||||
|
body: JSON.stringify({
|
||||||
|
image: imageBase64,
|
||||||
|
output_format: 'markdown',
|
||||||
|
}),
|
||||||
|
});
|
||||||
|
|
||||||
|
if (!response.ok) {
|
||||||
|
const text = await response.text();
|
||||||
|
throw new Error(`PaddleOCR-VL API error: ${response.status} - ${text}`);
|
||||||
|
}
|
||||||
|
|
||||||
|
const data = await response.json();
|
||||||
|
|
||||||
|
if (!data.success) {
|
||||||
|
throw new Error(`PaddleOCR-VL error: ${data.error}`);
|
||||||
|
}
|
||||||
|
|
||||||
|
return data.result?.markdown || '';
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Extract invoice fields from structured Markdown using MiniCPM with image context
|
||||||
|
*/
|
||||||
|
async function extractInvoiceFromMarkdown(markdown: string, images: string[]): Promise<IInvoice> {
|
||||||
|
// Truncate if too long
|
||||||
|
const truncated = markdown.length > 8000 ? markdown.slice(0, 8000) : markdown;
|
||||||
|
console.log(` [Extract] Processing ${truncated.length} chars of Markdown`);
|
||||||
|
|
||||||
|
const prompt = `/nothink
|
||||||
|
You are an invoice parser. Extract fields from this invoice image.
|
||||||
|
|
||||||
|
Required fields:
|
||||||
|
- invoice_number: The invoice/receipt number
|
||||||
|
- invoice_date: Date in YYYY-MM-DD format
|
||||||
|
- vendor_name: Company that issued the invoice
|
||||||
|
- currency: EUR, USD, etc.
|
||||||
|
- net_amount: Amount before tax
|
||||||
|
- vat_amount: Tax/VAT amount (0 if reverse charge)
|
||||||
|
- total_amount: Final amount due
|
||||||
|
|
||||||
|
Return ONLY a JSON object like:
|
||||||
|
{"invoice_number":"123","invoice_date":"2022-01-28","vendor_name":"Adobe","currency":"EUR","net_amount":24.99,"vat_amount":0,"total_amount":24.99}
|
||||||
|
|
||||||
|
Use null for missing strings, 0 for missing numbers. No explanation.
|
||||||
|
|
||||||
|
OCR text from the invoice (for reference):
|
||||||
|
---
|
||||||
|
${truncated}
|
||||||
|
---`;
|
||||||
|
|
||||||
|
const payload = {
|
||||||
|
model: MINICPM_MODEL,
|
||||||
|
prompt,
|
||||||
|
images, // Send the actual image to MiniCPM
|
||||||
|
stream: true,
|
||||||
|
options: {
|
||||||
|
num_predict: 2048,
|
||||||
|
temperature: 0.1,
|
||||||
|
},
|
||||||
|
};
|
||||||
|
|
||||||
|
const response = await fetch(`${OLLAMA_URL}/api/generate`, {
|
||||||
|
method: 'POST',
|
||||||
|
headers: { 'Content-Type': 'application/json' },
|
||||||
|
body: JSON.stringify(payload),
|
||||||
|
});
|
||||||
|
|
||||||
|
if (!response.ok) {
|
||||||
|
throw new Error(`Ollama API error: ${response.status}`);
|
||||||
|
}
|
||||||
|
|
||||||
|
const reader = response.body?.getReader();
|
||||||
|
if (!reader) {
|
||||||
|
throw new Error('No response body');
|
||||||
|
}
|
||||||
|
|
||||||
|
const decoder = new TextDecoder();
|
||||||
|
let fullText = '';
|
||||||
|
|
||||||
|
while (true) {
|
||||||
|
const { done, value } = await reader.read();
|
||||||
|
if (done) break;
|
||||||
|
|
||||||
|
const chunk = decoder.decode(value, { stream: true });
|
||||||
|
const lines = chunk.split('\n').filter((l) => l.trim());
|
||||||
|
|
||||||
|
for (const line of lines) {
|
||||||
|
try {
|
||||||
|
const json = JSON.parse(line);
|
||||||
|
if (json.response) {
|
||||||
|
fullText += json.response;
|
||||||
|
}
|
||||||
|
} catch {
|
||||||
|
// Skip invalid JSON lines
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Extract JSON from response
|
||||||
|
const startIdx = fullText.indexOf('{');
|
||||||
|
const endIdx = fullText.lastIndexOf('}') + 1;
|
||||||
|
|
||||||
|
if (startIdx < 0 || endIdx <= startIdx) {
|
||||||
|
throw new Error(`No JSON object found in response: ${fullText.substring(0, 200)}`);
|
||||||
|
}
|
||||||
|
|
||||||
|
const jsonStr = fullText.substring(startIdx, endIdx);
|
||||||
|
return JSON.parse(jsonStr);
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Single extraction pass: Parse with PaddleOCR-VL Full, extract with MiniCPM
|
||||||
|
*/
|
||||||
|
async function extractOnce(images: string[], passNum: number): Promise<IInvoice> {
|
||||||
|
// Parse document with full pipeline
|
||||||
|
const markdown = await parseDocument(images[0]);
|
||||||
|
console.log(` [Parse] Got ${markdown.split('\n').length} lines of Markdown`);
|
||||||
|
|
||||||
|
// Extract invoice fields from Markdown with image context
|
||||||
|
return extractInvoiceFromMarkdown(markdown, images);
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Create a hash of invoice for comparison (using key fields)
|
||||||
|
*/
|
||||||
|
function hashInvoice(invoice: IInvoice): string {
|
||||||
|
return `${invoice.invoice_number}|${invoice.invoice_date}|${invoice.total_amount.toFixed(2)}`;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Extract with consensus voting
|
||||||
|
*/
|
||||||
|
async function extractWithConsensus(images: string[], invoiceName: string, maxPasses: number = 5): Promise<IInvoice> {
|
||||||
|
const results: Array<{ invoice: IInvoice; hash: string }> = [];
|
||||||
|
const hashCounts: Map<string, number> = new Map();
|
||||||
|
|
||||||
|
const addResult = (invoice: IInvoice, passLabel: string): number => {
|
||||||
|
const hash = hashInvoice(invoice);
|
||||||
|
results.push({ invoice, hash });
|
||||||
|
hashCounts.set(hash, (hashCounts.get(hash) || 0) + 1);
|
||||||
|
console.log(` [${passLabel}] ${invoice.invoice_number} | ${invoice.invoice_date} | ${invoice.total_amount} ${invoice.currency}`);
|
||||||
|
return hashCounts.get(hash)!;
|
||||||
|
};
|
||||||
|
|
||||||
|
for (let pass = 1; pass <= maxPasses; pass++) {
|
||||||
|
try {
|
||||||
|
const invoice = await extractOnce(images, pass);
|
||||||
|
const count = addResult(invoice, `Pass ${pass}`);
|
||||||
|
|
||||||
|
if (count >= 2) {
|
||||||
|
console.log(` [Consensus] Reached after ${pass} passes`);
|
||||||
|
return invoice;
|
||||||
|
}
|
||||||
|
} catch (err) {
|
||||||
|
console.log(` [Pass ${pass}] Error: ${err}`);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// No consensus reached - return the most common result
|
||||||
|
let bestHash = '';
|
||||||
|
let bestCount = 0;
|
||||||
|
for (const [hash, count] of hashCounts) {
|
||||||
|
if (count > bestCount) {
|
||||||
|
bestCount = count;
|
||||||
|
bestHash = hash;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if (!bestHash) {
|
||||||
|
throw new Error(`No valid results for ${invoiceName}`);
|
||||||
|
}
|
||||||
|
|
||||||
|
const best = results.find((r) => r.hash === bestHash)!;
|
||||||
|
console.log(` [No consensus] Using most common result (${bestCount}/${maxPasses} passes)`);
|
||||||
|
return best.invoice;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Compare extracted invoice against expected
|
||||||
|
*/
|
||||||
|
function compareInvoice(
|
||||||
|
extracted: IInvoice,
|
||||||
|
expected: IInvoice
|
||||||
|
): { match: boolean; errors: string[] } {
|
||||||
|
const errors: string[] = [];
|
||||||
|
|
||||||
|
// Compare invoice number (normalize by removing spaces and case)
|
||||||
|
const extNum = extracted.invoice_number?.replace(/\s/g, '').toLowerCase() || '';
|
||||||
|
const expNum = expected.invoice_number?.replace(/\s/g, '').toLowerCase() || '';
|
||||||
|
if (extNum !== expNum) {
|
||||||
|
errors.push(`invoice_number: expected "${expected.invoice_number}", got "${extracted.invoice_number}"`);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Compare date
|
||||||
|
if (extracted.invoice_date !== expected.invoice_date) {
|
||||||
|
errors.push(`invoice_date: expected "${expected.invoice_date}", got "${extracted.invoice_date}"`);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Compare total amount (with tolerance)
|
||||||
|
if (Math.abs(extracted.total_amount - expected.total_amount) > 0.02) {
|
||||||
|
errors.push(`total_amount: expected ${expected.total_amount}, got ${extracted.total_amount}`);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Compare currency
|
||||||
|
if (extracted.currency?.toUpperCase() !== expected.currency?.toUpperCase()) {
|
||||||
|
errors.push(`currency: expected "${expected.currency}", got "${extracted.currency}"`);
|
||||||
|
}
|
||||||
|
|
||||||
|
return { match: errors.length === 0, errors };
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Find all test cases (PDF + JSON pairs) in .nogit/invoices/
|
||||||
|
*/
|
||||||
|
function findTestCases(): Array<{ name: string; pdfPath: string; jsonPath: string }> {
|
||||||
|
const testDir = path.join(process.cwd(), '.nogit/invoices');
|
||||||
|
if (!fs.existsSync(testDir)) {
|
||||||
|
return [];
|
||||||
|
}
|
||||||
|
|
||||||
|
const files = fs.readdirSync(testDir);
|
||||||
|
const pdfFiles = files.filter((f) => f.endsWith('.pdf'));
|
||||||
|
const testCases: Array<{ name: string; pdfPath: string; jsonPath: string }> = [];
|
||||||
|
|
||||||
|
for (const pdf of pdfFiles) {
|
||||||
|
const baseName = pdf.replace('.pdf', '');
|
||||||
|
const jsonFile = `${baseName}.json`;
|
||||||
|
if (files.includes(jsonFile)) {
|
||||||
|
testCases.push({
|
||||||
|
name: baseName,
|
||||||
|
pdfPath: path.join(testDir, pdf),
|
||||||
|
jsonPath: path.join(testDir, jsonFile),
|
||||||
|
});
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Sort alphabetically
|
||||||
|
testCases.sort((a, b) => a.name.localeCompare(b.name));
|
||||||
|
|
||||||
|
return testCases;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Tests
|
||||||
|
|
||||||
|
tap.test('setup: ensure Docker containers are running', async () => {
|
||||||
|
console.log('\n[Setup] Checking Docker containers...\n');
|
||||||
|
|
||||||
|
// Ensure PaddleOCR-VL Full Pipeline is running
|
||||||
|
const paddleOk = await ensurePaddleOcrVlFull();
|
||||||
|
expect(paddleOk).toBeTrue();
|
||||||
|
|
||||||
|
// Ensure MiniCPM is running (for field extraction from Markdown)
|
||||||
|
const minicpmOk = await ensureMiniCpm();
|
||||||
|
expect(minicpmOk).toBeTrue();
|
||||||
|
|
||||||
|
console.log('\n[Setup] All containers ready!\n');
|
||||||
|
});
|
||||||
|
|
||||||
|
// Dynamic test for each PDF/JSON pair
|
||||||
|
const testCases = findTestCases();
|
||||||
|
console.log(`\nFound ${testCases.length} invoice test cases (PaddleOCR-VL Full Pipeline)\n`);
|
||||||
|
|
||||||
|
let passedCount = 0;
|
||||||
|
let failedCount = 0;
|
||||||
|
const processingTimes: number[] = [];
|
||||||
|
|
||||||
|
for (const testCase of testCases) {
|
||||||
|
tap.test(`should extract invoice: ${testCase.name}`, async () => {
|
||||||
|
// Load expected data
|
||||||
|
const expected: IInvoice = JSON.parse(fs.readFileSync(testCase.jsonPath, 'utf-8'));
|
||||||
|
console.log(`\n=== ${testCase.name} ===`);
|
||||||
|
console.log(`Expected: ${expected.invoice_number} | ${expected.invoice_date} | ${expected.total_amount} ${expected.currency}`);
|
||||||
|
|
||||||
|
const startTime = Date.now();
|
||||||
|
|
||||||
|
// Convert PDF to images
|
||||||
|
const images = convertPdfToImages(testCase.pdfPath);
|
||||||
|
console.log(` Pages: ${images.length}`);
|
||||||
|
|
||||||
|
// Extract with consensus voting (PaddleOCR-VL Full -> MiniCPM)
|
||||||
|
const extracted = await extractWithConsensus(images, testCase.name);
|
||||||
|
|
||||||
|
const endTime = Date.now();
|
||||||
|
const elapsedMs = endTime - startTime;
|
||||||
|
processingTimes.push(elapsedMs);
|
||||||
|
|
||||||
|
// Compare results
|
||||||
|
const result = compareInvoice(extracted, expected);
|
||||||
|
|
||||||
|
if (result.match) {
|
||||||
|
passedCount++;
|
||||||
|
console.log(` Result: MATCH (${(elapsedMs / 1000).toFixed(1)}s)`);
|
||||||
|
} else {
|
||||||
|
failedCount++;
|
||||||
|
console.log(` Result: MISMATCH (${(elapsedMs / 1000).toFixed(1)}s)`);
|
||||||
|
result.errors.forEach((e) => console.log(` - ${e}`));
|
||||||
|
}
|
||||||
|
|
||||||
|
// Assert match
|
||||||
|
expect(result.match).toBeTrue();
|
||||||
|
});
|
||||||
|
}
|
||||||
|
|
||||||
|
tap.test('summary', async () => {
|
||||||
|
const totalInvoices = testCases.length;
|
||||||
|
const accuracy = totalInvoices > 0 ? (passedCount / totalInvoices) * 100 : 0;
|
||||||
|
const totalTimeMs = processingTimes.reduce((a, b) => a + b, 0);
|
||||||
|
const avgTimeMs = processingTimes.length > 0 ? totalTimeMs / processingTimes.length : 0;
|
||||||
|
const avgTimeSec = avgTimeMs / 1000;
|
||||||
|
const totalTimeSec = totalTimeMs / 1000;
|
||||||
|
|
||||||
|
console.log(`\n======================================================`);
|
||||||
|
console.log(` Invoice Extraction Summary (PaddleOCR-VL Full)`);
|
||||||
|
console.log(`======================================================`);
|
||||||
|
console.log(` Method: PaddleOCR-VL Full Pipeline -> MiniCPM`);
|
||||||
|
console.log(` Passed: ${passedCount}/${totalInvoices}`);
|
||||||
|
console.log(` Failed: ${failedCount}/${totalInvoices}`);
|
||||||
|
console.log(` Accuracy: ${accuracy.toFixed(1)}%`);
|
||||||
|
console.log(`------------------------------------------------------`);
|
||||||
|
console.log(` Total time: ${totalTimeSec.toFixed(1)}s`);
|
||||||
|
console.log(` Avg per inv: ${avgTimeSec.toFixed(1)}s`);
|
||||||
|
console.log(`======================================================\n`);
|
||||||
|
});
|
||||||
|
|
||||||
|
export default tap.start();
|
||||||
Reference in New Issue
Block a user