Compare commits
4 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
| ab288380f1 | |||
| 30c73b24c1 | |||
| 311e7a8fd4 | |||
| 80e6866442 |
90
Dockerfile_paddleocr_vl_full
Normal file
90
Dockerfile_paddleocr_vl_full
Normal file
@@ -0,0 +1,90 @@
|
||||
# PaddleOCR-VL Full Pipeline (PP-DocLayoutV2 + PaddleOCR-VL + Structured Output)
|
||||
# Self-contained GPU image with complete document parsing pipeline
|
||||
FROM nvidia/cuda:12.4.0-devel-ubuntu22.04
|
||||
|
||||
LABEL maintainer="Task Venture Capital GmbH <hello@task.vc>"
|
||||
LABEL description="PaddleOCR-VL Full Pipeline - Layout Detection + VL Recognition + JSON/Markdown Output"
|
||||
LABEL org.opencontainers.image.source="https://code.foss.global/host.today/ht-docker-ai"
|
||||
|
||||
# Environment configuration
|
||||
ENV DEBIAN_FRONTEND=noninteractive
|
||||
ENV PYTHONUNBUFFERED=1
|
||||
ENV HF_HOME=/root/.cache/huggingface
|
||||
ENV PADDLEOCR_HOME=/root/.paddleocr
|
||||
ENV SERVER_PORT=8000
|
||||
ENV SERVER_HOST=0.0.0.0
|
||||
ENV VLM_PORT=8080
|
||||
|
||||
# Set working directory
|
||||
WORKDIR /app
|
||||
|
||||
# Install system dependencies
|
||||
RUN apt-get update && apt-get install -y --no-install-recommends \
|
||||
python3.11 \
|
||||
python3.11-venv \
|
||||
python3.11-dev \
|
||||
python3-pip \
|
||||
libgl1-mesa-glx \
|
||||
libglib2.0-0 \
|
||||
libgomp1 \
|
||||
libsm6 \
|
||||
libxext6 \
|
||||
libxrender1 \
|
||||
curl \
|
||||
git \
|
||||
wget \
|
||||
&& rm -rf /var/lib/apt/lists/* \
|
||||
&& update-alternatives --install /usr/bin/python python /usr/bin/python3.11 1 \
|
||||
&& update-alternatives --install /usr/bin/python3 python3 /usr/bin/python3.11 1
|
||||
|
||||
# Create and activate virtual environment
|
||||
RUN python -m venv /opt/venv
|
||||
ENV PATH="/opt/venv/bin:$PATH"
|
||||
|
||||
# Upgrade pip
|
||||
RUN pip install --no-cache-dir --upgrade pip setuptools wheel
|
||||
|
||||
# Install PaddlePaddle GPU (CUDA 12.x)
|
||||
RUN pip install --no-cache-dir \
|
||||
paddlepaddle-gpu==3.2.1 \
|
||||
--extra-index-url https://www.paddlepaddle.org.cn/packages/stable/cu126/
|
||||
|
||||
# Install PaddleOCR with doc-parser (includes PP-DocLayoutV2)
|
||||
RUN pip install --no-cache-dir \
|
||||
"paddleocr[doc-parser]" \
|
||||
safetensors
|
||||
|
||||
# Install PyTorch with CUDA support
|
||||
RUN pip install --no-cache-dir \
|
||||
torch==2.5.1 \
|
||||
torchvision \
|
||||
--index-url https://download.pytorch.org/whl/cu124
|
||||
|
||||
# Install transformers for PaddleOCR-VL inference (no vLLM - use local inference)
|
||||
# PaddleOCR-VL requires transformers>=4.55.0 for use_kernel_forward_from_hub
|
||||
RUN pip install --no-cache-dir \
|
||||
transformers>=4.55.0 \
|
||||
accelerate \
|
||||
hf-kernels
|
||||
|
||||
# Install our API server dependencies
|
||||
RUN pip install --no-cache-dir \
|
||||
fastapi \
|
||||
uvicorn[standard] \
|
||||
python-multipart \
|
||||
httpx \
|
||||
pillow
|
||||
|
||||
# Copy server files
|
||||
COPY image_support_files/paddleocr_vl_full_server.py /app/server.py
|
||||
COPY image_support_files/paddleocr_vl_full_entrypoint.sh /usr/local/bin/entrypoint.sh
|
||||
RUN chmod +x /usr/local/bin/entrypoint.sh
|
||||
|
||||
# Expose ports (8000 = API, 8080 = internal VLM server)
|
||||
EXPOSE 8000
|
||||
|
||||
# Health check
|
||||
HEALTHCHECK --interval=30s --timeout=10s --start-period=600s --retries=3 \
|
||||
CMD curl -f http://localhost:8000/health || exit 1
|
||||
|
||||
ENTRYPOINT ["/usr/local/bin/entrypoint.sh"]
|
||||
20
changelog.md
20
changelog.md
@@ -1,5 +1,25 @@
|
||||
# Changelog
|
||||
|
||||
## 2026-01-17 - 1.7.0 - feat(tests)
|
||||
use Qwen2.5 (Ollama) for invoice extraction tests and add helpers for model management; normalize dates and coerce numeric fields
|
||||
|
||||
- Added ensureOllamaModel and ensureQwen25 test helpers to pull/check Ollama models via localhost:11434
|
||||
- Updated invoices test to use qwen2.5:7b instead of MiniCPM and removed image payload from the text-only extraction step
|
||||
- Increased Markdown truncate limit from 8000 to 12000 and reduced model num_predict from 2048 to 512
|
||||
- Rewrote extraction prompt to require strict JSON output and added post-processing to parse/convert numeric fields
|
||||
- Added normalizeDate and improved compareInvoice to normalize dates and handle numeric formatting/tolerance
|
||||
- Updated test setup to ensure Qwen2.5 is available and adjusted logging/messages to reflect the Qwen2.5-based workflow
|
||||
|
||||
## 2026-01-17 - 1.6.0 - feat(paddleocr-vl)
|
||||
add PaddleOCR-VL full pipeline Docker image and API server, plus integration tests and docker helpers
|
||||
|
||||
- Add Dockerfile_paddleocr_vl_full and entrypoint script to build a GPU-enabled image with PP-DocLayoutV2 + PaddleOCR-VL and a FastAPI server
|
||||
- Introduce image_support_files/paddleocr_vl_full_server.py implementing the full pipeline API (/parse, OpenAI-compatible /v1/chat/completions) and a /formats endpoint
|
||||
- Improve image handling: decode_image supports data URLs, HTTP(S), raw base64 and file paths; add optimize_image_resolution to auto-scale images into the recommended 1080-2048px range
|
||||
- Add test helpers (test/helpers/docker.ts) to build/start/health-check Docker images and new ensurePaddleOcrVlFull workflow
|
||||
- Add comprehensive integration tests for bank statements and invoices (MiniCPM and PaddleOCR-VL variants) and update tests to ensure required containers are running before tests
|
||||
- Switch MiniCPM model references to 'minicpm-v:latest' and increase health/timeout expectations for the full pipeline
|
||||
|
||||
## 2026-01-17 - 1.5.0 - feat(paddleocr-vl)
|
||||
add PaddleOCR-VL GPU Dockerfile, pin vllm, update CPU image deps, and improve entrypoint and tests
|
||||
|
||||
|
||||
12
image_support_files/paddleocr_vl_full_entrypoint.sh
Normal file
12
image_support_files/paddleocr_vl_full_entrypoint.sh
Normal file
@@ -0,0 +1,12 @@
|
||||
#!/bin/bash
|
||||
set -e
|
||||
|
||||
echo "Starting PaddleOCR-VL Full Pipeline Server (Transformers backend)..."
|
||||
|
||||
# Environment
|
||||
SERVER_PORT=${SERVER_PORT:-8000}
|
||||
SERVER_HOST=${SERVER_HOST:-0.0.0.0}
|
||||
|
||||
# Start our API server directly (no vLLM - uses local transformers inference)
|
||||
echo "Starting API server on port $SERVER_PORT..."
|
||||
exec python /app/server.py
|
||||
443
image_support_files/paddleocr_vl_full_server.py
Normal file
443
image_support_files/paddleocr_vl_full_server.py
Normal file
@@ -0,0 +1,443 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
PaddleOCR-VL Full Pipeline API Server (Transformers backend)
|
||||
|
||||
Provides REST API for document parsing using:
|
||||
- PP-DocLayoutV2 for layout detection
|
||||
- PaddleOCR-VL (transformers) for recognition
|
||||
- Structured JSON/Markdown output
|
||||
"""
|
||||
|
||||
import os
|
||||
import io
|
||||
import base64
|
||||
import logging
|
||||
import tempfile
|
||||
import time
|
||||
import json
|
||||
from typing import Optional, List, Union
|
||||
from pathlib import Path
|
||||
|
||||
from fastapi import FastAPI, HTTPException, UploadFile, File, Form
|
||||
from fastapi.responses import JSONResponse
|
||||
from pydantic import BaseModel
|
||||
from PIL import Image
|
||||
import torch
|
||||
|
||||
# Configure logging
|
||||
logging.basicConfig(
|
||||
level=logging.INFO,
|
||||
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
||||
)
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Environment configuration
|
||||
SERVER_HOST = os.environ.get('SERVER_HOST', '0.0.0.0')
|
||||
SERVER_PORT = int(os.environ.get('SERVER_PORT', '8000'))
|
||||
MODEL_NAME = "PaddlePaddle/PaddleOCR-VL"
|
||||
|
||||
# Device configuration
|
||||
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
logger.info(f"Using device: {DEVICE}")
|
||||
|
||||
# Task prompts
|
||||
TASK_PROMPTS = {
|
||||
"ocr": "OCR:",
|
||||
"table": "Table Recognition:",
|
||||
"formula": "Formula Recognition:",
|
||||
"chart": "Chart Recognition:",
|
||||
}
|
||||
|
||||
# Initialize FastAPI app
|
||||
app = FastAPI(
|
||||
title="PaddleOCR-VL Full Pipeline Server",
|
||||
description="Document parsing with PP-DocLayoutV2 + PaddleOCR-VL (transformers)",
|
||||
version="1.0.0"
|
||||
)
|
||||
|
||||
# Global model instances
|
||||
vl_model = None
|
||||
vl_processor = None
|
||||
layout_model = None
|
||||
|
||||
|
||||
def load_vl_model():
|
||||
"""Load the PaddleOCR-VL model for element recognition"""
|
||||
global vl_model, vl_processor
|
||||
|
||||
if vl_model is not None:
|
||||
return
|
||||
|
||||
logger.info(f"Loading PaddleOCR-VL model: {MODEL_NAME}")
|
||||
from transformers import AutoModelForCausalLM, AutoProcessor
|
||||
|
||||
vl_processor = AutoProcessor.from_pretrained(MODEL_NAME, trust_remote_code=True)
|
||||
|
||||
if DEVICE == "cuda":
|
||||
vl_model = AutoModelForCausalLM.from_pretrained(
|
||||
MODEL_NAME,
|
||||
trust_remote_code=True,
|
||||
torch_dtype=torch.bfloat16,
|
||||
).to(DEVICE).eval()
|
||||
else:
|
||||
vl_model = AutoModelForCausalLM.from_pretrained(
|
||||
MODEL_NAME,
|
||||
trust_remote_code=True,
|
||||
torch_dtype=torch.float32,
|
||||
low_cpu_mem_usage=True,
|
||||
).eval()
|
||||
|
||||
logger.info("PaddleOCR-VL model loaded successfully")
|
||||
|
||||
|
||||
def load_layout_model():
|
||||
"""Load the LayoutDetection model for layout detection"""
|
||||
global layout_model
|
||||
|
||||
if layout_model is not None:
|
||||
return
|
||||
|
||||
try:
|
||||
logger.info("Loading LayoutDetection model (PP-DocLayout_plus-L)...")
|
||||
from paddleocr import LayoutDetection
|
||||
|
||||
layout_model = LayoutDetection()
|
||||
logger.info("LayoutDetection model loaded successfully")
|
||||
except Exception as e:
|
||||
logger.warning(f"Could not load LayoutDetection: {e}")
|
||||
logger.info("Falling back to VL-only mode (no layout detection)")
|
||||
|
||||
|
||||
def recognize_element(image: Image.Image, task: str = "ocr") -> str:
|
||||
"""Recognize a single element using PaddleOCR-VL"""
|
||||
load_vl_model()
|
||||
|
||||
prompt = TASK_PROMPTS.get(task, TASK_PROMPTS["ocr"])
|
||||
|
||||
messages = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "image", "image": image},
|
||||
{"type": "text", "text": prompt},
|
||||
]
|
||||
}
|
||||
]
|
||||
|
||||
inputs = vl_processor.apply_chat_template(
|
||||
messages,
|
||||
tokenize=True,
|
||||
add_generation_prompt=True,
|
||||
return_dict=True,
|
||||
return_tensors="pt"
|
||||
)
|
||||
|
||||
if DEVICE == "cuda":
|
||||
inputs = {k: v.to(DEVICE) for k, v in inputs.items()}
|
||||
|
||||
with torch.inference_mode():
|
||||
outputs = vl_model.generate(
|
||||
**inputs,
|
||||
max_new_tokens=4096,
|
||||
do_sample=False,
|
||||
use_cache=True
|
||||
)
|
||||
|
||||
response = vl_processor.batch_decode(outputs, skip_special_tokens=True)[0]
|
||||
|
||||
# Extract only the assistant's response content
|
||||
# The response format is: "User: <prompt>\nAssistant: <content>"
|
||||
# We want to extract just the content after "Assistant:"
|
||||
if "Assistant:" in response:
|
||||
parts = response.split("Assistant:")
|
||||
if len(parts) > 1:
|
||||
response = parts[-1].strip()
|
||||
elif "assistant:" in response.lower():
|
||||
# Case-insensitive fallback
|
||||
import re
|
||||
match = re.split(r'[Aa]ssistant:', response)
|
||||
if len(match) > 1:
|
||||
response = match[-1].strip()
|
||||
|
||||
return response
|
||||
|
||||
|
||||
def detect_layout(image: Image.Image) -> List[dict]:
|
||||
"""Detect layout regions in the image"""
|
||||
load_layout_model()
|
||||
|
||||
if layout_model is None:
|
||||
# No layout model - return a single region covering the whole image
|
||||
return [{
|
||||
"type": "text",
|
||||
"bbox": [0, 0, image.width, image.height],
|
||||
"score": 1.0
|
||||
}]
|
||||
|
||||
# Save image to temp file
|
||||
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp:
|
||||
image.save(tmp.name, "PNG")
|
||||
tmp_path = tmp.name
|
||||
|
||||
try:
|
||||
results = layout_model.predict(tmp_path)
|
||||
regions = []
|
||||
|
||||
for res in results:
|
||||
# LayoutDetection returns boxes in 'boxes' key
|
||||
for box in res.get("boxes", []):
|
||||
coord = box.get("coordinate", [0, 0, image.width, image.height])
|
||||
# Convert numpy floats to regular floats
|
||||
bbox = [float(c) for c in coord]
|
||||
regions.append({
|
||||
"type": box.get("label", "text"),
|
||||
"bbox": bbox,
|
||||
"score": float(box.get("score", 1.0))
|
||||
})
|
||||
|
||||
# Sort regions by vertical position (top to bottom)
|
||||
regions.sort(key=lambda r: r["bbox"][1])
|
||||
|
||||
return regions if regions else [{
|
||||
"type": "text",
|
||||
"bbox": [0, 0, image.width, image.height],
|
||||
"score": 1.0
|
||||
}]
|
||||
|
||||
finally:
|
||||
os.unlink(tmp_path)
|
||||
|
||||
|
||||
def process_document(image: Image.Image) -> dict:
|
||||
"""Process a document through the full pipeline"""
|
||||
logger.info(f"Processing document: {image.size}")
|
||||
|
||||
# Step 1: Detect layout
|
||||
regions = detect_layout(image)
|
||||
logger.info(f"Detected {len(regions)} layout regions")
|
||||
|
||||
# Step 2: Recognize each region
|
||||
blocks = []
|
||||
for i, region in enumerate(regions):
|
||||
region_type = region["type"].lower()
|
||||
bbox = region["bbox"]
|
||||
|
||||
# Crop region from image
|
||||
x1, y1, x2, y2 = [int(c) for c in bbox]
|
||||
region_image = image.crop((x1, y1, x2, y2))
|
||||
|
||||
# Determine task based on region type
|
||||
if "table" in region_type:
|
||||
task = "table"
|
||||
elif "formula" in region_type or "math" in region_type:
|
||||
task = "formula"
|
||||
elif "chart" in region_type or "figure" in region_type:
|
||||
task = "chart"
|
||||
else:
|
||||
task = "ocr"
|
||||
|
||||
# Recognize the region
|
||||
try:
|
||||
content = recognize_element(region_image, task)
|
||||
blocks.append({
|
||||
"index": i,
|
||||
"type": region_type,
|
||||
"bbox": bbox,
|
||||
"content": content,
|
||||
"task": task
|
||||
})
|
||||
logger.info(f" Region {i} ({region_type}): {len(content)} chars")
|
||||
except Exception as e:
|
||||
logger.error(f" Region {i} error: {e}")
|
||||
blocks.append({
|
||||
"index": i,
|
||||
"type": region_type,
|
||||
"bbox": bbox,
|
||||
"content": "",
|
||||
"error": str(e)
|
||||
})
|
||||
|
||||
return {"blocks": blocks, "image_size": list(image.size)}
|
||||
|
||||
|
||||
def result_to_markdown(result: dict) -> str:
|
||||
"""Convert result to Markdown format"""
|
||||
lines = []
|
||||
|
||||
for block in result.get("blocks", []):
|
||||
block_type = block.get("type", "text")
|
||||
content = block.get("content", "")
|
||||
|
||||
if "table" in block_type.lower():
|
||||
lines.append(f"\n{content}\n")
|
||||
elif "formula" in block_type.lower():
|
||||
lines.append(f"\n$$\n{content}\n$$\n")
|
||||
else:
|
||||
lines.append(content)
|
||||
|
||||
return "\n\n".join(lines)
|
||||
|
||||
|
||||
# Request/Response models
|
||||
class ParseRequest(BaseModel):
|
||||
image: str # base64 encoded image
|
||||
output_format: Optional[str] = "json"
|
||||
|
||||
|
||||
class ParseResponse(BaseModel):
|
||||
success: bool
|
||||
format: str
|
||||
result: Union[dict, str]
|
||||
processing_time: float
|
||||
error: Optional[str] = None
|
||||
|
||||
|
||||
def decode_image(image_source: str) -> Image.Image:
|
||||
"""Decode image from base64 or data URL"""
|
||||
if image_source.startswith("data:"):
|
||||
header, data = image_source.split(",", 1)
|
||||
image_data = base64.b64decode(data)
|
||||
else:
|
||||
image_data = base64.b64decode(image_source)
|
||||
|
||||
return Image.open(io.BytesIO(image_data)).convert("RGB")
|
||||
|
||||
|
||||
@app.on_event("startup")
|
||||
async def startup_event():
|
||||
"""Pre-load models on startup"""
|
||||
logger.info("Starting PaddleOCR-VL Full Pipeline Server...")
|
||||
try:
|
||||
load_vl_model()
|
||||
load_layout_model()
|
||||
logger.info("Models loaded successfully")
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to pre-load models: {e}")
|
||||
|
||||
|
||||
@app.get("/health")
|
||||
async def health_check():
|
||||
"""Health check endpoint"""
|
||||
return {
|
||||
"status": "healthy" if vl_model is not None else "loading",
|
||||
"service": "PaddleOCR-VL Full Pipeline (Transformers)",
|
||||
"device": DEVICE,
|
||||
"vl_model_loaded": vl_model is not None,
|
||||
"layout_model_loaded": layout_model is not None
|
||||
}
|
||||
|
||||
|
||||
@app.get("/formats")
|
||||
async def supported_formats():
|
||||
"""List supported output formats"""
|
||||
return {
|
||||
"output_formats": ["json", "markdown"],
|
||||
"image_formats": ["PNG", "JPEG", "WebP", "BMP", "GIF", "TIFF"],
|
||||
"capabilities": [
|
||||
"Layout detection (PP-DocLayoutV2)",
|
||||
"Text recognition (OCR)",
|
||||
"Table recognition",
|
||||
"Formula recognition (LaTeX)",
|
||||
"Chart recognition",
|
||||
"Multi-language support (109 languages)"
|
||||
]
|
||||
}
|
||||
|
||||
|
||||
@app.post("/parse", response_model=ParseResponse)
|
||||
async def parse_document_endpoint(request: ParseRequest):
|
||||
"""Parse a document image and return structured output"""
|
||||
try:
|
||||
start_time = time.time()
|
||||
|
||||
image = decode_image(request.image)
|
||||
result = process_document(image)
|
||||
|
||||
if request.output_format == "markdown":
|
||||
markdown = result_to_markdown(result)
|
||||
output = {"markdown": markdown}
|
||||
else:
|
||||
output = result
|
||||
|
||||
elapsed = time.time() - start_time
|
||||
logger.info(f"Processing complete in {elapsed:.2f}s")
|
||||
|
||||
return ParseResponse(
|
||||
success=True,
|
||||
format=request.output_format,
|
||||
result=output,
|
||||
processing_time=elapsed
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error processing document: {e}", exc_info=True)
|
||||
return ParseResponse(
|
||||
success=False,
|
||||
format=request.output_format,
|
||||
result={},
|
||||
processing_time=0,
|
||||
error=str(e)
|
||||
)
|
||||
|
||||
|
||||
@app.post("/v1/chat/completions")
|
||||
async def chat_completions(request: dict):
|
||||
"""OpenAI-compatible chat completions endpoint"""
|
||||
try:
|
||||
messages = request.get("messages", [])
|
||||
output_format = request.get("output_format", "json")
|
||||
|
||||
# Find user message with image
|
||||
image = None
|
||||
for msg in reversed(messages):
|
||||
if msg.get("role") == "user":
|
||||
content = msg.get("content", [])
|
||||
if isinstance(content, list):
|
||||
for item in content:
|
||||
if item.get("type") == "image_url":
|
||||
url = item.get("image_url", {}).get("url", "")
|
||||
image = decode_image(url)
|
||||
break
|
||||
break
|
||||
|
||||
if image is None:
|
||||
raise HTTPException(status_code=400, detail="No image provided")
|
||||
|
||||
start_time = time.time()
|
||||
result = process_document(image)
|
||||
|
||||
if output_format == "markdown":
|
||||
content = result_to_markdown(result)
|
||||
else:
|
||||
content = json.dumps(result, ensure_ascii=False, indent=2)
|
||||
|
||||
elapsed = time.time() - start_time
|
||||
|
||||
return {
|
||||
"id": f"chatcmpl-{int(time.time()*1000)}",
|
||||
"object": "chat.completion",
|
||||
"created": int(time.time()),
|
||||
"model": "paddleocr-vl-full",
|
||||
"choices": [{
|
||||
"index": 0,
|
||||
"message": {"role": "assistant", "content": content},
|
||||
"finish_reason": "stop"
|
||||
}],
|
||||
"usage": {
|
||||
"prompt_tokens": 100,
|
||||
"completion_tokens": len(content) // 4,
|
||||
"total_tokens": 100 + len(content) // 4
|
||||
},
|
||||
"processing_time": elapsed
|
||||
}
|
||||
|
||||
except HTTPException:
|
||||
raise
|
||||
except Exception as e:
|
||||
logger.error(f"Error in chat completions: {e}", exc_info=True)
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import uvicorn
|
||||
uvicorn.run(app, host=SERVER_HOST, port=SERVER_PORT)
|
||||
@@ -136,27 +136,82 @@ def load_model():
|
||||
logger.info("PaddleOCR-VL model loaded successfully")
|
||||
|
||||
|
||||
def decode_image(image_source: str) -> Image.Image:
|
||||
"""Decode image from URL or base64"""
|
||||
def optimize_image_resolution(image: Image.Image, max_size: int = 2048, min_size: int = 1080) -> Image.Image:
|
||||
"""
|
||||
Optimize image resolution for PaddleOCR-VL.
|
||||
|
||||
Best results are achieved with images in the 1080p-2K range.
|
||||
- Images larger than max_size are scaled down
|
||||
- Very small images are scaled up to min_size
|
||||
"""
|
||||
width, height = image.size
|
||||
max_dim = max(width, height)
|
||||
min_dim = min(width, height)
|
||||
|
||||
# Scale down if too large (4K+ images often miss text)
|
||||
if max_dim > max_size:
|
||||
scale = max_size / max_dim
|
||||
new_width = int(width * scale)
|
||||
new_height = int(height * scale)
|
||||
logger.info(f"Scaling down image from {width}x{height} to {new_width}x{new_height}")
|
||||
image = image.resize((new_width, new_height), Image.Resampling.LANCZOS)
|
||||
# Scale up if too small
|
||||
elif max_dim < min_size and min_dim < min_size:
|
||||
scale = min_size / max_dim
|
||||
new_width = int(width * scale)
|
||||
new_height = int(height * scale)
|
||||
logger.info(f"Scaling up image from {width}x{height} to {new_width}x{new_height}")
|
||||
image = image.resize((new_width, new_height), Image.Resampling.LANCZOS)
|
||||
else:
|
||||
logger.info(f"Image size {width}x{height} is optimal, no scaling needed")
|
||||
|
||||
return image
|
||||
|
||||
|
||||
def decode_image(image_source: str, optimize: bool = True) -> Image.Image:
|
||||
"""
|
||||
Decode image from various sources.
|
||||
|
||||
Supported formats:
|
||||
- Base64 data URL: data:image/png;base64,... or data:image/jpeg;base64,...
|
||||
- HTTP/HTTPS URL: https://example.com/image.png
|
||||
- Raw base64 string
|
||||
- Local file path
|
||||
|
||||
Supported image types: PNG, JPEG, WebP, BMP, GIF, TIFF
|
||||
"""
|
||||
image = None
|
||||
|
||||
if image_source.startswith("data:"):
|
||||
# Base64 encoded image
|
||||
# Base64 encoded image with MIME type header
|
||||
# Supports: data:image/png;base64,... data:image/jpeg;base64,... etc.
|
||||
header, data = image_source.split(",", 1)
|
||||
image_data = base64.b64decode(data)
|
||||
return Image.open(io.BytesIO(image_data)).convert("RGB")
|
||||
image = Image.open(io.BytesIO(image_data)).convert("RGB")
|
||||
logger.debug(f"Decoded base64 image with header: {header}")
|
||||
elif image_source.startswith("http://") or image_source.startswith("https://"):
|
||||
# URL - fetch image
|
||||
import httpx
|
||||
response = httpx.get(image_source, timeout=30.0)
|
||||
response.raise_for_status()
|
||||
return Image.open(io.BytesIO(response.content)).convert("RGB")
|
||||
image = Image.open(io.BytesIO(response.content)).convert("RGB")
|
||||
logger.debug(f"Fetched image from URL: {image_source[:50]}...")
|
||||
else:
|
||||
# Assume it's a file path or raw base64
|
||||
try:
|
||||
image_data = base64.b64decode(image_source)
|
||||
return Image.open(io.BytesIO(image_data)).convert("RGB")
|
||||
image = Image.open(io.BytesIO(image_data)).convert("RGB")
|
||||
logger.debug("Decoded raw base64 image")
|
||||
except:
|
||||
# Try as file path
|
||||
return Image.open(image_source).convert("RGB")
|
||||
image = Image.open(image_source).convert("RGB")
|
||||
logger.debug(f"Loaded image from file: {image_source}")
|
||||
|
||||
# Optimize resolution for best OCR results
|
||||
if optimize:
|
||||
image = optimize_image_resolution(image)
|
||||
|
||||
return image
|
||||
|
||||
|
||||
def extract_image_and_text(content: Union[str, List[ContentItem]]) -> tuple:
|
||||
@@ -242,6 +297,45 @@ async def health_check():
|
||||
)
|
||||
|
||||
|
||||
@app.get("/formats")
|
||||
async def supported_formats():
|
||||
"""List supported image formats and input methods"""
|
||||
return {
|
||||
"image_formats": {
|
||||
"supported": ["PNG", "JPEG", "WebP", "BMP", "GIF", "TIFF"],
|
||||
"recommended": ["PNG", "JPEG"],
|
||||
"mime_types": [
|
||||
"image/png",
|
||||
"image/jpeg",
|
||||
"image/webp",
|
||||
"image/bmp",
|
||||
"image/gif",
|
||||
"image/tiff"
|
||||
]
|
||||
},
|
||||
"input_methods": {
|
||||
"base64_data_url": {
|
||||
"description": "Base64 encoded image with MIME type header",
|
||||
"example": "..."
|
||||
},
|
||||
"http_url": {
|
||||
"description": "Direct HTTP/HTTPS URL to image",
|
||||
"example": "https://example.com/image.png"
|
||||
},
|
||||
"raw_base64": {
|
||||
"description": "Raw base64 string without header",
|
||||
"example": "iVBORw0KGgo..."
|
||||
}
|
||||
},
|
||||
"resolution": {
|
||||
"optimal_range": "1080p to 2K (1080-2048 pixels on longest side)",
|
||||
"auto_scaling": True,
|
||||
"note": "Images are automatically scaled to optimal range. 4K+ images are scaled down for better accuracy."
|
||||
},
|
||||
"task_prompts": TASK_PROMPTS
|
||||
}
|
||||
|
||||
|
||||
@app.get("/v1/models")
|
||||
async def list_models():
|
||||
"""List available models (OpenAI-compatible)"""
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "@host.today/ht-docker-ai",
|
||||
"version": "1.5.0",
|
||||
"version": "1.7.0",
|
||||
"type": "module",
|
||||
"private": false,
|
||||
"description": "Docker images for AI vision-language models including MiniCPM-V 4.5",
|
||||
|
||||
360
test/helpers/docker.ts
Normal file
360
test/helpers/docker.ts
Normal file
@@ -0,0 +1,360 @@
|
||||
import { execSync } from 'child_process';
|
||||
|
||||
// Project container names (only manage these)
|
||||
const PROJECT_CONTAINERS = [
|
||||
'paddleocr-vl-test',
|
||||
'paddleocr-vl-gpu-test',
|
||||
'paddleocr-vl-cpu-test',
|
||||
'paddleocr-vl-full-test',
|
||||
'minicpm-test',
|
||||
];
|
||||
|
||||
// Image configurations
|
||||
export interface IImageConfig {
|
||||
name: string;
|
||||
dockerfile: string;
|
||||
buildContext: string;
|
||||
containerName: string;
|
||||
ports: string[];
|
||||
volumes?: string[];
|
||||
gpus?: boolean;
|
||||
healthEndpoint?: string;
|
||||
healthTimeout?: number;
|
||||
}
|
||||
|
||||
export const IMAGES = {
|
||||
paddleocrVlGpu: {
|
||||
name: 'paddleocr-vl-gpu',
|
||||
dockerfile: 'Dockerfile_paddleocr_vl_gpu',
|
||||
buildContext: '.',
|
||||
containerName: 'paddleocr-vl-test',
|
||||
ports: ['8000:8000'],
|
||||
volumes: ['ht-huggingface-cache:/root/.cache/huggingface'],
|
||||
gpus: true,
|
||||
healthEndpoint: 'http://localhost:8000/health',
|
||||
healthTimeout: 300000, // 5 minutes for model loading
|
||||
} as IImageConfig,
|
||||
|
||||
paddleocrVlCpu: {
|
||||
name: 'paddleocr-vl-cpu',
|
||||
dockerfile: 'Dockerfile_paddleocr_vl_cpu',
|
||||
buildContext: '.',
|
||||
containerName: 'paddleocr-vl-test',
|
||||
ports: ['8000:8000'],
|
||||
volumes: ['ht-huggingface-cache:/root/.cache/huggingface'],
|
||||
gpus: false,
|
||||
healthEndpoint: 'http://localhost:8000/health',
|
||||
healthTimeout: 300000,
|
||||
} as IImageConfig,
|
||||
|
||||
minicpm: {
|
||||
name: 'minicpm45v',
|
||||
dockerfile: 'Dockerfile_minicpm45v',
|
||||
buildContext: '.',
|
||||
containerName: 'minicpm-test',
|
||||
ports: ['11434:11434'],
|
||||
volumes: ['ht-ollama-models:/root/.ollama'],
|
||||
gpus: true,
|
||||
healthEndpoint: 'http://localhost:11434/api/tags',
|
||||
healthTimeout: 120000,
|
||||
} as IImageConfig,
|
||||
|
||||
// Full PaddleOCR-VL pipeline with PP-DocLayoutV2 + structured JSON output
|
||||
paddleocrVlFull: {
|
||||
name: 'paddleocr-vl-full',
|
||||
dockerfile: 'Dockerfile_paddleocr_vl_full',
|
||||
buildContext: '.',
|
||||
containerName: 'paddleocr-vl-full-test',
|
||||
ports: ['8000:8000'],
|
||||
volumes: [
|
||||
'ht-huggingface-cache:/root/.cache/huggingface',
|
||||
'ht-paddleocr-cache:/root/.paddleocr',
|
||||
],
|
||||
gpus: true,
|
||||
healthEndpoint: 'http://localhost:8000/health',
|
||||
healthTimeout: 600000, // 10 minutes for model loading (vLLM + PP-DocLayoutV2)
|
||||
} as IImageConfig,
|
||||
};
|
||||
|
||||
/**
|
||||
* Execute a shell command and return output
|
||||
*/
|
||||
function exec(command: string, silent = false): string {
|
||||
try {
|
||||
return execSync(command, {
|
||||
encoding: 'utf-8',
|
||||
stdio: silent ? 'pipe' : 'inherit',
|
||||
});
|
||||
} catch (err: unknown) {
|
||||
if (silent) return '';
|
||||
throw err;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Check if a Docker image exists locally
|
||||
*/
|
||||
export function imageExists(imageName: string): boolean {
|
||||
const result = exec(`docker images -q ${imageName}`, true);
|
||||
return result.trim().length > 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* Check if a container is running
|
||||
*/
|
||||
export function isContainerRunning(containerName: string): boolean {
|
||||
const result = exec(`docker ps --filter "name=^${containerName}$" --format "{{.Names}}"`, true);
|
||||
return result.trim() === containerName;
|
||||
}
|
||||
|
||||
/**
|
||||
* Check if a container exists (running or stopped)
|
||||
*/
|
||||
export function containerExists(containerName: string): boolean {
|
||||
const result = exec(`docker ps -a --filter "name=^${containerName}$" --format "{{.Names}}"`, true);
|
||||
return result.trim() === containerName;
|
||||
}
|
||||
|
||||
/**
|
||||
* Stop and remove a container
|
||||
*/
|
||||
export function removeContainer(containerName: string): void {
|
||||
if (containerExists(containerName)) {
|
||||
console.log(`[Docker] Removing container: ${containerName}`);
|
||||
exec(`docker rm -f ${containerName}`, true);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Stop all project containers that conflict with the required one
|
||||
*/
|
||||
export function stopConflictingContainers(requiredContainer: string, requiredPort: string): void {
|
||||
// Stop project containers using the same port
|
||||
for (const container of PROJECT_CONTAINERS) {
|
||||
if (container === requiredContainer) continue;
|
||||
|
||||
if (isContainerRunning(container)) {
|
||||
// Check if this container uses the same port
|
||||
const ports = exec(`docker port ${container} 2>/dev/null || true`, true);
|
||||
if (ports.includes(requiredPort.split(':')[0])) {
|
||||
console.log(`[Docker] Stopping conflicting container: ${container}`);
|
||||
exec(`docker stop ${container}`, true);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Build a Docker image
|
||||
*/
|
||||
export function buildImage(config: IImageConfig): void {
|
||||
console.log(`[Docker] Building image: ${config.name}`);
|
||||
const cmd = `docker build --load -f ${config.dockerfile} -t ${config.name} ${config.buildContext}`;
|
||||
exec(cmd);
|
||||
}
|
||||
|
||||
/**
|
||||
* Start a container from an image
|
||||
*/
|
||||
export function startContainer(config: IImageConfig): void {
|
||||
// Remove existing container if it exists
|
||||
removeContainer(config.containerName);
|
||||
|
||||
console.log(`[Docker] Starting container: ${config.containerName}`);
|
||||
|
||||
const portArgs = config.ports.map((p) => `-p ${p}`).join(' ');
|
||||
const volumeArgs = config.volumes?.map((v) => `-v ${v}`).join(' ') || '';
|
||||
const gpuArgs = config.gpus ? '--gpus all' : '';
|
||||
|
||||
const cmd = `docker run -d --name ${config.containerName} ${gpuArgs} ${portArgs} ${volumeArgs} ${config.name}`;
|
||||
exec(cmd);
|
||||
}
|
||||
|
||||
/**
|
||||
* Wait for a container to become healthy
|
||||
*/
|
||||
export async function waitForHealth(
|
||||
endpoint: string,
|
||||
timeoutMs: number = 120000,
|
||||
intervalMs: number = 5000
|
||||
): Promise<boolean> {
|
||||
const startTime = Date.now();
|
||||
console.log(`[Docker] Waiting for health: ${endpoint}`);
|
||||
|
||||
while (Date.now() - startTime < timeoutMs) {
|
||||
try {
|
||||
const response = await fetch(endpoint, {
|
||||
method: 'GET',
|
||||
signal: AbortSignal.timeout(5000),
|
||||
});
|
||||
if (response.ok) {
|
||||
console.log(`[Docker] Service healthy!`);
|
||||
return true;
|
||||
}
|
||||
} catch {
|
||||
// Service not ready yet
|
||||
}
|
||||
|
||||
const elapsed = Math.round((Date.now() - startTime) / 1000);
|
||||
console.log(`[Docker] Waiting... (${elapsed}s)`);
|
||||
await new Promise((resolve) => setTimeout(resolve, intervalMs));
|
||||
}
|
||||
|
||||
console.log(`[Docker] Health check timeout after ${timeoutMs / 1000}s`);
|
||||
return false;
|
||||
}
|
||||
|
||||
/**
|
||||
* Ensure a service is running and healthy
|
||||
* - Builds image if missing
|
||||
* - Stops conflicting project containers
|
||||
* - Starts container if not running
|
||||
* - Waits for health check
|
||||
*/
|
||||
export async function ensureService(config: IImageConfig): Promise<boolean> {
|
||||
console.log(`\n[Docker] Ensuring service: ${config.name}`);
|
||||
|
||||
// Build image if it doesn't exist
|
||||
if (!imageExists(config.name)) {
|
||||
console.log(`[Docker] Image not found, building...`);
|
||||
buildImage(config);
|
||||
}
|
||||
|
||||
// Stop conflicting containers on the same port
|
||||
const mainPort = config.ports[0];
|
||||
stopConflictingContainers(config.containerName, mainPort);
|
||||
|
||||
// Start container if not running
|
||||
if (!isContainerRunning(config.containerName)) {
|
||||
startContainer(config);
|
||||
} else {
|
||||
console.log(`[Docker] Container already running: ${config.containerName}`);
|
||||
}
|
||||
|
||||
// Wait for health
|
||||
if (config.healthEndpoint) {
|
||||
return waitForHealth(config.healthEndpoint, config.healthTimeout);
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/**
|
||||
* Ensure PaddleOCR-VL GPU service is running
|
||||
*/
|
||||
export async function ensurePaddleOcrVlGpu(): Promise<boolean> {
|
||||
return ensureService(IMAGES.paddleocrVlGpu);
|
||||
}
|
||||
|
||||
/**
|
||||
* Ensure PaddleOCR-VL CPU service is running
|
||||
*/
|
||||
export async function ensurePaddleOcrVlCpu(): Promise<boolean> {
|
||||
return ensureService(IMAGES.paddleocrVlCpu);
|
||||
}
|
||||
|
||||
/**
|
||||
* Ensure MiniCPM service is running
|
||||
*/
|
||||
export async function ensureMiniCpm(): Promise<boolean> {
|
||||
return ensureService(IMAGES.minicpm);
|
||||
}
|
||||
|
||||
/**
|
||||
* Check if GPU is available
|
||||
*/
|
||||
export function isGpuAvailable(): boolean {
|
||||
try {
|
||||
const result = exec('nvidia-smi --query-gpu=name --format=csv,noheader 2>/dev/null', true);
|
||||
return result.trim().length > 0;
|
||||
} catch {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Ensure PaddleOCR-VL service (auto-detect GPU/CPU)
|
||||
*/
|
||||
export async function ensurePaddleOcrVl(): Promise<boolean> {
|
||||
if (isGpuAvailable()) {
|
||||
console.log('[Docker] GPU detected, using GPU image');
|
||||
return ensurePaddleOcrVlGpu();
|
||||
} else {
|
||||
console.log('[Docker] No GPU detected, using CPU image');
|
||||
return ensurePaddleOcrVlCpu();
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Ensure PaddleOCR-VL Full Pipeline service (PP-DocLayoutV2 + structured output)
|
||||
* This is the recommended service for production use - outputs structured JSON/Markdown
|
||||
*/
|
||||
export async function ensurePaddleOcrVlFull(): Promise<boolean> {
|
||||
if (!isGpuAvailable()) {
|
||||
console.log('[Docker] WARNING: Full pipeline requires GPU, but none detected');
|
||||
}
|
||||
return ensureService(IMAGES.paddleocrVlFull);
|
||||
}
|
||||
|
||||
/**
|
||||
* Ensure an Ollama model is pulled and available
|
||||
* Uses the MiniCPM container (which runs Ollama) to pull the model
|
||||
*/
|
||||
export async function ensureOllamaModel(modelName: string): Promise<boolean> {
|
||||
const OLLAMA_URL = 'http://localhost:11434';
|
||||
|
||||
console.log(`\n[Ollama] Ensuring model: ${modelName}`);
|
||||
|
||||
// Check if model exists
|
||||
try {
|
||||
const response = await fetch(`${OLLAMA_URL}/api/tags`);
|
||||
if (response.ok) {
|
||||
const data = await response.json();
|
||||
const models = data.models || [];
|
||||
const exists = models.some((m: { name: string }) =>
|
||||
m.name === modelName || m.name.startsWith(modelName.split(':')[0])
|
||||
);
|
||||
|
||||
if (exists) {
|
||||
console.log(`[Ollama] Model already available: ${modelName}`);
|
||||
return true;
|
||||
}
|
||||
}
|
||||
} catch {
|
||||
console.log(`[Ollama] Cannot check models, Ollama may not be running`);
|
||||
return false;
|
||||
}
|
||||
|
||||
// Pull the model
|
||||
console.log(`[Ollama] Pulling model: ${modelName} (this may take a while)...`);
|
||||
try {
|
||||
const response = await fetch(`${OLLAMA_URL}/api/pull`, {
|
||||
method: 'POST',
|
||||
headers: { 'Content-Type': 'application/json' },
|
||||
body: JSON.stringify({ name: modelName, stream: false }),
|
||||
});
|
||||
|
||||
if (response.ok) {
|
||||
console.log(`[Ollama] Model pulled successfully: ${modelName}`);
|
||||
return true;
|
||||
} else {
|
||||
console.log(`[Ollama] Failed to pull model: ${response.status}`);
|
||||
return false;
|
||||
}
|
||||
} catch (err) {
|
||||
console.log(`[Ollama] Error pulling model: ${err}`);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Ensure Qwen2.5 7B model is available (for text-only JSON extraction)
|
||||
*/
|
||||
export async function ensureQwen25(): Promise<boolean> {
|
||||
// First ensure the Ollama service (MiniCPM container) is running
|
||||
const ollamaOk = await ensureMiniCpm();
|
||||
if (!ollamaOk) return false;
|
||||
|
||||
// Then ensure the Qwen2.5 model is pulled
|
||||
return ensureOllamaModel('qwen2.5:7b');
|
||||
}
|
||||
@@ -1,15 +1,23 @@
|
||||
/**
|
||||
* Bank statement extraction test using MiniCPM-V (visual) + PaddleOCR-VL (table recognition)
|
||||
*
|
||||
* This is the combined/dual-VLM approach that uses both models for consensus:
|
||||
* - MiniCPM-V for visual extraction
|
||||
* - PaddleOCR-VL for table recognition
|
||||
*/
|
||||
import { tap, expect } from '@git.zone/tstest/tapbundle';
|
||||
import * as fs from 'fs';
|
||||
import * as path from 'path';
|
||||
import { execSync } from 'child_process';
|
||||
import * as os from 'os';
|
||||
import { ensurePaddleOcrVl, ensureMiniCpm } from './helpers/docker.js';
|
||||
|
||||
// Service URLs
|
||||
const OLLAMA_URL = 'http://localhost:11434';
|
||||
const PADDLEOCR_VL_URL = 'http://localhost:8000';
|
||||
|
||||
// Models
|
||||
const MINICPM_MODEL = 'openbmb/minicpm-v4.5:q8_0';
|
||||
const MINICPM_MODEL = 'minicpm-v:latest';
|
||||
const PADDLEOCR_VL_MODEL = 'paddleocr-vl';
|
||||
|
||||
// Prompt for MiniCPM-V visual extraction
|
||||
@@ -477,11 +485,18 @@ function findTestCases(): Array<{ name: string; pdfPath: string; jsonPath: strin
|
||||
|
||||
// Tests
|
||||
|
||||
tap.test('should connect to Ollama API', async () => {
|
||||
const response = await fetch(`${OLLAMA_URL}/api/tags`);
|
||||
expect(response.ok).toBeTrue();
|
||||
const data = await response.json();
|
||||
expect(data.models).toBeArray();
|
||||
tap.test('setup: ensure Docker containers are running', async () => {
|
||||
console.log('\n[Setup] Checking Docker containers...\n');
|
||||
|
||||
// Ensure PaddleOCR-VL is running (auto-detects GPU/CPU)
|
||||
const paddleOk = await ensurePaddleOcrVl();
|
||||
expect(paddleOk).toBeTrue();
|
||||
|
||||
// Ensure MiniCPM is running
|
||||
const minicpmOk = await ensureMiniCpm();
|
||||
expect(minicpmOk).toBeTrue();
|
||||
|
||||
console.log('\n[Setup] All containers ready!\n');
|
||||
});
|
||||
|
||||
tap.test('should have MiniCPM-V 4.5 model loaded', async () => {
|
||||
@@ -494,8 +509,7 @@ tap.test('should have MiniCPM-V 4.5 model loaded', async () => {
|
||||
tap.test('should check PaddleOCR-VL availability', async () => {
|
||||
const available = await isPaddleOCRVLAvailable();
|
||||
console.log(`PaddleOCR-VL available: ${available}`);
|
||||
// This test passes regardless - PaddleOCR-VL is optional
|
||||
expect(true).toBeTrue();
|
||||
expect(available).toBeTrue();
|
||||
});
|
||||
|
||||
// Dynamic test for each PDF/JSON pair
|
||||
|
||||
334
test/test.bankstatements.minicpm.ts
Normal file
334
test/test.bankstatements.minicpm.ts
Normal file
@@ -0,0 +1,334 @@
|
||||
/**
|
||||
* Bank statement extraction test using MiniCPM-V only (visual extraction)
|
||||
*
|
||||
* This tests MiniCPM-V's ability to extract bank transactions directly from images
|
||||
* without any OCR augmentation.
|
||||
*/
|
||||
import { tap, expect } from '@git.zone/tstest/tapbundle';
|
||||
import * as fs from 'fs';
|
||||
import * as path from 'path';
|
||||
import { execSync } from 'child_process';
|
||||
import * as os from 'os';
|
||||
import { ensureMiniCpm } from './helpers/docker.js';
|
||||
|
||||
// Service URL
|
||||
const OLLAMA_URL = 'http://localhost:11434';
|
||||
|
||||
// Model
|
||||
const MINICPM_MODEL = 'minicpm-v:latest';
|
||||
|
||||
// Prompt for MiniCPM-V visual extraction
|
||||
const MINICPM_EXTRACT_PROMPT = `/nothink
|
||||
You are a bank statement parser. Extract EVERY transaction from the table.
|
||||
|
||||
Read the Amount column carefully:
|
||||
- "- 21,47 €" means DEBIT, output as: -21.47
|
||||
- "+ 1.000,00 €" means CREDIT, output as: 1000.00
|
||||
- European format: comma = decimal point
|
||||
|
||||
For each row output: {"date":"YYYY-MM-DD","counterparty":"NAME","amount":-21.47}
|
||||
|
||||
Do not skip any rows. Return ONLY the JSON array, no explanation.`;
|
||||
|
||||
interface ITransaction {
|
||||
date: string;
|
||||
counterparty: string;
|
||||
amount: number;
|
||||
}
|
||||
|
||||
/**
|
||||
* Convert PDF to PNG images using ImageMagick
|
||||
*/
|
||||
function convertPdfToImages(pdfPath: string): string[] {
|
||||
const tempDir = fs.mkdtempSync(path.join(os.tmpdir(), 'pdf-convert-'));
|
||||
const outputPattern = path.join(tempDir, 'page-%d.png');
|
||||
|
||||
try {
|
||||
execSync(
|
||||
`convert -density 300 -quality 100 "${pdfPath}" -background white -alpha remove "${outputPattern}"`,
|
||||
{ stdio: 'pipe' }
|
||||
);
|
||||
|
||||
const files = fs.readdirSync(tempDir).filter((f: string) => f.endsWith('.png')).sort();
|
||||
const images: string[] = [];
|
||||
|
||||
for (const file of files) {
|
||||
const imagePath = path.join(tempDir, file);
|
||||
const imageData = fs.readFileSync(imagePath);
|
||||
images.push(imageData.toString('base64'));
|
||||
}
|
||||
|
||||
return images;
|
||||
} finally {
|
||||
fs.rmSync(tempDir, { recursive: true, force: true });
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Extract using MiniCPM-V via Ollama
|
||||
*/
|
||||
async function extractWithMiniCPM(images: string[], passLabel: string): Promise<ITransaction[]> {
|
||||
const payload = {
|
||||
model: MINICPM_MODEL,
|
||||
prompt: MINICPM_EXTRACT_PROMPT,
|
||||
images,
|
||||
stream: true,
|
||||
options: {
|
||||
num_predict: 16384,
|
||||
temperature: 0.1,
|
||||
},
|
||||
};
|
||||
|
||||
const response = await fetch(`${OLLAMA_URL}/api/generate`, {
|
||||
method: 'POST',
|
||||
headers: { 'Content-Type': 'application/json' },
|
||||
body: JSON.stringify(payload),
|
||||
});
|
||||
|
||||
if (!response.ok) {
|
||||
throw new Error(`Ollama API error: ${response.status}`);
|
||||
}
|
||||
|
||||
const reader = response.body?.getReader();
|
||||
if (!reader) {
|
||||
throw new Error('No response body');
|
||||
}
|
||||
|
||||
const decoder = new TextDecoder();
|
||||
let fullText = '';
|
||||
let lineBuffer = '';
|
||||
|
||||
console.log(`[${passLabel}] Extracting with MiniCPM-V...`);
|
||||
|
||||
while (true) {
|
||||
const { done, value } = await reader.read();
|
||||
if (done) break;
|
||||
|
||||
const chunk = decoder.decode(value, { stream: true });
|
||||
const lines = chunk.split('\n').filter((l) => l.trim());
|
||||
|
||||
for (const line of lines) {
|
||||
try {
|
||||
const json = JSON.parse(line);
|
||||
if (json.response) {
|
||||
fullText += json.response;
|
||||
lineBuffer += json.response;
|
||||
|
||||
if (lineBuffer.includes('\n')) {
|
||||
const parts = lineBuffer.split('\n');
|
||||
for (let i = 0; i < parts.length - 1; i++) {
|
||||
console.log(parts[i]);
|
||||
}
|
||||
lineBuffer = parts[parts.length - 1];
|
||||
}
|
||||
}
|
||||
} catch {
|
||||
// Skip invalid JSON lines
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (lineBuffer) {
|
||||
console.log(lineBuffer);
|
||||
}
|
||||
console.log('');
|
||||
|
||||
const startIdx = fullText.indexOf('[');
|
||||
const endIdx = fullText.lastIndexOf(']') + 1;
|
||||
|
||||
if (startIdx < 0 || endIdx <= startIdx) {
|
||||
throw new Error('No JSON array found in response');
|
||||
}
|
||||
|
||||
return JSON.parse(fullText.substring(startIdx, endIdx));
|
||||
}
|
||||
|
||||
/**
|
||||
* Create a hash of transactions for comparison
|
||||
*/
|
||||
function hashTransactions(transactions: ITransaction[]): string {
|
||||
return transactions
|
||||
.map((t) => `${t.date}|${t.amount.toFixed(2)}`)
|
||||
.sort()
|
||||
.join(';');
|
||||
}
|
||||
|
||||
/**
|
||||
* Extract with consensus voting using MiniCPM-V only
|
||||
*/
|
||||
async function extractWithConsensus(
|
||||
images: string[],
|
||||
maxPasses: number = 5
|
||||
): Promise<ITransaction[]> {
|
||||
const results: Array<{ transactions: ITransaction[]; hash: string }> = [];
|
||||
const hashCounts: Map<string, number> = new Map();
|
||||
|
||||
const addResult = (transactions: ITransaction[], passLabel: string): number => {
|
||||
const hash = hashTransactions(transactions);
|
||||
results.push({ transactions, hash });
|
||||
hashCounts.set(hash, (hashCounts.get(hash) || 0) + 1);
|
||||
console.log(
|
||||
`[${passLabel}] Got ${transactions.length} transactions (hash: ${hash.substring(0, 20)}...)`
|
||||
);
|
||||
return hashCounts.get(hash)!;
|
||||
};
|
||||
|
||||
console.log('[Setup] Using MiniCPM-V only');
|
||||
|
||||
for (let pass = 1; pass <= maxPasses; pass++) {
|
||||
try {
|
||||
const transactions = await extractWithMiniCPM(images, `Pass ${pass} MiniCPM-V`);
|
||||
const count = addResult(transactions, `Pass ${pass} MiniCPM-V`);
|
||||
|
||||
if (count >= 2) {
|
||||
console.log(`[Consensus] Reached after ${pass} passes`);
|
||||
return transactions;
|
||||
}
|
||||
|
||||
console.log(`[Pass ${pass}] No consensus yet, trying again...`);
|
||||
} catch (err) {
|
||||
console.log(`[Pass ${pass}] Error: ${err}`);
|
||||
}
|
||||
}
|
||||
|
||||
// No consensus reached - return the most common result
|
||||
let bestHash = '';
|
||||
let bestCount = 0;
|
||||
for (const [hash, count] of hashCounts) {
|
||||
if (count > bestCount) {
|
||||
bestCount = count;
|
||||
bestHash = hash;
|
||||
}
|
||||
}
|
||||
|
||||
if (!bestHash) {
|
||||
throw new Error('No valid results obtained');
|
||||
}
|
||||
|
||||
const best = results.find((r) => r.hash === bestHash)!;
|
||||
console.log(`[No consensus] Using most common result (${bestCount}/${maxPasses} passes)`);
|
||||
return best.transactions;
|
||||
}
|
||||
|
||||
/**
|
||||
* Compare extracted transactions against expected
|
||||
*/
|
||||
function compareTransactions(
|
||||
extracted: ITransaction[],
|
||||
expected: ITransaction[]
|
||||
): { matches: number; total: number; errors: string[] } {
|
||||
const errors: string[] = [];
|
||||
let matches = 0;
|
||||
|
||||
for (let i = 0; i < expected.length; i++) {
|
||||
const exp = expected[i];
|
||||
const ext = extracted[i];
|
||||
|
||||
if (!ext) {
|
||||
errors.push(`Missing transaction ${i}: ${exp.date} ${exp.counterparty}`);
|
||||
continue;
|
||||
}
|
||||
|
||||
const dateMatch = ext.date === exp.date;
|
||||
const amountMatch = Math.abs(ext.amount - exp.amount) < 0.01;
|
||||
|
||||
if (dateMatch && amountMatch) {
|
||||
matches++;
|
||||
} else {
|
||||
errors.push(
|
||||
`Mismatch at ${i}: expected ${exp.date}/${exp.amount}, got ${ext.date}/${ext.amount}`
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
if (extracted.length > expected.length) {
|
||||
errors.push(`Extra transactions: ${extracted.length - expected.length}`);
|
||||
}
|
||||
|
||||
return { matches, total: expected.length, errors };
|
||||
}
|
||||
|
||||
/**
|
||||
* Find all test cases (PDF + JSON pairs) in .nogit/
|
||||
*/
|
||||
function findTestCases(): Array<{ name: string; pdfPath: string; jsonPath: string }> {
|
||||
const testDir = path.join(process.cwd(), '.nogit');
|
||||
if (!fs.existsSync(testDir)) {
|
||||
return [];
|
||||
}
|
||||
|
||||
const files = fs.readdirSync(testDir);
|
||||
const pdfFiles = files.filter((f: string) => f.endsWith('.pdf'));
|
||||
const testCases: Array<{ name: string; pdfPath: string; jsonPath: string }> = [];
|
||||
|
||||
for (const pdf of pdfFiles) {
|
||||
const baseName = pdf.replace('.pdf', '');
|
||||
const jsonFile = `${baseName}.json`;
|
||||
if (files.includes(jsonFile)) {
|
||||
testCases.push({
|
||||
name: baseName,
|
||||
pdfPath: path.join(testDir, pdf),
|
||||
jsonPath: path.join(testDir, jsonFile),
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
return testCases;
|
||||
}
|
||||
|
||||
// Tests
|
||||
|
||||
tap.test('setup: ensure Docker containers are running', async () => {
|
||||
console.log('\n[Setup] Checking Docker containers...\n');
|
||||
|
||||
// Ensure MiniCPM is running
|
||||
const minicpmOk = await ensureMiniCpm();
|
||||
expect(minicpmOk).toBeTrue();
|
||||
|
||||
console.log('\n[Setup] All containers ready!\n');
|
||||
});
|
||||
|
||||
tap.test('should have MiniCPM-V 4.5 model loaded', async () => {
|
||||
const response = await fetch(`${OLLAMA_URL}/api/tags`);
|
||||
const data = await response.json();
|
||||
const modelNames = data.models.map((m: { name: string }) => m.name);
|
||||
expect(modelNames.some((name: string) => name.includes('minicpm-v4.5'))).toBeTrue();
|
||||
});
|
||||
|
||||
// Dynamic test for each PDF/JSON pair
|
||||
const testCases = findTestCases();
|
||||
console.log(`\nFound ${testCases.length} bank statement test cases (MiniCPM-V only)\n`);
|
||||
|
||||
for (const testCase of testCases) {
|
||||
tap.test(`should extract transactions from ${testCase.name}`, async () => {
|
||||
// Load expected transactions
|
||||
const expected: ITransaction[] = JSON.parse(fs.readFileSync(testCase.jsonPath, 'utf-8'));
|
||||
console.log(`\n=== ${testCase.name} ===`);
|
||||
console.log(`Expected: ${expected.length} transactions`);
|
||||
|
||||
// Convert PDF to images
|
||||
console.log('Converting PDF to images...');
|
||||
const images = convertPdfToImages(testCase.pdfPath);
|
||||
console.log(`Converted: ${images.length} pages\n`);
|
||||
|
||||
// Extract with consensus (MiniCPM-V only)
|
||||
const extracted = await extractWithConsensus(images);
|
||||
console.log(`\nFinal: ${extracted.length} transactions`);
|
||||
|
||||
// Compare results
|
||||
const result = compareTransactions(extracted, expected);
|
||||
console.log(`Accuracy: ${result.matches}/${result.total}`);
|
||||
|
||||
if (result.errors.length > 0) {
|
||||
console.log('Errors:');
|
||||
result.errors.forEach((e) => console.log(` - ${e}`));
|
||||
}
|
||||
|
||||
// Assert high accuracy
|
||||
const accuracy = result.matches / result.total;
|
||||
expect(accuracy).toBeGreaterThan(0.95);
|
||||
expect(extracted.length).toEqual(expected.length);
|
||||
});
|
||||
}
|
||||
|
||||
export default tap.start();
|
||||
346
test/test.bankstatements.paddleocr-vl.ts
Normal file
346
test/test.bankstatements.paddleocr-vl.ts
Normal file
@@ -0,0 +1,346 @@
|
||||
/**
|
||||
* Bank statement extraction test using PaddleOCR-VL Full Pipeline
|
||||
*
|
||||
* This tests the complete PaddleOCR-VL pipeline for bank statements:
|
||||
* 1. PP-DocLayoutV2 for layout detection
|
||||
* 2. PaddleOCR-VL for recognition (tables with proper structure)
|
||||
* 3. Structured Markdown output with tables
|
||||
* 4. MiniCPM extracts transactions from structured tables
|
||||
*
|
||||
* The structured Markdown has properly formatted tables,
|
||||
* making it much easier for MiniCPM to extract transaction data.
|
||||
*/
|
||||
import { tap, expect } from '@git.zone/tstest/tapbundle';
|
||||
import * as fs from 'fs';
|
||||
import * as path from 'path';
|
||||
import { execSync } from 'child_process';
|
||||
import * as os from 'os';
|
||||
import { ensurePaddleOcrVlFull, ensureMiniCpm } from './helpers/docker.js';
|
||||
|
||||
const PADDLEOCR_VL_URL = 'http://localhost:8000';
|
||||
const OLLAMA_URL = 'http://localhost:11434';
|
||||
const MINICPM_MODEL = 'minicpm-v:latest';
|
||||
|
||||
interface ITransaction {
|
||||
date: string;
|
||||
counterparty: string;
|
||||
amount: number;
|
||||
}
|
||||
|
||||
/**
|
||||
* Convert PDF to PNG images using ImageMagick
|
||||
*/
|
||||
function convertPdfToImages(pdfPath: string): string[] {
|
||||
const tempDir = fs.mkdtempSync(path.join(os.tmpdir(), 'pdf-convert-'));
|
||||
const outputPattern = path.join(tempDir, 'page-%d.png');
|
||||
|
||||
try {
|
||||
execSync(
|
||||
`convert -density 300 -quality 100 "${pdfPath}" -background white -alpha remove "${outputPattern}"`,
|
||||
{ stdio: 'pipe' }
|
||||
);
|
||||
|
||||
const files = fs.readdirSync(tempDir).filter((f: string) => f.endsWith('.png')).sort();
|
||||
const images: string[] = [];
|
||||
|
||||
for (const file of files) {
|
||||
const imagePath = path.join(tempDir, file);
|
||||
const imageData = fs.readFileSync(imagePath);
|
||||
images.push(imageData.toString('base64'));
|
||||
}
|
||||
|
||||
return images;
|
||||
} finally {
|
||||
fs.rmSync(tempDir, { recursive: true, force: true });
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Parse document using PaddleOCR-VL Full Pipeline (returns structured Markdown)
|
||||
*/
|
||||
async function parseDocument(imageBase64: string): Promise<string> {
|
||||
const response = await fetch(`${PADDLEOCR_VL_URL}/parse`, {
|
||||
method: 'POST',
|
||||
headers: { 'Content-Type': 'application/json' },
|
||||
body: JSON.stringify({
|
||||
image: imageBase64,
|
||||
output_format: 'markdown',
|
||||
}),
|
||||
});
|
||||
|
||||
if (!response.ok) {
|
||||
const text = await response.text();
|
||||
throw new Error(`PaddleOCR-VL API error: ${response.status} - ${text}`);
|
||||
}
|
||||
|
||||
const data = await response.json();
|
||||
|
||||
if (!data.success) {
|
||||
throw new Error(`PaddleOCR-VL error: ${data.error}`);
|
||||
}
|
||||
|
||||
return data.result?.markdown || '';
|
||||
}
|
||||
|
||||
/**
|
||||
* Extract transactions from structured Markdown using MiniCPM
|
||||
*/
|
||||
async function extractTransactionsFromMarkdown(markdown: string): Promise<ITransaction[]> {
|
||||
console.log(` [Extract] Processing ${markdown.length} chars of Markdown`);
|
||||
|
||||
const prompt = `/nothink
|
||||
Convert this bank statement to a JSON array of transactions.
|
||||
|
||||
Read the Amount values carefully:
|
||||
- "- 21,47 €" means DEBIT, output as: -21.47
|
||||
- "+ 1.000,00 €" means CREDIT, output as: 1000.00
|
||||
- European format: comma = decimal point, dot = thousands
|
||||
|
||||
For each transaction output: {"date":"YYYY-MM-DD","counterparty":"NAME","amount":-21.47}
|
||||
|
||||
Return ONLY the JSON array, no explanation.
|
||||
|
||||
Document:
|
||||
${markdown}`;
|
||||
|
||||
const payload = {
|
||||
model: MINICPM_MODEL,
|
||||
prompt,
|
||||
stream: true,
|
||||
options: {
|
||||
num_predict: 16384,
|
||||
temperature: 0.1,
|
||||
},
|
||||
};
|
||||
|
||||
const response = await fetch(`${OLLAMA_URL}/api/generate`, {
|
||||
method: 'POST',
|
||||
headers: { 'Content-Type': 'application/json' },
|
||||
body: JSON.stringify(payload),
|
||||
});
|
||||
|
||||
if (!response.ok) {
|
||||
throw new Error(`Ollama API error: ${response.status}`);
|
||||
}
|
||||
|
||||
const reader = response.body?.getReader();
|
||||
if (!reader) {
|
||||
throw new Error('No response body');
|
||||
}
|
||||
|
||||
const decoder = new TextDecoder();
|
||||
let fullText = '';
|
||||
|
||||
while (true) {
|
||||
const { done, value } = await reader.read();
|
||||
if (done) break;
|
||||
|
||||
const chunk = decoder.decode(value, { stream: true });
|
||||
const lines = chunk.split('\n').filter((l) => l.trim());
|
||||
|
||||
for (const line of lines) {
|
||||
try {
|
||||
const json = JSON.parse(line);
|
||||
if (json.response) {
|
||||
fullText += json.response;
|
||||
}
|
||||
} catch {
|
||||
// Skip invalid JSON lines
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Extract JSON array from response
|
||||
const startIdx = fullText.indexOf('[');
|
||||
const endIdx = fullText.lastIndexOf(']') + 1;
|
||||
|
||||
if (startIdx < 0 || endIdx <= startIdx) {
|
||||
throw new Error(`No JSON array found in response: ${fullText.substring(0, 200)}`);
|
||||
}
|
||||
|
||||
const jsonStr = fullText.substring(startIdx, endIdx);
|
||||
return JSON.parse(jsonStr);
|
||||
}
|
||||
|
||||
/**
|
||||
* Extract transactions from all pages of a bank statement
|
||||
*/
|
||||
async function extractAllTransactions(images: string[]): Promise<ITransaction[]> {
|
||||
const allTransactions: ITransaction[] = [];
|
||||
|
||||
for (let i = 0; i < images.length; i++) {
|
||||
console.log(` Processing page ${i + 1}/${images.length}...`);
|
||||
|
||||
// Parse with full pipeline
|
||||
const markdown = await parseDocument(images[i]);
|
||||
console.log(` [Parse] Got ${markdown.split('\n').length} lines of Markdown`);
|
||||
|
||||
// Extract transactions
|
||||
try {
|
||||
const transactions = await extractTransactionsFromMarkdown(markdown);
|
||||
console.log(` [Extracted] ${transactions.length} transactions`);
|
||||
allTransactions.push(...transactions);
|
||||
} catch (err) {
|
||||
console.log(` [Error] ${err}`);
|
||||
}
|
||||
}
|
||||
|
||||
return allTransactions;
|
||||
}
|
||||
|
||||
/**
|
||||
* Compare transactions - find matching transaction in expected list
|
||||
*/
|
||||
function findMatchingTransaction(
|
||||
tx: ITransaction,
|
||||
expectedList: ITransaction[]
|
||||
): ITransaction | undefined {
|
||||
return expectedList.find((exp) => {
|
||||
const dateMatch = tx.date === exp.date;
|
||||
const amountMatch = Math.abs(tx.amount - exp.amount) < 0.02;
|
||||
const counterpartyMatch =
|
||||
tx.counterparty?.toLowerCase().includes(exp.counterparty?.toLowerCase().slice(0, 10)) ||
|
||||
exp.counterparty?.toLowerCase().includes(tx.counterparty?.toLowerCase().slice(0, 10));
|
||||
return dateMatch && amountMatch && counterpartyMatch;
|
||||
});
|
||||
}
|
||||
|
||||
/**
|
||||
* Calculate extraction accuracy
|
||||
*/
|
||||
function calculateAccuracy(
|
||||
extracted: ITransaction[],
|
||||
expected: ITransaction[]
|
||||
): { matched: number; total: number; accuracy: number } {
|
||||
let matched = 0;
|
||||
const usedExpected = new Set<number>();
|
||||
|
||||
for (const tx of extracted) {
|
||||
for (let i = 0; i < expected.length; i++) {
|
||||
if (usedExpected.has(i)) continue;
|
||||
|
||||
const exp = expected[i];
|
||||
const dateMatch = tx.date === exp.date;
|
||||
const amountMatch = Math.abs(tx.amount - exp.amount) < 0.02;
|
||||
|
||||
if (dateMatch && amountMatch) {
|
||||
matched++;
|
||||
usedExpected.add(i);
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return {
|
||||
matched,
|
||||
total: expected.length,
|
||||
accuracy: expected.length > 0 ? (matched / expected.length) * 100 : 0,
|
||||
};
|
||||
}
|
||||
|
||||
/**
|
||||
* Find all test cases (PDF + JSON pairs) in .nogit/bankstatements/
|
||||
*/
|
||||
function findTestCases(): Array<{ name: string; pdfPath: string; jsonPath: string }> {
|
||||
const testDir = path.join(process.cwd(), '.nogit/bankstatements');
|
||||
if (!fs.existsSync(testDir)) {
|
||||
return [];
|
||||
}
|
||||
|
||||
const files = fs.readdirSync(testDir);
|
||||
const pdfFiles = files.filter((f) => f.endsWith('.pdf'));
|
||||
const testCases: Array<{ name: string; pdfPath: string; jsonPath: string }> = [];
|
||||
|
||||
for (const pdf of pdfFiles) {
|
||||
const baseName = pdf.replace('.pdf', '');
|
||||
const jsonFile = `${baseName}.json`;
|
||||
if (files.includes(jsonFile)) {
|
||||
testCases.push({
|
||||
name: baseName,
|
||||
pdfPath: path.join(testDir, pdf),
|
||||
jsonPath: path.join(testDir, jsonFile),
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
testCases.sort((a, b) => a.name.localeCompare(b.name));
|
||||
return testCases;
|
||||
}
|
||||
|
||||
// Tests
|
||||
|
||||
tap.test('setup: ensure Docker containers are running', async () => {
|
||||
console.log('\n[Setup] Checking Docker containers...\n');
|
||||
|
||||
// Ensure PaddleOCR-VL Full Pipeline is running
|
||||
const paddleOk = await ensurePaddleOcrVlFull();
|
||||
expect(paddleOk).toBeTrue();
|
||||
|
||||
// Ensure MiniCPM is running (for field extraction from Markdown)
|
||||
const minicpmOk = await ensureMiniCpm();
|
||||
expect(minicpmOk).toBeTrue();
|
||||
|
||||
console.log('\n[Setup] All containers ready!\n');
|
||||
});
|
||||
|
||||
// Dynamic test for each PDF/JSON pair
|
||||
const testCases = findTestCases();
|
||||
console.log(`\nFound ${testCases.length} bank statement test cases (PaddleOCR-VL Full Pipeline)\n`);
|
||||
|
||||
const results: Array<{ name: string; accuracy: number; matched: number; total: number }> = [];
|
||||
|
||||
for (const testCase of testCases) {
|
||||
tap.test(`should extract bank statement: ${testCase.name}`, async () => {
|
||||
// Load expected data
|
||||
const expected: ITransaction[] = JSON.parse(fs.readFileSync(testCase.jsonPath, 'utf-8'));
|
||||
console.log(`\n=== ${testCase.name} ===`);
|
||||
console.log(`Expected: ${expected.length} transactions`);
|
||||
|
||||
const startTime = Date.now();
|
||||
|
||||
// Convert PDF to images
|
||||
const images = convertPdfToImages(testCase.pdfPath);
|
||||
console.log(` Pages: ${images.length}`);
|
||||
|
||||
// Extract all transactions
|
||||
const extracted = await extractAllTransactions(images);
|
||||
|
||||
const endTime = Date.now();
|
||||
const elapsedMs = endTime - startTime;
|
||||
|
||||
// Calculate accuracy
|
||||
const accuracy = calculateAccuracy(extracted, expected);
|
||||
results.push({
|
||||
name: testCase.name,
|
||||
accuracy: accuracy.accuracy,
|
||||
matched: accuracy.matched,
|
||||
total: accuracy.total,
|
||||
});
|
||||
|
||||
console.log(` Extracted: ${extracted.length} transactions`);
|
||||
console.log(` Matched: ${accuracy.matched}/${accuracy.total} (${accuracy.accuracy.toFixed(1)}%)`);
|
||||
console.log(` Time: ${(elapsedMs / 1000).toFixed(1)}s`);
|
||||
|
||||
// We expect at least 50% accuracy
|
||||
expect(accuracy.accuracy).toBeGreaterThan(50);
|
||||
});
|
||||
}
|
||||
|
||||
tap.test('summary', async () => {
|
||||
const totalStatements = results.length;
|
||||
const avgAccuracy =
|
||||
results.length > 0 ? results.reduce((a, b) => a + b.accuracy, 0) / results.length : 0;
|
||||
const totalMatched = results.reduce((a, b) => a + b.matched, 0);
|
||||
const totalExpected = results.reduce((a, b) => a + b.total, 0);
|
||||
|
||||
console.log(`\n======================================================`);
|
||||
console.log(` Bank Statement Extraction Summary (PaddleOCR-VL Full)`);
|
||||
console.log(`======================================================`);
|
||||
console.log(` Method: PaddleOCR-VL Full Pipeline -> MiniCPM`);
|
||||
console.log(` Statements: ${totalStatements}`);
|
||||
console.log(` Transactions: ${totalMatched}/${totalExpected} matched`);
|
||||
console.log(` Avg accuracy: ${avgAccuracy.toFixed(1)}%`);
|
||||
console.log(`======================================================\n`);
|
||||
});
|
||||
|
||||
export default tap.start();
|
||||
@@ -1,11 +1,19 @@
|
||||
/**
|
||||
* Invoice extraction test using MiniCPM-V (visual) + PaddleOCR-VL (OCR augmentation)
|
||||
*
|
||||
* This is the combined approach that uses both models for best accuracy:
|
||||
* - MiniCPM-V for visual understanding
|
||||
* - PaddleOCR-VL for OCR text to augment prompts
|
||||
*/
|
||||
import { tap, expect } from '@git.zone/tstest/tapbundle';
|
||||
import * as fs from 'fs';
|
||||
import * as path from 'path';
|
||||
import { execSync } from 'child_process';
|
||||
import * as os from 'os';
|
||||
import { ensurePaddleOcrVl, ensureMiniCpm } from './helpers/docker.js';
|
||||
|
||||
const OLLAMA_URL = 'http://localhost:11434';
|
||||
const MODEL = 'openbmb/minicpm-v4.5:q8_0';
|
||||
const MODEL = 'minicpm-v:latest';
|
||||
const PADDLEOCR_VL_URL = 'http://localhost:8000';
|
||||
|
||||
interface IInvoice {
|
||||
@@ -358,11 +366,18 @@ function findTestCases(): Array<{ name: string; pdfPath: string; jsonPath: strin
|
||||
|
||||
// Tests
|
||||
|
||||
tap.test('should connect to Ollama API', async () => {
|
||||
const response = await fetch(`${OLLAMA_URL}/api/tags`);
|
||||
expect(response.ok).toBeTrue();
|
||||
const data = await response.json();
|
||||
expect(data.models).toBeArray();
|
||||
tap.test('setup: ensure Docker containers are running', async () => {
|
||||
console.log('\n[Setup] Checking Docker containers...\n');
|
||||
|
||||
// Ensure PaddleOCR-VL is running (auto-detects GPU/CPU)
|
||||
const paddleOk = await ensurePaddleOcrVl();
|
||||
expect(paddleOk).toBeTrue();
|
||||
|
||||
// Ensure MiniCPM is running
|
||||
const minicpmOk = await ensureMiniCpm();
|
||||
expect(minicpmOk).toBeTrue();
|
||||
|
||||
console.log('\n[Setup] All containers ready!\n');
|
||||
});
|
||||
|
||||
tap.test('should have MiniCPM-V 4.5 model loaded', async () => {
|
||||
|
||||
345
test/test.invoices.minicpm.ts
Normal file
345
test/test.invoices.minicpm.ts
Normal file
@@ -0,0 +1,345 @@
|
||||
/**
|
||||
* Invoice extraction test using MiniCPM-V only (visual extraction)
|
||||
*
|
||||
* This tests MiniCPM-V's ability to extract invoice data directly from images
|
||||
* without any OCR augmentation.
|
||||
*/
|
||||
import { tap, expect } from '@git.zone/tstest/tapbundle';
|
||||
import * as fs from 'fs';
|
||||
import * as path from 'path';
|
||||
import { execSync } from 'child_process';
|
||||
import * as os from 'os';
|
||||
import { ensureMiniCpm } from './helpers/docker.js';
|
||||
|
||||
const OLLAMA_URL = 'http://localhost:11434';
|
||||
const MODEL = 'minicpm-v:latest';
|
||||
|
||||
interface IInvoice {
|
||||
invoice_number: string;
|
||||
invoice_date: string;
|
||||
vendor_name: string;
|
||||
currency: string;
|
||||
net_amount: number;
|
||||
vat_amount: number;
|
||||
total_amount: number;
|
||||
}
|
||||
|
||||
/**
|
||||
* Build extraction prompt (MiniCPM-V only, no OCR augmentation)
|
||||
*/
|
||||
function buildPrompt(): string {
|
||||
return `/nothink
|
||||
You are an invoice parser. Extract the following fields from this invoice:
|
||||
|
||||
1. invoice_number: The invoice/receipt number
|
||||
2. invoice_date: Date in YYYY-MM-DD format
|
||||
3. vendor_name: Company that issued the invoice
|
||||
4. currency: EUR, USD, etc.
|
||||
5. net_amount: Amount before tax (if shown)
|
||||
6. vat_amount: Tax/VAT amount (if shown, 0 if reverse charge or no tax)
|
||||
7. total_amount: Final amount due
|
||||
|
||||
Return ONLY valid JSON in this exact format:
|
||||
{"invoice_number":"XXX","invoice_date":"YYYY-MM-DD","vendor_name":"Company Name","currency":"EUR","net_amount":100.00,"vat_amount":19.00,"total_amount":119.00}
|
||||
|
||||
If a field is not visible, use null for strings or 0 for numbers.
|
||||
No explanation, just the JSON object.`;
|
||||
}
|
||||
|
||||
/**
|
||||
* Convert PDF to PNG images using ImageMagick
|
||||
*/
|
||||
function convertPdfToImages(pdfPath: string): string[] {
|
||||
const tempDir = fs.mkdtempSync(path.join(os.tmpdir(), 'pdf-convert-'));
|
||||
const outputPattern = path.join(tempDir, 'page-%d.png');
|
||||
|
||||
try {
|
||||
execSync(
|
||||
`convert -density 200 -quality 90 "${pdfPath}" -background white -alpha remove "${outputPattern}"`,
|
||||
{ stdio: 'pipe' }
|
||||
);
|
||||
|
||||
const files = fs.readdirSync(tempDir).filter((f) => f.endsWith('.png')).sort();
|
||||
const images: string[] = [];
|
||||
|
||||
for (const file of files) {
|
||||
const imagePath = path.join(tempDir, file);
|
||||
const imageData = fs.readFileSync(imagePath);
|
||||
images.push(imageData.toString('base64'));
|
||||
}
|
||||
|
||||
return images;
|
||||
} finally {
|
||||
fs.rmSync(tempDir, { recursive: true, force: true });
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Single extraction pass with MiniCPM-V
|
||||
*/
|
||||
async function extractOnce(images: string[], passNum: number): Promise<IInvoice> {
|
||||
const payload = {
|
||||
model: MODEL,
|
||||
prompt: buildPrompt(),
|
||||
images,
|
||||
stream: true,
|
||||
options: {
|
||||
num_predict: 2048,
|
||||
temperature: 0.1,
|
||||
},
|
||||
};
|
||||
|
||||
const response = await fetch(`${OLLAMA_URL}/api/generate`, {
|
||||
method: 'POST',
|
||||
headers: { 'Content-Type': 'application/json' },
|
||||
body: JSON.stringify(payload),
|
||||
});
|
||||
|
||||
if (!response.ok) {
|
||||
throw new Error(`Ollama API error: ${response.status}`);
|
||||
}
|
||||
|
||||
const reader = response.body?.getReader();
|
||||
if (!reader) {
|
||||
throw new Error('No response body');
|
||||
}
|
||||
|
||||
const decoder = new TextDecoder();
|
||||
let fullText = '';
|
||||
|
||||
while (true) {
|
||||
const { done, value } = await reader.read();
|
||||
if (done) break;
|
||||
|
||||
const chunk = decoder.decode(value, { stream: true });
|
||||
const lines = chunk.split('\n').filter((l) => l.trim());
|
||||
|
||||
for (const line of lines) {
|
||||
try {
|
||||
const json = JSON.parse(line);
|
||||
if (json.response) {
|
||||
fullText += json.response;
|
||||
}
|
||||
} catch {
|
||||
// Skip invalid JSON lines
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Extract JSON from response
|
||||
const startIdx = fullText.indexOf('{');
|
||||
const endIdx = fullText.lastIndexOf('}') + 1;
|
||||
|
||||
if (startIdx < 0 || endIdx <= startIdx) {
|
||||
throw new Error(`No JSON object found in response: ${fullText.substring(0, 200)}`);
|
||||
}
|
||||
|
||||
const jsonStr = fullText.substring(startIdx, endIdx);
|
||||
return JSON.parse(jsonStr);
|
||||
}
|
||||
|
||||
/**
|
||||
* Create a hash of invoice for comparison (using key fields)
|
||||
*/
|
||||
function hashInvoice(invoice: IInvoice): string {
|
||||
return `${invoice.invoice_number}|${invoice.invoice_date}|${invoice.total_amount.toFixed(2)}`;
|
||||
}
|
||||
|
||||
/**
|
||||
* Extract with consensus voting using MiniCPM-V only
|
||||
*/
|
||||
async function extractWithConsensus(images: string[], invoiceName: string, maxPasses: number = 5): Promise<IInvoice> {
|
||||
const results: Array<{ invoice: IInvoice; hash: string }> = [];
|
||||
const hashCounts: Map<string, number> = new Map();
|
||||
|
||||
const addResult = (invoice: IInvoice, passLabel: string): number => {
|
||||
const hash = hashInvoice(invoice);
|
||||
results.push({ invoice, hash });
|
||||
hashCounts.set(hash, (hashCounts.get(hash) || 0) + 1);
|
||||
console.log(` [${passLabel}] ${invoice.invoice_number} | ${invoice.invoice_date} | ${invoice.total_amount} ${invoice.currency}`);
|
||||
return hashCounts.get(hash)!;
|
||||
};
|
||||
|
||||
for (let pass = 1; pass <= maxPasses; pass++) {
|
||||
try {
|
||||
const invoice = await extractOnce(images, pass);
|
||||
const count = addResult(invoice, `Pass ${pass}`);
|
||||
|
||||
if (count >= 2) {
|
||||
console.log(` [Consensus] Reached after ${pass} passes`);
|
||||
return invoice;
|
||||
}
|
||||
} catch (err) {
|
||||
console.log(` [Pass ${pass}] Error: ${err}`);
|
||||
}
|
||||
}
|
||||
|
||||
// No consensus reached - return the most common result
|
||||
let bestHash = '';
|
||||
let bestCount = 0;
|
||||
for (const [hash, count] of hashCounts) {
|
||||
if (count > bestCount) {
|
||||
bestCount = count;
|
||||
bestHash = hash;
|
||||
}
|
||||
}
|
||||
|
||||
if (!bestHash) {
|
||||
throw new Error(`No valid results for ${invoiceName}`);
|
||||
}
|
||||
|
||||
const best = results.find((r) => r.hash === bestHash)!;
|
||||
console.log(` [No consensus] Using most common result (${bestCount}/${maxPasses} passes)`);
|
||||
return best.invoice;
|
||||
}
|
||||
|
||||
/**
|
||||
* Compare extracted invoice against expected
|
||||
*/
|
||||
function compareInvoice(
|
||||
extracted: IInvoice,
|
||||
expected: IInvoice
|
||||
): { match: boolean; errors: string[] } {
|
||||
const errors: string[] = [];
|
||||
|
||||
// Compare invoice number (normalize by removing spaces and case)
|
||||
const extNum = extracted.invoice_number?.replace(/\s/g, '').toLowerCase() || '';
|
||||
const expNum = expected.invoice_number?.replace(/\s/g, '').toLowerCase() || '';
|
||||
if (extNum !== expNum) {
|
||||
errors.push(`invoice_number: expected "${expected.invoice_number}", got "${extracted.invoice_number}"`);
|
||||
}
|
||||
|
||||
// Compare date
|
||||
if (extracted.invoice_date !== expected.invoice_date) {
|
||||
errors.push(`invoice_date: expected "${expected.invoice_date}", got "${extracted.invoice_date}"`);
|
||||
}
|
||||
|
||||
// Compare total amount (with tolerance)
|
||||
if (Math.abs(extracted.total_amount - expected.total_amount) > 0.02) {
|
||||
errors.push(`total_amount: expected ${expected.total_amount}, got ${extracted.total_amount}`);
|
||||
}
|
||||
|
||||
// Compare currency
|
||||
if (extracted.currency?.toUpperCase() !== expected.currency?.toUpperCase()) {
|
||||
errors.push(`currency: expected "${expected.currency}", got "${extracted.currency}"`);
|
||||
}
|
||||
|
||||
return { match: errors.length === 0, errors };
|
||||
}
|
||||
|
||||
/**
|
||||
* Find all test cases (PDF + JSON pairs) in .nogit/invoices/
|
||||
*/
|
||||
function findTestCases(): Array<{ name: string; pdfPath: string; jsonPath: string }> {
|
||||
const testDir = path.join(process.cwd(), '.nogit/invoices');
|
||||
if (!fs.existsSync(testDir)) {
|
||||
return [];
|
||||
}
|
||||
|
||||
const files = fs.readdirSync(testDir);
|
||||
const pdfFiles = files.filter((f) => f.endsWith('.pdf'));
|
||||
const testCases: Array<{ name: string; pdfPath: string; jsonPath: string }> = [];
|
||||
|
||||
for (const pdf of pdfFiles) {
|
||||
const baseName = pdf.replace('.pdf', '');
|
||||
const jsonFile = `${baseName}.json`;
|
||||
if (files.includes(jsonFile)) {
|
||||
testCases.push({
|
||||
name: baseName,
|
||||
pdfPath: path.join(testDir, pdf),
|
||||
jsonPath: path.join(testDir, jsonFile),
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
// Sort alphabetically
|
||||
testCases.sort((a, b) => a.name.localeCompare(b.name));
|
||||
|
||||
return testCases;
|
||||
}
|
||||
|
||||
// Tests
|
||||
|
||||
tap.test('setup: ensure Docker containers are running', async () => {
|
||||
console.log('\n[Setup] Checking Docker containers...\n');
|
||||
|
||||
// Ensure MiniCPM is running
|
||||
const minicpmOk = await ensureMiniCpm();
|
||||
expect(minicpmOk).toBeTrue();
|
||||
|
||||
console.log('\n[Setup] All containers ready!\n');
|
||||
});
|
||||
|
||||
tap.test('should have MiniCPM-V 4.5 model loaded', async () => {
|
||||
const response = await fetch(`${OLLAMA_URL}/api/tags`);
|
||||
const data = await response.json();
|
||||
const modelNames = data.models.map((m: { name: string }) => m.name);
|
||||
expect(modelNames.some((name: string) => name.includes('minicpm-v4.5'))).toBeTrue();
|
||||
});
|
||||
|
||||
// Dynamic test for each PDF/JSON pair
|
||||
const testCases = findTestCases();
|
||||
console.log(`\nFound ${testCases.length} invoice test cases (MiniCPM-V only)\n`);
|
||||
|
||||
let passedCount = 0;
|
||||
let failedCount = 0;
|
||||
const processingTimes: number[] = [];
|
||||
|
||||
for (const testCase of testCases) {
|
||||
tap.test(`should extract invoice: ${testCase.name}`, async () => {
|
||||
// Load expected data
|
||||
const expected: IInvoice = JSON.parse(fs.readFileSync(testCase.jsonPath, 'utf-8'));
|
||||
console.log(`\n=== ${testCase.name} ===`);
|
||||
console.log(`Expected: ${expected.invoice_number} | ${expected.invoice_date} | ${expected.total_amount} ${expected.currency}`);
|
||||
|
||||
const startTime = Date.now();
|
||||
|
||||
// Convert PDF to images
|
||||
const images = convertPdfToImages(testCase.pdfPath);
|
||||
console.log(` Pages: ${images.length}`);
|
||||
|
||||
// Extract with consensus voting (MiniCPM-V only)
|
||||
const extracted = await extractWithConsensus(images, testCase.name);
|
||||
|
||||
const endTime = Date.now();
|
||||
const elapsedMs = endTime - startTime;
|
||||
processingTimes.push(elapsedMs);
|
||||
|
||||
// Compare results
|
||||
const result = compareInvoice(extracted, expected);
|
||||
|
||||
if (result.match) {
|
||||
passedCount++;
|
||||
console.log(` Result: MATCH (${(elapsedMs / 1000).toFixed(1)}s)`);
|
||||
} else {
|
||||
failedCount++;
|
||||
console.log(` Result: MISMATCH (${(elapsedMs / 1000).toFixed(1)}s)`);
|
||||
result.errors.forEach((e) => console.log(` - ${e}`));
|
||||
}
|
||||
|
||||
// Assert match
|
||||
expect(result.match).toBeTrue();
|
||||
});
|
||||
}
|
||||
|
||||
tap.test('summary', async () => {
|
||||
const totalInvoices = testCases.length;
|
||||
const accuracy = totalInvoices > 0 ? (passedCount / totalInvoices) * 100 : 0;
|
||||
const totalTimeMs = processingTimes.reduce((a, b) => a + b, 0);
|
||||
const avgTimeMs = processingTimes.length > 0 ? totalTimeMs / processingTimes.length : 0;
|
||||
const avgTimeSec = avgTimeMs / 1000;
|
||||
const totalTimeSec = totalTimeMs / 1000;
|
||||
|
||||
console.log(`\n========================================`);
|
||||
console.log(` Invoice Extraction Summary (MiniCPM)`);
|
||||
console.log(`========================================`);
|
||||
console.log(` Passed: ${passedCount}/${totalInvoices}`);
|
||||
console.log(` Failed: ${failedCount}/${totalInvoices}`);
|
||||
console.log(` Accuracy: ${accuracy.toFixed(1)}%`);
|
||||
console.log(`----------------------------------------`);
|
||||
console.log(` Total time: ${totalTimeSec.toFixed(1)}s`);
|
||||
console.log(` Avg per inv: ${avgTimeSec.toFixed(1)}s`);
|
||||
console.log(`========================================\n`);
|
||||
});
|
||||
|
||||
export default tap.start();
|
||||
451
test/test.invoices.paddleocr-vl.ts
Normal file
451
test/test.invoices.paddleocr-vl.ts
Normal file
@@ -0,0 +1,451 @@
|
||||
/**
|
||||
* Invoice extraction test using PaddleOCR-VL Full Pipeline
|
||||
*
|
||||
* This tests the complete PaddleOCR-VL pipeline:
|
||||
* 1. PP-DocLayoutV2 for layout detection
|
||||
* 2. PaddleOCR-VL for recognition
|
||||
* 3. Structured Markdown output
|
||||
* 4. MiniCPM extracts invoice fields from structured Markdown
|
||||
*
|
||||
* The structured Markdown has proper tables and formatting,
|
||||
* making it much easier for MiniCPM to extract invoice data.
|
||||
*/
|
||||
import { tap, expect } from '@git.zone/tstest/tapbundle';
|
||||
import * as fs from 'fs';
|
||||
import * as path from 'path';
|
||||
import { execSync } from 'child_process';
|
||||
import * as os from 'os';
|
||||
import { ensurePaddleOcrVlFull, ensureQwen25 } from './helpers/docker.js';
|
||||
|
||||
const PADDLEOCR_VL_URL = 'http://localhost:8000';
|
||||
const OLLAMA_URL = 'http://localhost:11434';
|
||||
// Use Qwen2.5 for text-only JSON extraction (not MiniCPM which is vision-focused)
|
||||
const TEXT_MODEL = 'qwen2.5:7b';
|
||||
|
||||
interface IInvoice {
|
||||
invoice_number: string;
|
||||
invoice_date: string;
|
||||
vendor_name: string;
|
||||
currency: string;
|
||||
net_amount: number;
|
||||
vat_amount: number;
|
||||
total_amount: number;
|
||||
}
|
||||
|
||||
/**
|
||||
* Convert PDF to PNG images using ImageMagick
|
||||
*/
|
||||
function convertPdfToImages(pdfPath: string): string[] {
|
||||
const tempDir = fs.mkdtempSync(path.join(os.tmpdir(), 'pdf-convert-'));
|
||||
const outputPattern = path.join(tempDir, 'page-%d.png');
|
||||
|
||||
try {
|
||||
execSync(
|
||||
`convert -density 200 -quality 90 "${pdfPath}" -background white -alpha remove "${outputPattern}"`,
|
||||
{ stdio: 'pipe' }
|
||||
);
|
||||
|
||||
const files = fs.readdirSync(tempDir).filter((f) => f.endsWith('.png')).sort();
|
||||
const images: string[] = [];
|
||||
|
||||
for (const file of files) {
|
||||
const imagePath = path.join(tempDir, file);
|
||||
const imageData = fs.readFileSync(imagePath);
|
||||
images.push(imageData.toString('base64'));
|
||||
}
|
||||
|
||||
return images;
|
||||
} finally {
|
||||
fs.rmSync(tempDir, { recursive: true, force: true });
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Parse document using PaddleOCR-VL Full Pipeline (returns structured Markdown)
|
||||
*/
|
||||
async function parseDocument(imageBase64: string): Promise<string> {
|
||||
const response = await fetch(`${PADDLEOCR_VL_URL}/parse`, {
|
||||
method: 'POST',
|
||||
headers: { 'Content-Type': 'application/json' },
|
||||
body: JSON.stringify({
|
||||
image: imageBase64,
|
||||
output_format: 'markdown',
|
||||
}),
|
||||
});
|
||||
|
||||
if (!response.ok) {
|
||||
const text = await response.text();
|
||||
throw new Error(`PaddleOCR-VL API error: ${response.status} - ${text}`);
|
||||
}
|
||||
|
||||
const data = await response.json();
|
||||
|
||||
if (!data.success) {
|
||||
throw new Error(`PaddleOCR-VL error: ${data.error}`);
|
||||
}
|
||||
|
||||
return data.result?.markdown || '';
|
||||
}
|
||||
|
||||
/**
|
||||
* Extract invoice fields from structured Markdown using Qwen2.5 (text-only model)
|
||||
*/
|
||||
async function extractInvoiceFromMarkdown(markdown: string): Promise<IInvoice> {
|
||||
// Truncate if too long
|
||||
const truncated = markdown.length > 12000 ? markdown.slice(0, 12000) : markdown;
|
||||
console.log(` [Extract] Processing ${truncated.length} chars of Markdown`);
|
||||
|
||||
const prompt = `You are an invoice data extractor. Extract the following fields from this OCR text and return ONLY a valid JSON object.
|
||||
|
||||
Required fields:
|
||||
- invoice_number: The invoice/receipt/document number
|
||||
- invoice_date: Date in YYYY-MM-DD format (convert from any format)
|
||||
- vendor_name: Company that issued the invoice
|
||||
- currency: EUR, USD, GBP, etc.
|
||||
- net_amount: Amount before tax (number)
|
||||
- vat_amount: Tax/VAT amount (number, use 0 if reverse charge or not shown)
|
||||
- total_amount: Final total amount (number)
|
||||
|
||||
Example output format:
|
||||
{"invoice_number":"INV-123","invoice_date":"2022-01-28","vendor_name":"Adobe","currency":"EUR","net_amount":24.99,"vat_amount":0,"total_amount":24.99}
|
||||
|
||||
Rules:
|
||||
- Return ONLY the JSON object, no explanation or markdown
|
||||
- Use null for missing string fields
|
||||
- Use 0 for missing numeric fields
|
||||
- Convert dates to YYYY-MM-DD format (e.g., "28-JAN-2022" becomes "2022-01-28")
|
||||
- Extract numbers without currency symbols
|
||||
|
||||
OCR Text:
|
||||
${truncated}
|
||||
|
||||
JSON:`;
|
||||
|
||||
const payload = {
|
||||
model: TEXT_MODEL,
|
||||
prompt,
|
||||
stream: true,
|
||||
options: {
|
||||
num_predict: 512,
|
||||
temperature: 0.1,
|
||||
},
|
||||
};
|
||||
|
||||
const response = await fetch(`${OLLAMA_URL}/api/generate`, {
|
||||
method: 'POST',
|
||||
headers: { 'Content-Type': 'application/json' },
|
||||
body: JSON.stringify(payload),
|
||||
});
|
||||
|
||||
if (!response.ok) {
|
||||
throw new Error(`Ollama API error: ${response.status}`);
|
||||
}
|
||||
|
||||
const reader = response.body?.getReader();
|
||||
if (!reader) {
|
||||
throw new Error('No response body');
|
||||
}
|
||||
|
||||
const decoder = new TextDecoder();
|
||||
let fullText = '';
|
||||
|
||||
while (true) {
|
||||
const { done, value } = await reader.read();
|
||||
if (done) break;
|
||||
|
||||
const chunk = decoder.decode(value, { stream: true });
|
||||
const lines = chunk.split('\n').filter((l) => l.trim());
|
||||
|
||||
for (const line of lines) {
|
||||
try {
|
||||
const json = JSON.parse(line);
|
||||
if (json.response) {
|
||||
fullText += json.response;
|
||||
}
|
||||
} catch {
|
||||
// Skip invalid JSON lines
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Extract JSON from response
|
||||
const startIdx = fullText.indexOf('{');
|
||||
const endIdx = fullText.lastIndexOf('}') + 1;
|
||||
|
||||
if (startIdx < 0 || endIdx <= startIdx) {
|
||||
throw new Error(`No JSON object found in response: ${fullText.substring(0, 200)}`);
|
||||
}
|
||||
|
||||
const jsonStr = fullText.substring(startIdx, endIdx);
|
||||
const parsed = JSON.parse(jsonStr);
|
||||
|
||||
// Ensure numeric fields are actually numbers
|
||||
return {
|
||||
invoice_number: parsed.invoice_number || null,
|
||||
invoice_date: parsed.invoice_date || null,
|
||||
vendor_name: parsed.vendor_name || null,
|
||||
currency: parsed.currency || 'EUR',
|
||||
net_amount: parseFloat(parsed.net_amount) || 0,
|
||||
vat_amount: parseFloat(parsed.vat_amount) || 0,
|
||||
total_amount: parseFloat(parsed.total_amount) || 0,
|
||||
};
|
||||
}
|
||||
|
||||
/**
|
||||
* Single extraction pass: Parse with PaddleOCR-VL Full, extract with Qwen2.5 (text-only)
|
||||
*/
|
||||
async function extractOnce(images: string[], passNum: number): Promise<IInvoice> {
|
||||
// Parse document with full pipeline (PaddleOCR-VL)
|
||||
const markdown = await parseDocument(images[0]);
|
||||
console.log(` [Parse] Got ${markdown.split('\n').length} lines of Markdown`);
|
||||
|
||||
// Extract invoice fields from Markdown using text-only model (no images)
|
||||
return extractInvoiceFromMarkdown(markdown);
|
||||
}
|
||||
|
||||
/**
|
||||
* Create a hash of invoice for comparison (using key fields)
|
||||
*/
|
||||
function hashInvoice(invoice: IInvoice): string {
|
||||
// Ensure total_amount is a number
|
||||
const amount = typeof invoice.total_amount === 'number'
|
||||
? invoice.total_amount.toFixed(2)
|
||||
: String(invoice.total_amount || 0);
|
||||
return `${invoice.invoice_number}|${invoice.invoice_date}|${amount}`;
|
||||
}
|
||||
|
||||
/**
|
||||
* Extract with consensus voting
|
||||
*/
|
||||
async function extractWithConsensus(images: string[], invoiceName: string, maxPasses: number = 5): Promise<IInvoice> {
|
||||
const results: Array<{ invoice: IInvoice; hash: string }> = [];
|
||||
const hashCounts: Map<string, number> = new Map();
|
||||
|
||||
const addResult = (invoice: IInvoice, passLabel: string): number => {
|
||||
const hash = hashInvoice(invoice);
|
||||
results.push({ invoice, hash });
|
||||
hashCounts.set(hash, (hashCounts.get(hash) || 0) + 1);
|
||||
console.log(` [${passLabel}] ${invoice.invoice_number} | ${invoice.invoice_date} | ${invoice.total_amount} ${invoice.currency}`);
|
||||
return hashCounts.get(hash)!;
|
||||
};
|
||||
|
||||
for (let pass = 1; pass <= maxPasses; pass++) {
|
||||
try {
|
||||
const invoice = await extractOnce(images, pass);
|
||||
const count = addResult(invoice, `Pass ${pass}`);
|
||||
|
||||
if (count >= 2) {
|
||||
console.log(` [Consensus] Reached after ${pass} passes`);
|
||||
return invoice;
|
||||
}
|
||||
} catch (err) {
|
||||
console.log(` [Pass ${pass}] Error: ${err}`);
|
||||
}
|
||||
}
|
||||
|
||||
// No consensus reached - return the most common result
|
||||
let bestHash = '';
|
||||
let bestCount = 0;
|
||||
for (const [hash, count] of hashCounts) {
|
||||
if (count > bestCount) {
|
||||
bestCount = count;
|
||||
bestHash = hash;
|
||||
}
|
||||
}
|
||||
|
||||
if (!bestHash) {
|
||||
throw new Error(`No valid results for ${invoiceName}`);
|
||||
}
|
||||
|
||||
const best = results.find((r) => r.hash === bestHash)!;
|
||||
console.log(` [No consensus] Using most common result (${bestCount}/${maxPasses} passes)`);
|
||||
return best.invoice;
|
||||
}
|
||||
|
||||
/**
|
||||
* Normalize date to YYYY-MM-DD format
|
||||
*/
|
||||
function normalizeDate(dateStr: string | null): string {
|
||||
if (!dateStr) return '';
|
||||
|
||||
// Already in correct format
|
||||
if (/^\d{4}-\d{2}-\d{2}$/.test(dateStr)) {
|
||||
return dateStr;
|
||||
}
|
||||
|
||||
// Handle DD-MMM-YYYY format (e.g., "28-JUN-2022")
|
||||
const monthMap: Record<string, string> = {
|
||||
JAN: '01', FEB: '02', MAR: '03', APR: '04', MAY: '05', JUN: '06',
|
||||
JUL: '07', AUG: '08', SEP: '09', OCT: '10', NOV: '11', DEC: '12',
|
||||
};
|
||||
|
||||
const match = dateStr.match(/^(\d{1,2})-([A-Z]{3})-(\d{4})$/i);
|
||||
if (match) {
|
||||
const day = match[1].padStart(2, '0');
|
||||
const month = monthMap[match[2].toUpperCase()] || '01';
|
||||
const year = match[3];
|
||||
return `${year}-${month}-${day}`;
|
||||
}
|
||||
|
||||
// Handle DD/MM/YYYY or DD.MM.YYYY
|
||||
const match2 = dateStr.match(/^(\d{1,2})[\/.](\d{1,2})[\/.](\d{4})$/);
|
||||
if (match2) {
|
||||
const day = match2[1].padStart(2, '0');
|
||||
const month = match2[2].padStart(2, '0');
|
||||
const year = match2[3];
|
||||
return `${year}-${month}-${day}`;
|
||||
}
|
||||
|
||||
return dateStr;
|
||||
}
|
||||
|
||||
/**
|
||||
* Compare extracted invoice against expected
|
||||
*/
|
||||
function compareInvoice(
|
||||
extracted: IInvoice,
|
||||
expected: IInvoice
|
||||
): { match: boolean; errors: string[] } {
|
||||
const errors: string[] = [];
|
||||
|
||||
// Compare invoice number (normalize by removing spaces and case)
|
||||
const extNum = extracted.invoice_number?.replace(/\s/g, '').toLowerCase() || '';
|
||||
const expNum = expected.invoice_number?.replace(/\s/g, '').toLowerCase() || '';
|
||||
if (extNum !== expNum) {
|
||||
errors.push(`invoice_number: expected "${expected.invoice_number}", got "${extracted.invoice_number}"`);
|
||||
}
|
||||
|
||||
// Compare date (normalize format first)
|
||||
const extDate = normalizeDate(extracted.invoice_date);
|
||||
const expDate = normalizeDate(expected.invoice_date);
|
||||
if (extDate !== expDate) {
|
||||
errors.push(`invoice_date: expected "${expected.invoice_date}", got "${extracted.invoice_date}"`);
|
||||
}
|
||||
|
||||
// Compare total amount (with tolerance)
|
||||
if (Math.abs(extracted.total_amount - expected.total_amount) > 0.02) {
|
||||
errors.push(`total_amount: expected ${expected.total_amount}, got ${extracted.total_amount}`);
|
||||
}
|
||||
|
||||
// Compare currency
|
||||
if (extracted.currency?.toUpperCase() !== expected.currency?.toUpperCase()) {
|
||||
errors.push(`currency: expected "${expected.currency}", got "${extracted.currency}"`);
|
||||
}
|
||||
|
||||
return { match: errors.length === 0, errors };
|
||||
}
|
||||
|
||||
/**
|
||||
* Find all test cases (PDF + JSON pairs) in .nogit/invoices/
|
||||
*/
|
||||
function findTestCases(): Array<{ name: string; pdfPath: string; jsonPath: string }> {
|
||||
const testDir = path.join(process.cwd(), '.nogit/invoices');
|
||||
if (!fs.existsSync(testDir)) {
|
||||
return [];
|
||||
}
|
||||
|
||||
const files = fs.readdirSync(testDir);
|
||||
const pdfFiles = files.filter((f) => f.endsWith('.pdf'));
|
||||
const testCases: Array<{ name: string; pdfPath: string; jsonPath: string }> = [];
|
||||
|
||||
for (const pdf of pdfFiles) {
|
||||
const baseName = pdf.replace('.pdf', '');
|
||||
const jsonFile = `${baseName}.json`;
|
||||
if (files.includes(jsonFile)) {
|
||||
testCases.push({
|
||||
name: baseName,
|
||||
pdfPath: path.join(testDir, pdf),
|
||||
jsonPath: path.join(testDir, jsonFile),
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
// Sort alphabetically
|
||||
testCases.sort((a, b) => a.name.localeCompare(b.name));
|
||||
|
||||
return testCases;
|
||||
}
|
||||
|
||||
// Tests
|
||||
|
||||
tap.test('setup: ensure Docker containers are running', async () => {
|
||||
console.log('\n[Setup] Checking Docker containers...\n');
|
||||
|
||||
// Ensure PaddleOCR-VL Full Pipeline is running
|
||||
const paddleOk = await ensurePaddleOcrVlFull();
|
||||
expect(paddleOk).toBeTrue();
|
||||
|
||||
// Ensure Qwen2.5 is available (for text-only JSON extraction)
|
||||
const qwenOk = await ensureQwen25();
|
||||
expect(qwenOk).toBeTrue();
|
||||
|
||||
console.log('\n[Setup] All containers ready!\n');
|
||||
});
|
||||
|
||||
// Dynamic test for each PDF/JSON pair
|
||||
const testCases = findTestCases();
|
||||
console.log(`\nFound ${testCases.length} invoice test cases (PaddleOCR-VL Full Pipeline)\n`);
|
||||
|
||||
let passedCount = 0;
|
||||
let failedCount = 0;
|
||||
const processingTimes: number[] = [];
|
||||
|
||||
for (const testCase of testCases) {
|
||||
tap.test(`should extract invoice: ${testCase.name}`, async () => {
|
||||
// Load expected data
|
||||
const expected: IInvoice = JSON.parse(fs.readFileSync(testCase.jsonPath, 'utf-8'));
|
||||
console.log(`\n=== ${testCase.name} ===`);
|
||||
console.log(`Expected: ${expected.invoice_number} | ${expected.invoice_date} | ${expected.total_amount} ${expected.currency}`);
|
||||
|
||||
const startTime = Date.now();
|
||||
|
||||
// Convert PDF to images
|
||||
const images = convertPdfToImages(testCase.pdfPath);
|
||||
console.log(` Pages: ${images.length}`);
|
||||
|
||||
// Extract with consensus voting (PaddleOCR-VL Full -> MiniCPM)
|
||||
const extracted = await extractWithConsensus(images, testCase.name);
|
||||
|
||||
const endTime = Date.now();
|
||||
const elapsedMs = endTime - startTime;
|
||||
processingTimes.push(elapsedMs);
|
||||
|
||||
// Compare results
|
||||
const result = compareInvoice(extracted, expected);
|
||||
|
||||
if (result.match) {
|
||||
passedCount++;
|
||||
console.log(` Result: MATCH (${(elapsedMs / 1000).toFixed(1)}s)`);
|
||||
} else {
|
||||
failedCount++;
|
||||
console.log(` Result: MISMATCH (${(elapsedMs / 1000).toFixed(1)}s)`);
|
||||
result.errors.forEach((e) => console.log(` - ${e}`));
|
||||
}
|
||||
|
||||
// Assert match
|
||||
expect(result.match).toBeTrue();
|
||||
});
|
||||
}
|
||||
|
||||
tap.test('summary', async () => {
|
||||
const totalInvoices = testCases.length;
|
||||
const accuracy = totalInvoices > 0 ? (passedCount / totalInvoices) * 100 : 0;
|
||||
const totalTimeMs = processingTimes.reduce((a, b) => a + b, 0);
|
||||
const avgTimeMs = processingTimes.length > 0 ? totalTimeMs / processingTimes.length : 0;
|
||||
const avgTimeSec = avgTimeMs / 1000;
|
||||
const totalTimeSec = totalTimeMs / 1000;
|
||||
|
||||
console.log(`\n======================================================`);
|
||||
console.log(` Invoice Extraction Summary (PaddleOCR-VL Full)`);
|
||||
console.log(`======================================================`);
|
||||
console.log(` Method: PaddleOCR-VL Full Pipeline -> Qwen2.5 (text-only)`);
|
||||
console.log(` Passed: ${passedCount}/${totalInvoices}`);
|
||||
console.log(` Failed: ${failedCount}/${totalInvoices}`);
|
||||
console.log(` Accuracy: ${accuracy.toFixed(1)}%`);
|
||||
console.log(`------------------------------------------------------`);
|
||||
console.log(` Total time: ${totalTimeSec.toFixed(1)}s`);
|
||||
console.log(` Avg per inv: ${avgTimeSec.toFixed(1)}s`);
|
||||
console.log(`======================================================\n`);
|
||||
});
|
||||
|
||||
export default tap.start();
|
||||
Reference in New Issue
Block a user