2 Commits

Author SHA1 Message Date
d237ad19f4 v1.9.0
Some checks failed
Docker (tags) / security (push) Successful in 33s
Docker (tags) / test (push) Failing after 39s
Docker (tags) / release (push) Has been skipped
Docker (tags) / metadata (push) Has been skipped
2026-01-18 02:53:24 +00:00
7652a2df52 feat(tests): add Ministral 3 vision tests and improve invoice extraction pipeline to use Ollama chat schema, sanitization, and multi-page support 2026-01-18 02:53:24 +00:00
6 changed files with 825 additions and 58 deletions

View File

@@ -1,5 +1,15 @@
# Changelog
## 2026-01-18 - 1.9.0 - feat(tests)
add Ministral 3 vision tests and improve invoice extraction pipeline to use Ollama chat schema, sanitization, and multi-page support
- Add new vision-based test suites for Ministral 3: test/test.invoices.ministral3.ts and test/test.bankstatements.ministral3.ts (model ministral-3:8b).
- Introduce ensureMinistral3() helper to start/check Ollama/MiniCPM model in test/helpers/docker.ts.
- Switch invoice extraction to use Ollama /api/chat with a JSON schema (format) and streaming support (reads message.content).
- Improve HTML handling: sanitizeHtml() to remove OCR artifacts, concatenate multi-page HTML with page markers, and increase truncation limits.
- Enhance response parsing: strip Markdown code fences, robustly locate JSON object boundaries, and provide clearer JSON parse errors.
- Add PDF->PNG conversion (ImageMagick) and direct image-based extraction flow for vision model tests.
## 2026-01-18 - 1.8.0 - feat(paddleocr-vl)
add structured HTML output and table parsing for PaddleOCR-VL, update API, tests, and README

View File

@@ -1,6 +1,6 @@
{
"name": "@host.today/ht-docker-ai",
"version": "1.8.0",
"version": "1.9.0",
"type": "module",
"private": false,
"description": "Docker images for AI vision-language models including MiniCPM-V 4.5",

View File

@@ -358,3 +358,16 @@ export async function ensureQwen25(): Promise<boolean> {
// Then ensure the Qwen2.5 model is pulled
return ensureOllamaModel('qwen2.5:7b');
}
/**
* Ensure Ministral 3 8B model is available (for structured JSON extraction)
* Ministral 3 has native JSON output support and OCR-style document extraction
*/
export async function ensureMinistral3(): Promise<boolean> {
// First ensure the Ollama service (MiniCPM container) is running
const ollamaOk = await ensureMiniCpm();
if (!ollamaOk) return false;
// Then ensure the Ministral 3 8B model is pulled
return ensureOllamaModel('ministral-3:8b');
}

View File

@@ -0,0 +1,348 @@
/**
* Bank Statement extraction using Ministral 3 Vision (Direct)
*
* NO OCR pipeline needed - Ministral 3 has built-in vision encoder:
* 1. Convert PDF to images
* 2. Send images directly to Ministral 3 via Ollama
* 3. Extract transactions as structured JSON
*/
import { tap, expect } from '@git.zone/tstest/tapbundle';
import * as fs from 'fs';
import * as path from 'path';
import { execSync } from 'child_process';
import * as os from 'os';
import { ensureMinistral3 } from './helpers/docker.js';
const OLLAMA_URL = 'http://localhost:11434';
const VISION_MODEL = 'ministral-3:8b';
interface ITransaction {
date: string;
counterparty: string;
amount: number;
}
/**
* Convert PDF to PNG images using ImageMagick
*/
function convertPdfToImages(pdfPath: string): string[] {
const tempDir = fs.mkdtempSync(path.join(os.tmpdir(), 'pdf-convert-'));
const outputPattern = path.join(tempDir, 'page-%d.png');
try {
execSync(
`convert -density 200 -quality 90 "${pdfPath}" -background white -alpha remove "${outputPattern}"`,
{ stdio: 'pipe' }
);
const files = fs.readdirSync(tempDir).filter((f) => f.endsWith('.png')).sort();
const images: string[] = [];
for (const file of files) {
const imagePath = path.join(tempDir, file);
const imageData = fs.readFileSync(imagePath);
images.push(imageData.toString('base64'));
}
return images;
} finally {
fs.rmSync(tempDir, { recursive: true, force: true });
}
}
/**
* Extract transactions from a single page image using Ministral 3 Vision
*/
async function extractTransactionsFromPage(image: string, pageNum: number): Promise<ITransaction[]> {
console.log(` [Vision] Processing page ${pageNum}`);
// JSON schema for array of transactions
const transactionSchema = {
type: 'array',
items: {
type: 'object',
properties: {
date: { type: 'string', description: 'Transaction date in YYYY-MM-DD format' },
counterparty: { type: 'string', description: 'Name of the other party' },
amount: { type: 'number', description: 'Amount (negative for debits, positive for credits)' },
},
required: ['date', 'counterparty', 'amount'],
},
};
const prompt = `Extract ALL bank transactions from this bank statement page.
For each transaction, extract:
- date: Transaction date in YYYY-MM-DD format
- counterparty: The name/description of the other party (merchant, payee, etc.)
- amount: The amount as a number (NEGATIVE for debits/expenses, POSITIVE for credits/income)
Return a JSON array of transactions. If no transactions visible, return empty array [].
Example: [{"date":"2021-06-01","counterparty":"AMAZON","amount":-50.00}]`;
const response = await fetch(`${OLLAMA_URL}/api/chat`, {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({
model: VISION_MODEL,
messages: [
{
role: 'user',
content: prompt,
images: [image],
},
],
format: transactionSchema,
stream: true,
options: {
num_predict: 4096, // Bank statements can have many transactions
temperature: 0.0,
},
}),
});
if (!response.ok) {
throw new Error(`Ollama API error: ${response.status}`);
}
const reader = response.body?.getReader();
if (!reader) {
throw new Error('No response body');
}
const decoder = new TextDecoder();
let fullText = '';
while (true) {
const { done, value } = await reader.read();
if (done) break;
const chunk = decoder.decode(value, { stream: true });
const lines = chunk.split('\n').filter((l) => l.trim());
for (const line of lines) {
try {
const json = JSON.parse(line);
if (json.message?.content) {
fullText += json.message.content;
}
} catch {
// Skip invalid JSON lines
}
}
}
// Parse JSON response
let jsonStr = fullText.trim();
if (jsonStr.startsWith('```json')) jsonStr = jsonStr.slice(7);
else if (jsonStr.startsWith('```')) jsonStr = jsonStr.slice(3);
if (jsonStr.endsWith('```')) jsonStr = jsonStr.slice(0, -3);
jsonStr = jsonStr.trim();
// Find array boundaries
const startIdx = jsonStr.indexOf('[');
const endIdx = jsonStr.lastIndexOf(']') + 1;
if (startIdx < 0 || endIdx <= startIdx) {
console.log(` [Page ${pageNum}] No transactions found`);
return [];
}
try {
const parsed = JSON.parse(jsonStr.substring(startIdx, endIdx));
console.log(` [Page ${pageNum}] Found ${parsed.length} transactions`);
return parsed.map((t: { date?: string; counterparty?: string; amount?: number }) => ({
date: t.date || '',
counterparty: t.counterparty || '',
amount: parseFloat(String(t.amount)) || 0,
}));
} catch (e) {
console.log(` [Page ${pageNum}] Parse error: ${e}`);
return [];
}
}
/**
* Extract all transactions from all pages
*/
async function extractAllTransactions(images: string[]): Promise<ITransaction[]> {
const allTransactions: ITransaction[] = [];
for (let i = 0; i < images.length; i++) {
const pageTransactions = await extractTransactionsFromPage(images[i], i + 1);
allTransactions.push(...pageTransactions);
}
return allTransactions;
}
/**
* Normalize date to YYYY-MM-DD
*/
function normalizeDate(dateStr: string): string {
if (!dateStr) return '';
if (/^\d{4}-\d{2}-\d{2}$/.test(dateStr)) return dateStr;
// Handle DD/MM/YYYY or DD.MM.YYYY
const match = dateStr.match(/^(\d{1,2})[\/.](\d{1,2})[\/.](\d{4})$/);
if (match) {
return `${match[3]}-${match[2].padStart(2, '0')}-${match[1].padStart(2, '0')}`;
}
return dateStr;
}
/**
* Compare extracted transactions vs expected
*/
function compareTransactions(
extracted: ITransaction[],
expected: ITransaction[]
): { matchRate: number; matched: number; missed: number; extra: number; errors: string[] } {
const errors: string[] = [];
let matched = 0;
// Normalize all dates
const normalizedExtracted = extracted.map((t) => ({
...t,
date: normalizeDate(t.date),
counterparty: t.counterparty.toUpperCase().trim(),
}));
const normalizedExpected = expected.map((t) => ({
...t,
date: normalizeDate(t.date),
counterparty: t.counterparty.toUpperCase().trim(),
}));
// Try to match each expected transaction
const matchedIndices = new Set<number>();
for (const exp of normalizedExpected) {
let found = false;
for (let i = 0; i < normalizedExtracted.length; i++) {
if (matchedIndices.has(i)) continue;
const ext = normalizedExtracted[i];
// Match by date + amount (counterparty names can vary)
if (ext.date === exp.date && Math.abs(ext.amount - exp.amount) < 0.02) {
matched++;
matchedIndices.add(i);
found = true;
break;
}
}
if (!found) {
errors.push(`Missing: ${exp.date} | ${exp.counterparty} | ${exp.amount}`);
}
}
const missed = expected.length - matched;
const extra = extracted.length - matched;
const matchRate = expected.length > 0 ? (matched / expected.length) * 100 : 0;
return { matchRate, matched, missed, extra, errors };
}
/**
* Find test cases (PDF + JSON pairs in .nogit/)
*/
function findTestCases(): Array<{ name: string; pdfPath: string; jsonPath: string }> {
const testDir = path.join(process.cwd(), '.nogit');
if (!fs.existsSync(testDir)) return [];
const files = fs.readdirSync(testDir);
const testCases: Array<{ name: string; pdfPath: string; jsonPath: string }> = [];
for (const pdf of files.filter((f) => f.endsWith('.pdf'))) {
const baseName = pdf.replace('.pdf', '');
const jsonFile = `${baseName}.json`;
if (files.includes(jsonFile)) {
// Skip invoice files - only bank statements
if (!baseName.includes('invoice')) {
testCases.push({
name: baseName,
pdfPath: path.join(testDir, pdf),
jsonPath: path.join(testDir, jsonFile),
});
}
}
}
return testCases.sort((a, b) => a.name.localeCompare(b.name));
}
// Tests
tap.test('setup: ensure Ministral 3 is running', async () => {
console.log('\n[Setup] Checking Ministral 3...\n');
const ok = await ensureMinistral3();
expect(ok).toBeTrue();
console.log('\n[Setup] Ready!\n');
});
const testCases = findTestCases();
console.log(`\nFound ${testCases.length} bank statement test cases (Ministral 3 Vision)\n`);
let totalMatched = 0;
let totalExpected = 0;
const times: number[] = [];
for (const testCase of testCases) {
tap.test(`should extract bank statement: ${testCase.name}`, async () => {
const expected: ITransaction[] = JSON.parse(fs.readFileSync(testCase.jsonPath, 'utf-8'));
console.log(`\n=== ${testCase.name} ===`);
console.log(`Expected: ${expected.length} transactions`);
const start = Date.now();
const images = convertPdfToImages(testCase.pdfPath);
console.log(` Pages: ${images.length}`);
const extracted = await extractAllTransactions(images);
const elapsed = Date.now() - start;
times.push(elapsed);
console.log(` Extracted: ${extracted.length} transactions`);
const result = compareTransactions(extracted, expected);
totalMatched += result.matched;
totalExpected += expected.length;
console.log(` Match rate: ${result.matchRate.toFixed(1)}% (${result.matched}/${expected.length})`);
console.log(` Missed: ${result.missed}, Extra: ${result.extra}`);
console.log(` Time: ${(elapsed / 1000).toFixed(1)}s`);
if (result.errors.length > 0 && result.errors.length <= 5) {
result.errors.forEach((e) => console.log(` - ${e}`));
} else if (result.errors.length > 5) {
console.log(` (${result.errors.length} missing transactions)`);
}
// Consider it a pass if we match at least 70% of transactions
expect(result.matchRate).toBeGreaterThan(70);
});
}
tap.test('summary', async () => {
const overallMatchRate = totalExpected > 0 ? (totalMatched / totalExpected) * 100 : 0;
const totalTime = times.reduce((a, b) => a + b, 0) / 1000;
const avgTime = times.length > 0 ? totalTime / times.length : 0;
console.log(`\n======================================================`);
console.log(` Bank Statement Extraction Summary (Ministral 3)`);
console.log(`======================================================`);
console.log(` Method: Ministral 3 8B Vision (Direct)`);
console.log(` Statements: ${testCases.length}`);
console.log(` Matched: ${totalMatched}/${totalExpected} transactions`);
console.log(` Match rate: ${overallMatchRate.toFixed(1)}%`);
console.log(`------------------------------------------------------`);
console.log(` Total time: ${totalTime.toFixed(1)}s`);
console.log(` Avg per stmt: ${avgTime.toFixed(1)}s`);
console.log(`======================================================\n`);
});
export default tap.start();

View File

@@ -0,0 +1,355 @@
/**
* Invoice extraction using Ministral 3 Vision (Direct)
*
* NO PaddleOCR needed - Ministral 3 has built-in vision encoder:
* 1. Convert PDF to images
* 2. Send images directly to Ministral 3 via Ollama
* 3. Extract structured JSON with native schema support
*
* This is the simplest possible pipeline.
*/
import { tap, expect } from '@git.zone/tstest/tapbundle';
import * as fs from 'fs';
import * as path from 'path';
import { execSync } from 'child_process';
import * as os from 'os';
import { ensureMinistral3 } from './helpers/docker.js';
const OLLAMA_URL = 'http://localhost:11434';
const VISION_MODEL = 'ministral-3:8b';
interface IInvoice {
invoice_number: string;
invoice_date: string;
vendor_name: string;
currency: string;
net_amount: number;
vat_amount: number;
total_amount: number;
}
/**
* Convert PDF to PNG images using ImageMagick
*/
function convertPdfToImages(pdfPath: string): string[] {
const tempDir = fs.mkdtempSync(path.join(os.tmpdir(), 'pdf-convert-'));
const outputPattern = path.join(tempDir, 'page-%d.png');
try {
execSync(
`convert -density 200 -quality 90 "${pdfPath}" -background white -alpha remove "${outputPattern}"`,
{ stdio: 'pipe' }
);
const files = fs.readdirSync(tempDir).filter((f) => f.endsWith('.png')).sort();
const images: string[] = [];
for (const file of files) {
const imagePath = path.join(tempDir, file);
const imageData = fs.readFileSync(imagePath);
images.push(imageData.toString('base64'));
}
return images;
} finally {
fs.rmSync(tempDir, { recursive: true, force: true });
}
}
/**
* Extract invoice data directly from images using Ministral 3 Vision
*/
async function extractInvoiceFromImages(images: string[]): Promise<IInvoice> {
console.log(` [Vision] Processing ${images.length} page(s) with Ministral 3`);
// JSON schema for structured output
const invoiceSchema = {
type: 'object',
properties: {
invoice_number: { type: 'string' },
invoice_date: { type: 'string' },
vendor_name: { type: 'string' },
currency: { type: 'string' },
net_amount: { type: 'number' },
vat_amount: { type: 'number' },
total_amount: { type: 'number' },
},
required: ['invoice_number', 'invoice_date', 'vendor_name', 'currency', 'net_amount', 'vat_amount', 'total_amount'],
};
const prompt = `Extract invoice data from this document image(s).
Find and return:
- invoice_number: The invoice number/ID (look for "Invoice No", "Invoice #", "Rechnung Nr")
- invoice_date: The invoice date in YYYY-MM-DD format
- vendor_name: The company issuing the invoice (in letterhead)
- currency: EUR, USD, or GBP
- total_amount: The FINAL total amount due
- net_amount: Amount before VAT/tax
- vat_amount: VAT/tax amount
Return ONLY valid JSON.`;
const response = await fetch(`${OLLAMA_URL}/api/chat`, {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({
model: VISION_MODEL,
messages: [
{
role: 'user',
content: prompt,
images: images, // Send all page images
},
],
format: invoiceSchema,
stream: true,
options: {
num_predict: 512,
temperature: 0.0,
},
}),
});
if (!response.ok) {
throw new Error(`Ollama API error: ${response.status}`);
}
const reader = response.body?.getReader();
if (!reader) {
throw new Error('No response body');
}
const decoder = new TextDecoder();
let fullText = '';
while (true) {
const { done, value } = await reader.read();
if (done) break;
const chunk = decoder.decode(value, { stream: true });
const lines = chunk.split('\n').filter((l) => l.trim());
for (const line of lines) {
try {
const json = JSON.parse(line);
if (json.message?.content) {
fullText += json.message.content;
}
} catch {
// Skip invalid JSON lines
}
}
}
// Parse JSON response
let jsonStr = fullText.trim();
if (jsonStr.startsWith('```json')) jsonStr = jsonStr.slice(7);
else if (jsonStr.startsWith('```')) jsonStr = jsonStr.slice(3);
if (jsonStr.endsWith('```')) jsonStr = jsonStr.slice(0, -3);
jsonStr = jsonStr.trim();
const startIdx = jsonStr.indexOf('{');
const endIdx = jsonStr.lastIndexOf('}') + 1;
if (startIdx < 0 || endIdx <= startIdx) {
throw new Error(`No JSON found: ${fullText.substring(0, 200)}`);
}
const parsed = JSON.parse(jsonStr.substring(startIdx, endIdx));
return {
invoice_number: parsed.invoice_number || null,
invoice_date: parsed.invoice_date || null,
vendor_name: parsed.vendor_name || null,
currency: parsed.currency || 'EUR',
net_amount: parseFloat(parsed.net_amount) || 0,
vat_amount: parseFloat(parsed.vat_amount) || 0,
total_amount: parseFloat(parsed.total_amount) || 0,
};
}
/**
* Extract with consensus voting (2 agreeing passes)
*/
async function extractWithConsensus(images: string[], name: string, maxPasses: number = 3): Promise<IInvoice> {
const results: Array<{ invoice: IInvoice; hash: string }> = [];
const hashCounts: Map<string, number> = new Map();
for (let pass = 1; pass <= maxPasses; pass++) {
try {
const invoice = await extractInvoiceFromImages(images);
const hash = `${invoice.invoice_number}|${invoice.invoice_date}|${invoice.total_amount?.toFixed(2)}`;
results.push({ invoice, hash });
hashCounts.set(hash, (hashCounts.get(hash) || 0) + 1);
console.log(` [Pass ${pass}] ${invoice.invoice_number} | ${invoice.invoice_date} | ${invoice.total_amount} ${invoice.currency}`);
if (hashCounts.get(hash)! >= 2) {
console.log(` [Consensus] Reached after ${pass} passes`);
return invoice;
}
} catch (err) {
console.log(` [Pass ${pass}] Error: ${err}`);
}
}
// Return most common result
let bestHash = '';
let bestCount = 0;
for (const [hash, count] of hashCounts) {
if (count > bestCount) {
bestCount = count;
bestHash = hash;
}
}
if (!bestHash) throw new Error(`No valid results for ${name}`);
console.log(` [No consensus] Using best result (${bestCount}/${maxPasses})`);
return results.find((r) => r.hash === bestHash)!.invoice;
}
/**
* Normalize date to YYYY-MM-DD
*/
function normalizeDate(dateStr: string | null): string {
if (!dateStr) return '';
if (/^\d{4}-\d{2}-\d{2}$/.test(dateStr)) return dateStr;
const monthMap: Record<string, string> = {
JAN: '01', FEB: '02', MAR: '03', APR: '04', MAY: '05', JUN: '06',
JUL: '07', AUG: '08', SEP: '09', OCT: '10', NOV: '11', DEC: '12',
};
let match = dateStr.match(/^(\d{1,2})-([A-Z]{3})-(\d{4})$/i);
if (match) {
return `${match[3]}-${monthMap[match[2].toUpperCase()] || '01'}-${match[1].padStart(2, '0')}`;
}
match = dateStr.match(/^(\d{1,2})[\/.](\d{1,2})[\/.](\d{4})$/);
if (match) {
return `${match[3]}-${match[2].padStart(2, '0')}-${match[1].padStart(2, '0')}`;
}
return dateStr;
}
/**
* Compare extracted vs expected
*/
function compareInvoice(extracted: IInvoice, expected: IInvoice): { match: boolean; errors: string[] } {
const errors: string[] = [];
const extNum = extracted.invoice_number?.replace(/\s/g, '').toLowerCase() || '';
const expNum = expected.invoice_number?.replace(/\s/g, '').toLowerCase() || '';
if (extNum !== expNum) {
errors.push(`invoice_number: expected "${expected.invoice_number}", got "${extracted.invoice_number}"`);
}
if (normalizeDate(extracted.invoice_date) !== normalizeDate(expected.invoice_date)) {
errors.push(`invoice_date: expected "${expected.invoice_date}", got "${extracted.invoice_date}"`);
}
if (Math.abs(extracted.total_amount - expected.total_amount) > 0.02) {
errors.push(`total_amount: expected ${expected.total_amount}, got ${extracted.total_amount}`);
}
if (extracted.currency?.toUpperCase() !== expected.currency?.toUpperCase()) {
errors.push(`currency: expected "${expected.currency}", got "${extracted.currency}"`);
}
return { match: errors.length === 0, errors };
}
/**
* Find test cases
*/
function findTestCases(): Array<{ name: string; pdfPath: string; jsonPath: string }> {
const testDir = path.join(process.cwd(), '.nogit/invoices');
if (!fs.existsSync(testDir)) return [];
const files = fs.readdirSync(testDir);
const testCases: Array<{ name: string; pdfPath: string; jsonPath: string }> = [];
for (const pdf of files.filter((f) => f.endsWith('.pdf'))) {
const baseName = pdf.replace('.pdf', '');
const jsonFile = `${baseName}.json`;
if (files.includes(jsonFile)) {
testCases.push({
name: baseName,
pdfPath: path.join(testDir, pdf),
jsonPath: path.join(testDir, jsonFile),
});
}
}
return testCases.sort((a, b) => a.name.localeCompare(b.name));
}
// Tests
tap.test('setup: ensure Ministral 3 is running', async () => {
console.log('\n[Setup] Checking Ministral 3...\n');
const ok = await ensureMinistral3();
expect(ok).toBeTrue();
console.log('\n[Setup] Ready!\n');
});
const testCases = findTestCases();
console.log(`\nFound ${testCases.length} invoice test cases (Ministral 3 Vision Direct)\n`);
let passedCount = 0;
let failedCount = 0;
const times: number[] = [];
for (const testCase of testCases) {
tap.test(`should extract invoice: ${testCase.name}`, async () => {
const expected: IInvoice = JSON.parse(fs.readFileSync(testCase.jsonPath, 'utf-8'));
console.log(`\n=== ${testCase.name} ===`);
console.log(`Expected: ${expected.invoice_number} | ${expected.invoice_date} | ${expected.total_amount} ${expected.currency}`);
const start = Date.now();
const images = convertPdfToImages(testCase.pdfPath);
console.log(` Pages: ${images.length}`);
const extracted = await extractWithConsensus(images, testCase.name);
const elapsed = Date.now() - start;
times.push(elapsed);
const result = compareInvoice(extracted, expected);
if (result.match) {
passedCount++;
console.log(` Result: MATCH (${(elapsed / 1000).toFixed(1)}s)`);
} else {
failedCount++;
console.log(` Result: MISMATCH (${(elapsed / 1000).toFixed(1)}s)`);
result.errors.forEach((e) => console.log(` - ${e}`));
}
expect(result.match).toBeTrue();
});
}
tap.test('summary', async () => {
const total = testCases.length;
const accuracy = total > 0 ? (passedCount / total) * 100 : 0;
const totalTime = times.reduce((a, b) => a + b, 0) / 1000;
const avgTime = times.length > 0 ? totalTime / times.length : 0;
console.log(`\n======================================================`);
console.log(` Invoice Extraction Summary (Ministral 3 Vision)`);
console.log(`======================================================`);
console.log(` Method: Ministral 3 8B Vision (Direct)`);
console.log(` Passed: ${passedCount}/${total}`);
console.log(` Failed: ${failedCount}/${total}`);
console.log(` Accuracy: ${accuracy.toFixed(1)}%`);
console.log(`------------------------------------------------------`);
console.log(` Total time: ${totalTime.toFixed(1)}s`);
console.log(` Avg per inv: ${avgTime.toFixed(1)}s`);
console.log(`======================================================\n`);
});
export default tap.start();

View File

@@ -90,61 +90,71 @@ async function parseDocument(imageBase64: string): Promise<string> {
}
/**
* Extract invoice fields from structured HTML using Qwen2.5 (text-only model)
* Sanitize HTML to remove OCR artifacts that confuse the LLM
* Minimal cleaning - only remove truly problematic patterns
*/
function sanitizeHtml(html: string): string {
// Remove excessively repeated characters (OCR glitches)
let sanitized = html.replace(/(\d)\1{20,}/g, '$1...');
// Remove extremely long strings (corrupted data)
sanitized = sanitized.replace(/\b[A-Za-z0-9]{50,}\b/g, '[OCR_ARTIFACT]');
return sanitized;
}
/**
* Extract invoice fields using simple direct prompt
* The OCR output has clearly labeled fields - just ask the LLM to read them
*/
async function extractInvoiceFromHtml(html: string): Promise<IInvoice> {
// Truncate if too long (HTML is more valuable per byte, allow more)
const truncated = html.length > 16000 ? html.slice(0, 16000) : html;
console.log(` [Extract] Processing ${truncated.length} chars of HTML`);
const sanitized = sanitizeHtml(html);
const truncated = sanitized.length > 32000 ? sanitized.slice(0, 32000) : sanitized;
console.log(` [Extract] ${truncated.length} chars of HTML`);
const prompt = `You are an invoice data extractor. Extract the following fields from this HTML document (OCR output with semantic structure) and return ONLY a valid JSON object.
The HTML uses semantic tags:
- <table> with <thead>/<tbody> for structured tables (invoice line items, totals)
- <header> for document header (company info, invoice number)
- <footer> for document footer (payment terms, legal text)
- <section class="table-region"> for table regions
- data-type and data-y attributes indicate block type and vertical position
Required fields:
- invoice_number: The invoice/receipt/document number
- invoice_date: Date in YYYY-MM-DD format (convert from any format)
- vendor_name: Company that issued the invoice
- currency: EUR, USD, GBP, etc.
- net_amount: Amount before tax (number)
- vat_amount: Tax/VAT amount (number, use 0 if reverse charge or not shown)
- total_amount: Final total amount (number)
Example output format:
{"invoice_number":"INV-123","invoice_date":"2022-01-28","vendor_name":"Adobe","currency":"EUR","net_amount":24.99,"vat_amount":0,"total_amount":24.99}
Rules:
- Return ONLY the JSON object, no explanation or markdown
- Use null for missing string fields
- Use 0 for missing numeric fields
- Convert dates to YYYY-MM-DD format (e.g., "28-JAN-2022" becomes "2022-01-28")
- Extract numbers without currency symbols
- Look for totals in <table> sections, especially rows with "Total", "Amount Due", "Grand Total"
HTML Document:
${truncated}
JSON:`;
const payload = {
model: TEXT_MODEL,
prompt,
stream: true,
options: {
num_predict: 512,
temperature: 0.1,
// JSON schema for structured output
const invoiceSchema = {
type: 'object',
properties: {
invoice_number: { type: 'string' },
invoice_date: { type: 'string' },
vendor_name: { type: 'string' },
currency: { type: 'string' },
net_amount: { type: 'number' },
vat_amount: { type: 'number' },
total_amount: { type: 'number' },
},
required: ['invoice_number', 'invoice_date', 'vendor_name', 'currency', 'net_amount', 'vat_amount', 'total_amount'],
};
const response = await fetch(`${OLLAMA_URL}/api/generate`, {
// Simple, direct prompt - the OCR output already has labeled fields
const systemPrompt = `You read invoice HTML and extract labeled fields. Return JSON only.`;
const userPrompt = `Extract from this invoice HTML:
- invoice_number: Find "Invoice no.", "Invoice #", "Invoice", "Rechnung", "Document No" and extract the value
- invoice_date: Find "Invoice date", "Date", "Datum" and convert to YYYY-MM-DD format
- vendor_name: The company name issuing the invoice (in header/letterhead)
- currency: EUR, USD, or GBP (look for € $ £ symbols or text)
- total_amount: Find "Total", "Grand Total", "Amount Due", "Gesamtbetrag" - the FINAL total amount
- net_amount: Amount before VAT/tax (Subtotal, Net)
- vat_amount: VAT/tax amount
HTML:
${truncated}
Return ONLY valid JSON: {"invoice_number":"...", "invoice_date":"YYYY-MM-DD", "vendor_name":"...", "currency":"EUR", "net_amount":0, "vat_amount":0, "total_amount":0}`;
const response = await fetch(`${OLLAMA_URL}/api/chat`, {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify(payload),
body: JSON.stringify({
model: TEXT_MODEL,
messages: [
{ role: 'system', content: systemPrompt },
{ role: 'user', content: userPrompt },
],
format: invoiceSchema,
stream: true,
options: { num_predict: 512, temperature: 0.0 },
}),
});
if (!response.ok) {
@@ -169,7 +179,9 @@ JSON:`;
for (const line of lines) {
try {
const json = JSON.parse(line);
if (json.response) {
if (json.message?.content) {
fullText += json.message.content;
} else if (json.response) {
fullText += json.response;
}
} catch {
@@ -179,17 +191,37 @@ JSON:`;
}
// Extract JSON from response
const startIdx = fullText.indexOf('{');
const endIdx = fullText.lastIndexOf('}') + 1;
let jsonStr = fullText.trim();
// Remove markdown code block if present
if (jsonStr.startsWith('```json')) {
jsonStr = jsonStr.slice(7);
} else if (jsonStr.startsWith('```')) {
jsonStr = jsonStr.slice(3);
}
if (jsonStr.endsWith('```')) {
jsonStr = jsonStr.slice(0, -3);
}
jsonStr = jsonStr.trim();
// Find JSON object boundaries
const startIdx = jsonStr.indexOf('{');
const endIdx = jsonStr.lastIndexOf('}') + 1;
if (startIdx < 0 || endIdx <= startIdx) {
throw new Error(`No JSON object found in response: ${fullText.substring(0, 200)}`);
}
const jsonStr = fullText.substring(startIdx, endIdx);
const parsed = JSON.parse(jsonStr);
jsonStr = jsonStr.substring(startIdx, endIdx);
// Ensure numeric fields are actually numbers
let parsed;
try {
parsed = JSON.parse(jsonStr);
} catch (e) {
throw new Error(`Invalid JSON: ${jsonStr.substring(0, 200)}`);
}
// Normalize response to expected format
return {
invoice_number: parsed.invoice_number || null,
invoice_date: parsed.invoice_date || null,
@@ -203,14 +235,23 @@ JSON:`;
/**
* Single extraction pass: Parse with PaddleOCR-VL Full, extract with Qwen2.5 (text-only)
* Processes ALL pages and concatenates HTML for multi-page invoice support
*/
async function extractOnce(images: string[], passNum: number): Promise<IInvoice> {
// Parse document with full pipeline (PaddleOCR-VL) -> returns HTML
const html = await parseDocument(images[0]);
console.log(` [Parse] Got ${html.split('\n').length} lines of HTML`);
// Parse ALL pages and concatenate HTML with page markers
const htmlParts: string[] = [];
for (let i = 0; i < images.length; i++) {
const pageHtml = await parseDocument(images[i]);
// Add page marker for context
htmlParts.push(`<!-- Page ${i + 1} -->\n${pageHtml}`);
}
const fullHtml = htmlParts.join('\n\n');
console.log(` [Parse] Got ${fullHtml.split('\n').length} lines from ${images.length} page(s)`);
// Extract invoice fields from HTML using text-only model (no images)
return extractInvoiceFromHtml(html);
return extractInvoiceFromHtml(fullHtml);
}
/**