4 Commits

Author SHA1 Message Date
0d8a1ebac2 v1.7.1
Some checks failed
Docker (tags) / security (push) Successful in 31s
Docker (tags) / test (push) Failing after 39s
Docker (tags) / release (push) Has been skipped
Docker (tags) / metadata (push) Has been skipped
2026-01-17 23:13:47 +00:00
5a311dca2d fix(docker): standardize Dockerfile and entrypoint filenames; add GPU-specific Dockerfiles and update build and test references 2026-01-17 23:13:47 +00:00
ab288380f1 v1.7.0
Some checks failed
Docker (tags) / security (push) Successful in 30s
Docker (tags) / test (push) Failing after 40s
Docker (tags) / release (push) Has been skipped
Docker (tags) / metadata (push) Has been skipped
2026-01-17 21:50:09 +00:00
30c73b24c1 feat(tests): use Qwen2.5 (Ollama) for invoice extraction tests and add helpers for model management; normalize dates and coerce numeric fields 2026-01-17 21:50:09 +00:00
13 changed files with 183 additions and 173 deletions

View File

@@ -14,7 +14,7 @@ ENV OLLAMA_ORIGINS="*"
ENV CUDA_VISIBLE_DEVICES="" ENV CUDA_VISIBLE_DEVICES=""
# Copy and setup entrypoint # Copy and setup entrypoint
COPY image_support_files/docker-entrypoint.sh /usr/local/bin/docker-entrypoint.sh COPY image_support_files/minicpm45v_entrypoint.sh /usr/local/bin/docker-entrypoint.sh
RUN chmod +x /usr/local/bin/docker-entrypoint.sh RUN chmod +x /usr/local/bin/docker-entrypoint.sh
# Expose Ollama API port # Expose Ollama API port

View File

@@ -12,7 +12,7 @@ ENV OLLAMA_HOST="0.0.0.0"
ENV OLLAMA_ORIGINS="*" ENV OLLAMA_ORIGINS="*"
# Copy and setup entrypoint # Copy and setup entrypoint
COPY image_support_files/docker-entrypoint.sh /usr/local/bin/docker-entrypoint.sh COPY image_support_files/minicpm45v_entrypoint.sh /usr/local/bin/docker-entrypoint.sh
RUN chmod +x /usr/local/bin/docker-entrypoint.sh RUN chmod +x /usr/local/bin/docker-entrypoint.sh
# Expose Ollama API port # Expose Ollama API port

View File

@@ -1,70 +0,0 @@
# PaddleOCR-VL GPU Variant
# Vision-Language Model for document parsing using vLLM
FROM nvidia/cuda:12.4.0-devel-ubuntu22.04
LABEL maintainer="Task Venture Capital GmbH <hello@task.vc>"
LABEL description="PaddleOCR-VL 0.9B - Vision-Language Model for document parsing"
LABEL org.opencontainers.image.source="https://code.foss.global/host.today/ht-docker-ai"
# Environment configuration
ENV DEBIAN_FRONTEND=noninteractive
ENV PYTHONUNBUFFERED=1
ENV HF_HOME=/root/.cache/huggingface
ENV VLLM_WORKER_MULTIPROC_METHOD=spawn
# Set working directory
WORKDIR /app
# Install system dependencies
RUN apt-get update && apt-get install -y --no-install-recommends \
python3.11 \
python3.11-venv \
python3.11-dev \
python3-pip \
git \
curl \
build-essential \
&& rm -rf /var/lib/apt/lists/* \
&& update-alternatives --install /usr/bin/python python /usr/bin/python3.11 1 \
&& update-alternatives --install /usr/bin/python3 python3 /usr/bin/python3.11 1
# Create and activate virtual environment
RUN python -m venv /opt/venv
ENV PATH="/opt/venv/bin:$PATH"
# Install PyTorch with CUDA support
RUN pip install --no-cache-dir --upgrade pip && \
pip install --no-cache-dir \
torch==2.5.1 \
torchvision \
--index-url https://download.pytorch.org/whl/cu124
# Install vLLM 0.11.1 (first stable release with PaddleOCR-VL support)
RUN pip install --no-cache-dir \
vllm==0.11.1 \
--extra-index-url https://download.pytorch.org/whl/cu124
# Install additional dependencies
RUN pip install --no-cache-dir \
transformers \
accelerate \
safetensors \
pillow \
fastapi \
uvicorn[standard] \
python-multipart \
openai \
httpx
# Copy entrypoint script
COPY image_support_files/paddleocr-vl-entrypoint.sh /usr/local/bin/paddleocr-vl-entrypoint.sh
RUN chmod +x /usr/local/bin/paddleocr-vl-entrypoint.sh
# Expose vLLM API port
EXPOSE 8000
# Health check
HEALTHCHECK --interval=30s --timeout=10s --start-period=300s --retries=3 \
CMD curl -f http://localhost:8000/health || exit 1
ENTRYPOINT ["/usr/local/bin/paddleocr-vl-entrypoint.sh"]

View File

@@ -44,7 +44,7 @@ RUN pip install --no-cache-dir --upgrade pip && \
# Copy server files # Copy server files
COPY image_support_files/paddleocr_vl_server.py /app/paddleocr_vl_server.py COPY image_support_files/paddleocr_vl_server.py /app/paddleocr_vl_server.py
COPY image_support_files/paddleocr-vl-cpu-entrypoint.sh /usr/local/bin/paddleocr-vl-cpu-entrypoint.sh COPY image_support_files/paddleocr_vl_entrypoint.sh /usr/local/bin/paddleocr-vl-cpu-entrypoint.sh
RUN chmod +x /usr/local/bin/paddleocr-vl-cpu-entrypoint.sh RUN chmod +x /usr/local/bin/paddleocr-vl-cpu-entrypoint.sh
# Expose API port # Expose API port

View File

@@ -58,7 +58,7 @@ RUN pip install --no-cache-dir \
# Copy server files (same as CPU variant - it auto-detects CUDA) # Copy server files (same as CPU variant - it auto-detects CUDA)
COPY image_support_files/paddleocr_vl_server.py /app/paddleocr_vl_server.py COPY image_support_files/paddleocr_vl_server.py /app/paddleocr_vl_server.py
COPY image_support_files/paddleocr-vl-cpu-entrypoint.sh /usr/local/bin/paddleocr-vl-entrypoint.sh COPY image_support_files/paddleocr_vl_entrypoint.sh /usr/local/bin/paddleocr-vl-entrypoint.sh
RUN chmod +x /usr/local/bin/paddleocr-vl-entrypoint.sh RUN chmod +x /usr/local/bin/paddleocr-vl-entrypoint.sh
# Expose API port # Expose API port

View File

@@ -16,7 +16,7 @@ echo -e "${BLUE}Building ht-docker-ai images...${NC}"
# Build GPU variant # Build GPU variant
echo -e "${GREEN}Building MiniCPM-V 4.5 GPU variant...${NC}" echo -e "${GREEN}Building MiniCPM-V 4.5 GPU variant...${NC}"
docker build \ docker build \
-f Dockerfile_minicpm45v \ -f Dockerfile_minicpm45v_gpu \
-t ${REGISTRY}/${NAMESPACE}/${IMAGE_NAME}:minicpm45v \ -t ${REGISTRY}/${NAMESPACE}/${IMAGE_NAME}:minicpm45v \
-t ${REGISTRY}/${NAMESPACE}/${IMAGE_NAME}:minicpm45v-gpu \ -t ${REGISTRY}/${NAMESPACE}/${IMAGE_NAME}:minicpm45v-gpu \
-t ${REGISTRY}/${NAMESPACE}/${IMAGE_NAME}:latest \ -t ${REGISTRY}/${NAMESPACE}/${IMAGE_NAME}:latest \
@@ -29,10 +29,10 @@ docker build \
-t ${REGISTRY}/${NAMESPACE}/${IMAGE_NAME}:minicpm45v-cpu \ -t ${REGISTRY}/${NAMESPACE}/${IMAGE_NAME}:minicpm45v-cpu \
. .
# Build PaddleOCR-VL GPU variant (vLLM) # Build PaddleOCR-VL GPU variant
echo -e "${GREEN}Building PaddleOCR-VL GPU variant (vLLM)...${NC}" echo -e "${GREEN}Building PaddleOCR-VL GPU variant...${NC}"
docker build \ docker build \
-f Dockerfile_paddleocr_vl \ -f Dockerfile_paddleocr_vl_gpu \
-t ${REGISTRY}/${NAMESPACE}/${IMAGE_NAME}:paddleocr-vl \ -t ${REGISTRY}/${NAMESPACE}/${IMAGE_NAME}:paddleocr-vl \
-t ${REGISTRY}/${NAMESPACE}/${IMAGE_NAME}:paddleocr-vl-gpu \ -t ${REGISTRY}/${NAMESPACE}/${IMAGE_NAME}:paddleocr-vl-gpu \
. .

View File

@@ -1,5 +1,23 @@
# Changelog # Changelog
## 2026-01-17 - 1.7.1 - fix(docker)
standardize Dockerfile and entrypoint filenames; add GPU-specific Dockerfiles and update build and test references
- Added Dockerfile_minicpm45v_gpu and image_support_files/minicpm45v_entrypoint.sh; removed the old Dockerfile_minicpm45v and docker-entrypoint.sh
- Renamed and simplified PaddleOCR entrypoint to image_support_files/paddleocr_vl_entrypoint.sh and updated CPU/GPU Dockerfile references
- Updated build-images.sh to use *_gpu Dockerfiles and clarified PaddleOCR GPU build log
- Updated test/helpers/docker.ts to point to Dockerfile_minicpm45v_gpu so tests build the GPU variant
## 2026-01-17 - 1.7.0 - feat(tests)
use Qwen2.5 (Ollama) for invoice extraction tests and add helpers for model management; normalize dates and coerce numeric fields
- Added ensureOllamaModel and ensureQwen25 test helpers to pull/check Ollama models via localhost:11434
- Updated invoices test to use qwen2.5:7b instead of MiniCPM and removed image payload from the text-only extraction step
- Increased Markdown truncate limit from 8000 to 12000 and reduced model num_predict from 2048 to 512
- Rewrote extraction prompt to require strict JSON output and added post-processing to parse/convert numeric fields
- Added normalizeDate and improved compareInvoice to normalize dates and handle numeric formatting/tolerance
- Updated test setup to ensure Qwen2.5 is available and adjusted logging/messages to reflect the Qwen2.5-based workflow
## 2026-01-17 - 1.6.0 - feat(paddleocr-vl) ## 2026-01-17 - 1.6.0 - feat(paddleocr-vl)
add PaddleOCR-VL full pipeline Docker image and API server, plus integration tests and docker helpers add PaddleOCR-VL full pipeline Docker image and API server, plus integration tests and docker helpers

View File

@@ -1,59 +0,0 @@
#!/bin/bash
set -e
echo "==================================="
echo "PaddleOCR-VL Server"
echo "==================================="
# Configuration
MODEL_NAME="${MODEL_NAME:-PaddlePaddle/PaddleOCR-VL}"
HOST="${HOST:-0.0.0.0}"
PORT="${PORT:-8000}"
MAX_BATCHED_TOKENS="${MAX_BATCHED_TOKENS:-16384}"
GPU_MEMORY_UTILIZATION="${GPU_MEMORY_UTILIZATION:-0.9}"
MAX_MODEL_LEN="${MAX_MODEL_LEN:-8192}"
ENFORCE_EAGER="${ENFORCE_EAGER:-false}"
echo "Model: ${MODEL_NAME}"
echo "Host: ${HOST}"
echo "Port: ${PORT}"
echo "Max batched tokens: ${MAX_BATCHED_TOKENS}"
echo "GPU memory utilization: ${GPU_MEMORY_UTILIZATION}"
echo "Max model length: ${MAX_MODEL_LEN}"
echo "Enforce eager: ${ENFORCE_EAGER}"
echo ""
# Check GPU availability
if command -v nvidia-smi &> /dev/null; then
echo "GPU Information:"
nvidia-smi --query-gpu=name,memory.total,memory.free --format=csv
echo ""
else
echo "WARNING: nvidia-smi not found. GPU may not be available."
fi
echo "Starting vLLM server..."
echo "==================================="
# Build vLLM command
VLLM_ARGS=(
serve "${MODEL_NAME}"
--trust-remote-code
--host "${HOST}"
--port "${PORT}"
--max-num-batched-tokens "${MAX_BATCHED_TOKENS}"
--gpu-memory-utilization "${GPU_MEMORY_UTILIZATION}"
--max-model-len "${MAX_MODEL_LEN}"
--no-enable-prefix-caching
--mm-processor-cache-gb 0
--served-model-name "paddleocr-vl"
--limit-mm-per-prompt '{"image": 1}'
)
# Add enforce-eager if enabled (disables CUDA graphs, saves memory)
if [ "${ENFORCE_EAGER}" = "true" ]; then
VLLM_ARGS+=(--enforce-eager)
fi
# Start vLLM server with PaddleOCR-VL
exec vllm "${VLLM_ARGS[@]}"

View File

@@ -1,6 +1,6 @@
{ {
"name": "@host.today/ht-docker-ai", "name": "@host.today/ht-docker-ai",
"version": "1.6.0", "version": "1.7.1",
"type": "module", "type": "module",
"private": false, "private": false,
"description": "Docker images for AI vision-language models including MiniCPM-V 4.5", "description": "Docker images for AI vision-language models including MiniCPM-V 4.5",

View File

@@ -49,7 +49,7 @@ export const IMAGES = {
minicpm: { minicpm: {
name: 'minicpm45v', name: 'minicpm45v',
dockerfile: 'Dockerfile_minicpm45v', dockerfile: 'Dockerfile_minicpm45v_gpu',
buildContext: '.', buildContext: '.',
containerName: 'minicpm-test', containerName: 'minicpm-test',
ports: ['11434:11434'], ports: ['11434:11434'],
@@ -295,3 +295,66 @@ export async function ensurePaddleOcrVlFull(): Promise<boolean> {
} }
return ensureService(IMAGES.paddleocrVlFull); return ensureService(IMAGES.paddleocrVlFull);
} }
/**
* Ensure an Ollama model is pulled and available
* Uses the MiniCPM container (which runs Ollama) to pull the model
*/
export async function ensureOllamaModel(modelName: string): Promise<boolean> {
const OLLAMA_URL = 'http://localhost:11434';
console.log(`\n[Ollama] Ensuring model: ${modelName}`);
// Check if model exists
try {
const response = await fetch(`${OLLAMA_URL}/api/tags`);
if (response.ok) {
const data = await response.json();
const models = data.models || [];
const exists = models.some((m: { name: string }) =>
m.name === modelName || m.name.startsWith(modelName.split(':')[0])
);
if (exists) {
console.log(`[Ollama] Model already available: ${modelName}`);
return true;
}
}
} catch {
console.log(`[Ollama] Cannot check models, Ollama may not be running`);
return false;
}
// Pull the model
console.log(`[Ollama] Pulling model: ${modelName} (this may take a while)...`);
try {
const response = await fetch(`${OLLAMA_URL}/api/pull`, {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({ name: modelName, stream: false }),
});
if (response.ok) {
console.log(`[Ollama] Model pulled successfully: ${modelName}`);
return true;
} else {
console.log(`[Ollama] Failed to pull model: ${response.status}`);
return false;
}
} catch (err) {
console.log(`[Ollama] Error pulling model: ${err}`);
return false;
}
}
/**
* Ensure Qwen2.5 7B model is available (for text-only JSON extraction)
*/
export async function ensureQwen25(): Promise<boolean> {
// First ensure the Ollama service (MiniCPM container) is running
const ollamaOk = await ensureMiniCpm();
if (!ollamaOk) return false;
// Then ensure the Qwen2.5 model is pulled
return ensureOllamaModel('qwen2.5:7b');
}

View File

@@ -15,11 +15,12 @@ import * as fs from 'fs';
import * as path from 'path'; import * as path from 'path';
import { execSync } from 'child_process'; import { execSync } from 'child_process';
import * as os from 'os'; import * as os from 'os';
import { ensurePaddleOcrVlFull, ensureMiniCpm } from './helpers/docker.js'; import { ensurePaddleOcrVlFull, ensureQwen25 } from './helpers/docker.js';
const PADDLEOCR_VL_URL = 'http://localhost:8000'; const PADDLEOCR_VL_URL = 'http://localhost:8000';
const OLLAMA_URL = 'http://localhost:11434'; const OLLAMA_URL = 'http://localhost:11434';
const MINICPM_MODEL = 'minicpm-v:latest'; // Use Qwen2.5 for text-only JSON extraction (not MiniCPM which is vision-focused)
const TEXT_MODEL = 'qwen2.5:7b';
interface IInvoice { interface IInvoice {
invoice_number: string; invoice_number: string;
@@ -87,42 +88,45 @@ async function parseDocument(imageBase64: string): Promise<string> {
} }
/** /**
* Extract invoice fields from structured Markdown using MiniCPM with image context * Extract invoice fields from structured Markdown using Qwen2.5 (text-only model)
*/ */
async function extractInvoiceFromMarkdown(markdown: string, images: string[]): Promise<IInvoice> { async function extractInvoiceFromMarkdown(markdown: string): Promise<IInvoice> {
// Truncate if too long // Truncate if too long
const truncated = markdown.length > 8000 ? markdown.slice(0, 8000) : markdown; const truncated = markdown.length > 12000 ? markdown.slice(0, 12000) : markdown;
console.log(` [Extract] Processing ${truncated.length} chars of Markdown`); console.log(` [Extract] Processing ${truncated.length} chars of Markdown`);
const prompt = `/nothink const prompt = `You are an invoice data extractor. Extract the following fields from this OCR text and return ONLY a valid JSON object.
You are an invoice parser. Extract fields from this invoice image.
Required fields: Required fields:
- invoice_number: The invoice/receipt number - invoice_number: The invoice/receipt/document number
- invoice_date: Date in YYYY-MM-DD format - invoice_date: Date in YYYY-MM-DD format (convert from any format)
- vendor_name: Company that issued the invoice - vendor_name: Company that issued the invoice
- currency: EUR, USD, etc. - currency: EUR, USD, GBP, etc.
- net_amount: Amount before tax - net_amount: Amount before tax (number)
- vat_amount: Tax/VAT amount (0 if reverse charge) - vat_amount: Tax/VAT amount (number, use 0 if reverse charge or not shown)
- total_amount: Final amount due - total_amount: Final total amount (number)
Return ONLY a JSON object like: Example output format:
{"invoice_number":"123","invoice_date":"2022-01-28","vendor_name":"Adobe","currency":"EUR","net_amount":24.99,"vat_amount":0,"total_amount":24.99} {"invoice_number":"INV-123","invoice_date":"2022-01-28","vendor_name":"Adobe","currency":"EUR","net_amount":24.99,"vat_amount":0,"total_amount":24.99}
Use null for missing strings, 0 for missing numbers. No explanation. Rules:
- Return ONLY the JSON object, no explanation or markdown
- Use null for missing string fields
- Use 0 for missing numeric fields
- Convert dates to YYYY-MM-DD format (e.g., "28-JAN-2022" becomes "2022-01-28")
- Extract numbers without currency symbols
OCR text from the invoice (for reference): OCR Text:
---
${truncated} ${truncated}
---`;
JSON:`;
const payload = { const payload = {
model: MINICPM_MODEL, model: TEXT_MODEL,
prompt, prompt,
images, // Send the actual image to MiniCPM
stream: true, stream: true,
options: { options: {
num_predict: 2048, num_predict: 512,
temperature: 0.1, temperature: 0.1,
}, },
}; };
@@ -173,26 +177,41 @@ ${truncated}
} }
const jsonStr = fullText.substring(startIdx, endIdx); const jsonStr = fullText.substring(startIdx, endIdx);
return JSON.parse(jsonStr); const parsed = JSON.parse(jsonStr);
// Ensure numeric fields are actually numbers
return {
invoice_number: parsed.invoice_number || null,
invoice_date: parsed.invoice_date || null,
vendor_name: parsed.vendor_name || null,
currency: parsed.currency || 'EUR',
net_amount: parseFloat(parsed.net_amount) || 0,
vat_amount: parseFloat(parsed.vat_amount) || 0,
total_amount: parseFloat(parsed.total_amount) || 0,
};
} }
/** /**
* Single extraction pass: Parse with PaddleOCR-VL Full, extract with MiniCPM * Single extraction pass: Parse with PaddleOCR-VL Full, extract with Qwen2.5 (text-only)
*/ */
async function extractOnce(images: string[], passNum: number): Promise<IInvoice> { async function extractOnce(images: string[], passNum: number): Promise<IInvoice> {
// Parse document with full pipeline // Parse document with full pipeline (PaddleOCR-VL)
const markdown = await parseDocument(images[0]); const markdown = await parseDocument(images[0]);
console.log(` [Parse] Got ${markdown.split('\n').length} lines of Markdown`); console.log(` [Parse] Got ${markdown.split('\n').length} lines of Markdown`);
// Extract invoice fields from Markdown with image context // Extract invoice fields from Markdown using text-only model (no images)
return extractInvoiceFromMarkdown(markdown, images); return extractInvoiceFromMarkdown(markdown);
} }
/** /**
* Create a hash of invoice for comparison (using key fields) * Create a hash of invoice for comparison (using key fields)
*/ */
function hashInvoice(invoice: IInvoice): string { function hashInvoice(invoice: IInvoice): string {
return `${invoice.invoice_number}|${invoice.invoice_date}|${invoice.total_amount.toFixed(2)}`; // Ensure total_amount is a number
const amount = typeof invoice.total_amount === 'number'
? invoice.total_amount.toFixed(2)
: String(invoice.total_amount || 0);
return `${invoice.invoice_number}|${invoice.invoice_date}|${amount}`;
} }
/** /**
@@ -243,6 +262,43 @@ async function extractWithConsensus(images: string[], invoiceName: string, maxPa
return best.invoice; return best.invoice;
} }
/**
* Normalize date to YYYY-MM-DD format
*/
function normalizeDate(dateStr: string | null): string {
if (!dateStr) return '';
// Already in correct format
if (/^\d{4}-\d{2}-\d{2}$/.test(dateStr)) {
return dateStr;
}
// Handle DD-MMM-YYYY format (e.g., "28-JUN-2022")
const monthMap: Record<string, string> = {
JAN: '01', FEB: '02', MAR: '03', APR: '04', MAY: '05', JUN: '06',
JUL: '07', AUG: '08', SEP: '09', OCT: '10', NOV: '11', DEC: '12',
};
const match = dateStr.match(/^(\d{1,2})-([A-Z]{3})-(\d{4})$/i);
if (match) {
const day = match[1].padStart(2, '0');
const month = monthMap[match[2].toUpperCase()] || '01';
const year = match[3];
return `${year}-${month}-${day}`;
}
// Handle DD/MM/YYYY or DD.MM.YYYY
const match2 = dateStr.match(/^(\d{1,2})[\/.](\d{1,2})[\/.](\d{4})$/);
if (match2) {
const day = match2[1].padStart(2, '0');
const month = match2[2].padStart(2, '0');
const year = match2[3];
return `${year}-${month}-${day}`;
}
return dateStr;
}
/** /**
* Compare extracted invoice against expected * Compare extracted invoice against expected
*/ */
@@ -259,8 +315,10 @@ function compareInvoice(
errors.push(`invoice_number: expected "${expected.invoice_number}", got "${extracted.invoice_number}"`); errors.push(`invoice_number: expected "${expected.invoice_number}", got "${extracted.invoice_number}"`);
} }
// Compare date // Compare date (normalize format first)
if (extracted.invoice_date !== expected.invoice_date) { const extDate = normalizeDate(extracted.invoice_date);
const expDate = normalizeDate(expected.invoice_date);
if (extDate !== expDate) {
errors.push(`invoice_date: expected "${expected.invoice_date}", got "${extracted.invoice_date}"`); errors.push(`invoice_date: expected "${expected.invoice_date}", got "${extracted.invoice_date}"`);
} }
@@ -317,9 +375,9 @@ tap.test('setup: ensure Docker containers are running', async () => {
const paddleOk = await ensurePaddleOcrVlFull(); const paddleOk = await ensurePaddleOcrVlFull();
expect(paddleOk).toBeTrue(); expect(paddleOk).toBeTrue();
// Ensure MiniCPM is running (for field extraction from Markdown) // Ensure Qwen2.5 is available (for text-only JSON extraction)
const minicpmOk = await ensureMiniCpm(); const qwenOk = await ensureQwen25();
expect(minicpmOk).toBeTrue(); expect(qwenOk).toBeTrue();
console.log('\n[Setup] All containers ready!\n'); console.log('\n[Setup] All containers ready!\n');
}); });
@@ -380,7 +438,7 @@ tap.test('summary', async () => {
console.log(`\n======================================================`); console.log(`\n======================================================`);
console.log(` Invoice Extraction Summary (PaddleOCR-VL Full)`); console.log(` Invoice Extraction Summary (PaddleOCR-VL Full)`);
console.log(`======================================================`); console.log(`======================================================`);
console.log(` Method: PaddleOCR-VL Full Pipeline -> MiniCPM`); console.log(` Method: PaddleOCR-VL Full Pipeline -> Qwen2.5 (text-only)`);
console.log(` Passed: ${passedCount}/${totalInvoices}`); console.log(` Passed: ${passedCount}/${totalInvoices}`);
console.log(` Failed: ${failedCount}/${totalInvoices}`); console.log(` Failed: ${failedCount}/${totalInvoices}`);
console.log(` Accuracy: ${accuracy.toFixed(1)}%`); console.log(` Accuracy: ${accuracy.toFixed(1)}%`);