Compare commits
2 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
| 9f9ec0a671 | |||
| 3780105c6f |
26
Dockerfile_qwen3vl
Normal file
26
Dockerfile_qwen3vl
Normal file
@@ -0,0 +1,26 @@
|
|||||||
|
# Qwen3-VL-30B-A3B Vision Language Model
|
||||||
|
# Q4_K_M quantization (~20GB model)
|
||||||
|
#
|
||||||
|
# Most powerful Qwen vision model:
|
||||||
|
# - 256K context (expandable to 1M)
|
||||||
|
# - Visual agent capabilities
|
||||||
|
# - Code generation from images
|
||||||
|
#
|
||||||
|
# Build: docker build -f Dockerfile_qwen3vl -t qwen3vl .
|
||||||
|
# Run: docker run --gpus all -p 11434:11434 -v ht-ollama-models:/root/.ollama qwen3vl
|
||||||
|
|
||||||
|
FROM ollama/ollama:latest
|
||||||
|
|
||||||
|
# Pre-pull the model during build (optional - can also pull at runtime)
|
||||||
|
# This makes the image larger but faster to start
|
||||||
|
# RUN ollama serve & sleep 5 && ollama pull qwen3-vl:30b-a3b && pkill ollama
|
||||||
|
|
||||||
|
# Expose Ollama API port
|
||||||
|
EXPOSE 11434
|
||||||
|
|
||||||
|
# Health check
|
||||||
|
HEALTHCHECK --interval=30s --timeout=10s --start-period=60s --retries=3 \
|
||||||
|
CMD curl -f http://localhost:11434/api/tags || exit 1
|
||||||
|
|
||||||
|
# Start Ollama server
|
||||||
|
CMD ["serve"]
|
||||||
@@ -1,5 +1,13 @@
|
|||||||
# Changelog
|
# Changelog
|
||||||
|
|
||||||
|
## 2026-01-18 - 1.10.0 - feat(vision)
|
||||||
|
add Qwen3-VL vision model support with Dockerfile and tests; improve invoice OCR conversion and prompts; simplify extraction flow by removing consensus voting
|
||||||
|
|
||||||
|
- Add Dockerfile_qwen3vl to provide an Ollama-based image for Qwen3-VL and expose the Ollama API on port 11434
|
||||||
|
- Introduce test/test.invoices.qwen3vl.ts and ensureQwen3Vl() helper to pull and test qwen3-vl:8b
|
||||||
|
- Improve PDF->PNG conversion and prompt in ministral3 tests (higher DPI, max quality, sharpen) and increase num_predict from 512 to 1024
|
||||||
|
- Simplify extraction pipeline: remove consensus voting, log single-pass results, and simplify OCR HTML sanitization/truncation logic
|
||||||
|
|
||||||
## 2026-01-18 - 1.9.0 - feat(tests)
|
## 2026-01-18 - 1.9.0 - feat(tests)
|
||||||
add Ministral 3 vision tests and improve invoice extraction pipeline to use Ollama chat schema, sanitization, and multi-page support
|
add Ministral 3 vision tests and improve invoice extraction pipeline to use Ollama chat schema, sanitization, and multi-page support
|
||||||
|
|
||||||
|
|||||||
@@ -1,6 +1,6 @@
|
|||||||
{
|
{
|
||||||
"name": "@host.today/ht-docker-ai",
|
"name": "@host.today/ht-docker-ai",
|
||||||
"version": "1.9.0",
|
"version": "1.10.0",
|
||||||
"type": "module",
|
"type": "module",
|
||||||
"private": false,
|
"private": false,
|
||||||
"description": "Docker images for AI vision-language models including MiniCPM-V 4.5",
|
"description": "Docker images for AI vision-language models including MiniCPM-V 4.5",
|
||||||
|
|||||||
@@ -311,9 +311,8 @@ export async function ensureOllamaModel(modelName: string): Promise<boolean> {
|
|||||||
if (response.ok) {
|
if (response.ok) {
|
||||||
const data = await response.json();
|
const data = await response.json();
|
||||||
const models = data.models || [];
|
const models = data.models || [];
|
||||||
const exists = models.some((m: { name: string }) =>
|
// Exact match required - don't match on prefix
|
||||||
m.name === modelName || m.name.startsWith(modelName.split(':')[0])
|
const exists = models.some((m: { name: string }) => m.name === modelName);
|
||||||
);
|
|
||||||
|
|
||||||
if (exists) {
|
if (exists) {
|
||||||
console.log(`[Ollama] Model already available: ${modelName}`);
|
console.log(`[Ollama] Model already available: ${modelName}`);
|
||||||
@@ -371,3 +370,16 @@ export async function ensureMinistral3(): Promise<boolean> {
|
|||||||
// Then ensure the Ministral 3 8B model is pulled
|
// Then ensure the Ministral 3 8B model is pulled
|
||||||
return ensureOllamaModel('ministral-3:8b');
|
return ensureOllamaModel('ministral-3:8b');
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Ensure Qwen3-VL 8B model is available (vision-language model)
|
||||||
|
* Q4_K_M quantization (~5GB) - fits in 15GB VRAM with room to spare
|
||||||
|
*/
|
||||||
|
export async function ensureQwen3Vl(): Promise<boolean> {
|
||||||
|
// First ensure the Ollama service is running
|
||||||
|
const ollamaOk = await ensureMiniCpm();
|
||||||
|
if (!ollamaOk) return false;
|
||||||
|
|
||||||
|
// Then ensure Qwen3-VL 8B is pulled
|
||||||
|
return ensureOllamaModel('qwen3-vl:8b');
|
||||||
|
}
|
||||||
|
|||||||
@@ -36,8 +36,9 @@ function convertPdfToImages(pdfPath: string): string[] {
|
|||||||
const outputPattern = path.join(tempDir, 'page-%d.png');
|
const outputPattern = path.join(tempDir, 'page-%d.png');
|
||||||
|
|
||||||
try {
|
try {
|
||||||
|
// High quality conversion: 300 DPI, max quality, sharpen for better OCR
|
||||||
execSync(
|
execSync(
|
||||||
`convert -density 200 -quality 90 "${pdfPath}" -background white -alpha remove "${outputPattern}"`,
|
`convert -density 300 -quality 100 "${pdfPath}" -background white -alpha remove -sharpen 0x1 "${outputPattern}"`,
|
||||||
{ stdio: 'pipe' }
|
{ stdio: 'pipe' }
|
||||||
);
|
);
|
||||||
|
|
||||||
@@ -77,18 +78,35 @@ async function extractInvoiceFromImages(images: string[]): Promise<IInvoice> {
|
|||||||
required: ['invoice_number', 'invoice_date', 'vendor_name', 'currency', 'net_amount', 'vat_amount', 'total_amount'],
|
required: ['invoice_number', 'invoice_date', 'vendor_name', 'currency', 'net_amount', 'vat_amount', 'total_amount'],
|
||||||
};
|
};
|
||||||
|
|
||||||
const prompt = `Extract invoice data from this document image(s).
|
const prompt = `You are an expert invoice data extraction system. Carefully analyze this invoice document and extract the following fields with high precision.
|
||||||
|
|
||||||
Find and return:
|
INVOICE NUMBER:
|
||||||
- invoice_number: The invoice number/ID (look for "Invoice No", "Invoice #", "Rechnung Nr")
|
- Look for labels: "Invoice No", "Invoice #", "Invoice Number", "Rechnung Nr", "Rechnungsnummer", "Document No", "Bill No", "Reference"
|
||||||
- invoice_date: The invoice date in YYYY-MM-DD format
|
- Usually alphanumeric, often starts with letters (e.g., R0014359508, INV-2024-001)
|
||||||
- vendor_name: The company issuing the invoice (in letterhead)
|
- Located near the top of the invoice
|
||||||
- currency: EUR, USD, or GBP
|
|
||||||
- total_amount: The FINAL total amount due
|
|
||||||
- net_amount: Amount before VAT/tax
|
|
||||||
- vat_amount: VAT/tax amount
|
|
||||||
|
|
||||||
Return ONLY valid JSON.`;
|
INVOICE DATE:
|
||||||
|
- Look for labels: "Invoice Date", "Date", "Datum", "Rechnungsdatum", "Issue Date", "Bill Date"
|
||||||
|
- Convert ANY date format to YYYY-MM-DD (e.g., 14/10/2021 → 2021-10-14, Oct 14, 2021 → 2021-10-14)
|
||||||
|
- Usually near the invoice number
|
||||||
|
|
||||||
|
VENDOR NAME:
|
||||||
|
- The company ISSUING the invoice (not the recipient)
|
||||||
|
- Found in letterhead, logo area, or header - typically the largest/most prominent company name
|
||||||
|
- Examples: "Hetzner Online GmbH", "Adobe Inc", "DigitalOcean LLC"
|
||||||
|
|
||||||
|
CURRENCY:
|
||||||
|
- Detect from symbols: € = EUR, $ = USD, £ = GBP
|
||||||
|
- Or from text: "EUR", "USD", "GBP"
|
||||||
|
- Default to EUR if unclear
|
||||||
|
|
||||||
|
AMOUNTS (Critical - read carefully!):
|
||||||
|
- total_amount: The FINAL amount due/payable - look for "Total", "Grand Total", "Amount Due", "Balance Due", "Gesamtbetrag", "Endbetrag"
|
||||||
|
- net_amount: Subtotal BEFORE tax - look for "Subtotal", "Net", "Netto", "excl. VAT"
|
||||||
|
- vat_amount: Tax amount - look for "VAT", "Tax", "MwSt", "USt", "19%", "20%"
|
||||||
|
- For multi-page invoices: the FINAL totals are usually on the LAST page
|
||||||
|
|
||||||
|
Return ONLY valid JSON with the extracted values.`;
|
||||||
|
|
||||||
const response = await fetch(`${OLLAMA_URL}/api/chat`, {
|
const response = await fetch(`${OLLAMA_URL}/api/chat`, {
|
||||||
method: 'POST',
|
method: 'POST',
|
||||||
@@ -105,7 +123,7 @@ Return ONLY valid JSON.`;
|
|||||||
format: invoiceSchema,
|
format: invoiceSchema,
|
||||||
stream: true,
|
stream: true,
|
||||||
options: {
|
options: {
|
||||||
num_predict: 512,
|
num_predict: 1024,
|
||||||
temperature: 0.0,
|
temperature: 0.0,
|
||||||
},
|
},
|
||||||
}),
|
}),
|
||||||
@@ -170,46 +188,6 @@ Return ONLY valid JSON.`;
|
|||||||
};
|
};
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
|
||||||
* Extract with consensus voting (2 agreeing passes)
|
|
||||||
*/
|
|
||||||
async function extractWithConsensus(images: string[], name: string, maxPasses: number = 3): Promise<IInvoice> {
|
|
||||||
const results: Array<{ invoice: IInvoice; hash: string }> = [];
|
|
||||||
const hashCounts: Map<string, number> = new Map();
|
|
||||||
|
|
||||||
for (let pass = 1; pass <= maxPasses; pass++) {
|
|
||||||
try {
|
|
||||||
const invoice = await extractInvoiceFromImages(images);
|
|
||||||
const hash = `${invoice.invoice_number}|${invoice.invoice_date}|${invoice.total_amount?.toFixed(2)}`;
|
|
||||||
results.push({ invoice, hash });
|
|
||||||
hashCounts.set(hash, (hashCounts.get(hash) || 0) + 1);
|
|
||||||
|
|
||||||
console.log(` [Pass ${pass}] ${invoice.invoice_number} | ${invoice.invoice_date} | ${invoice.total_amount} ${invoice.currency}`);
|
|
||||||
|
|
||||||
if (hashCounts.get(hash)! >= 2) {
|
|
||||||
console.log(` [Consensus] Reached after ${pass} passes`);
|
|
||||||
return invoice;
|
|
||||||
}
|
|
||||||
} catch (err) {
|
|
||||||
console.log(` [Pass ${pass}] Error: ${err}`);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// Return most common result
|
|
||||||
let bestHash = '';
|
|
||||||
let bestCount = 0;
|
|
||||||
for (const [hash, count] of hashCounts) {
|
|
||||||
if (count > bestCount) {
|
|
||||||
bestCount = count;
|
|
||||||
bestHash = hash;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
if (!bestHash) throw new Error(`No valid results for ${name}`);
|
|
||||||
|
|
||||||
console.log(` [No consensus] Using best result (${bestCount}/${maxPasses})`);
|
|
||||||
return results.find((r) => r.hash === bestHash)!.invoice;
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Normalize date to YYYY-MM-DD
|
* Normalize date to YYYY-MM-DD
|
||||||
@@ -314,7 +292,8 @@ for (const testCase of testCases) {
|
|||||||
const images = convertPdfToImages(testCase.pdfPath);
|
const images = convertPdfToImages(testCase.pdfPath);
|
||||||
console.log(` Pages: ${images.length}`);
|
console.log(` Pages: ${images.length}`);
|
||||||
|
|
||||||
const extracted = await extractWithConsensus(images, testCase.name);
|
const extracted = await extractInvoiceFromImages(images);
|
||||||
|
console.log(` Extracted: ${extracted.invoice_number} | ${extracted.invoice_date} | ${extracted.total_amount} ${extracted.currency}`);
|
||||||
const elapsed = Date.now() - start;
|
const elapsed = Date.now() - start;
|
||||||
times.push(elapsed);
|
times.push(elapsed);
|
||||||
|
|
||||||
|
|||||||
@@ -89,25 +89,13 @@ async function parseDocument(imageBase64: string): Promise<string> {
|
|||||||
return data.result?.html || '';
|
return data.result?.html || '';
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
|
||||||
* Sanitize HTML to remove OCR artifacts that confuse the LLM
|
|
||||||
* Minimal cleaning - only remove truly problematic patterns
|
|
||||||
*/
|
|
||||||
function sanitizeHtml(html: string): string {
|
|
||||||
// Remove excessively repeated characters (OCR glitches)
|
|
||||||
let sanitized = html.replace(/(\d)\1{20,}/g, '$1...');
|
|
||||||
// Remove extremely long strings (corrupted data)
|
|
||||||
sanitized = sanitized.replace(/\b[A-Za-z0-9]{50,}\b/g, '[OCR_ARTIFACT]');
|
|
||||||
return sanitized;
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Extract invoice fields using simple direct prompt
|
* Extract invoice fields using simple direct prompt
|
||||||
* The OCR output has clearly labeled fields - just ask the LLM to read them
|
* The OCR output has clearly labeled fields - just ask the LLM to read them
|
||||||
*/
|
*/
|
||||||
async function extractInvoiceFromHtml(html: string): Promise<IInvoice> {
|
async function extractInvoiceFromHtml(html: string): Promise<IInvoice> {
|
||||||
const sanitized = sanitizeHtml(html);
|
// OCR output is already good - just truncate if too long
|
||||||
const truncated = sanitized.length > 32000 ? sanitized.slice(0, 32000) : sanitized;
|
const truncated = html.length > 32000 ? html.slice(0, 32000) : html;
|
||||||
console.log(` [Extract] ${truncated.length} chars of HTML`);
|
console.log(` [Extract] ${truncated.length} chars of HTML`);
|
||||||
|
|
||||||
// JSON schema for structured output
|
// JSON schema for structured output
|
||||||
|
|||||||
352
test/test.invoices.qwen3vl.ts
Normal file
352
test/test.invoices.qwen3vl.ts
Normal file
@@ -0,0 +1,352 @@
|
|||||||
|
/**
|
||||||
|
* Invoice extraction using Qwen3-VL-8B Vision (Direct)
|
||||||
|
*
|
||||||
|
* Qwen3-VL 8B is a capable vision-language model that fits in 15GB VRAM:
|
||||||
|
* - Q4_K_M quantization (~5GB)
|
||||||
|
* - Good balance of speed and accuracy
|
||||||
|
*
|
||||||
|
* Pipeline: PDF → Images → Qwen3-VL → JSON
|
||||||
|
*/
|
||||||
|
import { tap, expect } from '@git.zone/tstest/tapbundle';
|
||||||
|
import * as fs from 'fs';
|
||||||
|
import * as path from 'path';
|
||||||
|
import { execSync } from 'child_process';
|
||||||
|
import * as os from 'os';
|
||||||
|
import { ensureQwen3Vl } from './helpers/docker.js';
|
||||||
|
|
||||||
|
const OLLAMA_URL = 'http://localhost:11434';
|
||||||
|
const VISION_MODEL = 'qwen3-vl:8b';
|
||||||
|
|
||||||
|
interface IInvoice {
|
||||||
|
invoice_number: string;
|
||||||
|
invoice_date: string;
|
||||||
|
vendor_name: string;
|
||||||
|
currency: string;
|
||||||
|
net_amount: number;
|
||||||
|
vat_amount: number;
|
||||||
|
total_amount: number;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Convert PDF to PNG images using ImageMagick
|
||||||
|
*/
|
||||||
|
function convertPdfToImages(pdfPath: string): string[] {
|
||||||
|
const tempDir = fs.mkdtempSync(path.join(os.tmpdir(), 'pdf-convert-'));
|
||||||
|
const outputPattern = path.join(tempDir, 'page-%d.png');
|
||||||
|
|
||||||
|
try {
|
||||||
|
// 150 DPI is sufficient for invoice extraction, reduces context size
|
||||||
|
execSync(
|
||||||
|
`convert -density 150 -quality 90 "${pdfPath}" -background white -alpha remove "${outputPattern}"`,
|
||||||
|
{ stdio: 'pipe' }
|
||||||
|
);
|
||||||
|
|
||||||
|
const files = fs.readdirSync(tempDir).filter((f) => f.endsWith('.png')).sort();
|
||||||
|
const images: string[] = [];
|
||||||
|
|
||||||
|
for (const file of files) {
|
||||||
|
const imagePath = path.join(tempDir, file);
|
||||||
|
const imageData = fs.readFileSync(imagePath);
|
||||||
|
images.push(imageData.toString('base64'));
|
||||||
|
}
|
||||||
|
|
||||||
|
return images;
|
||||||
|
} finally {
|
||||||
|
fs.rmSync(tempDir, { recursive: true, force: true });
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Single extraction attempt
|
||||||
|
*/
|
||||||
|
async function tryExtractOnce(images: string[], prompt: string): Promise<string> {
|
||||||
|
const response = await fetch(`${OLLAMA_URL}/api/chat`, {
|
||||||
|
method: 'POST',
|
||||||
|
headers: { 'Content-Type': 'application/json' },
|
||||||
|
body: JSON.stringify({
|
||||||
|
model: VISION_MODEL,
|
||||||
|
messages: [
|
||||||
|
{
|
||||||
|
role: 'user',
|
||||||
|
content: prompt,
|
||||||
|
images: images,
|
||||||
|
},
|
||||||
|
],
|
||||||
|
stream: true,
|
||||||
|
options: {
|
||||||
|
num_predict: 1024,
|
||||||
|
temperature: 0.1, // Slight randomness helps avoid stuck states
|
||||||
|
},
|
||||||
|
}),
|
||||||
|
});
|
||||||
|
|
||||||
|
if (!response.ok) {
|
||||||
|
throw new Error(`Ollama API error: ${response.status}`);
|
||||||
|
}
|
||||||
|
|
||||||
|
const reader = response.body?.getReader();
|
||||||
|
if (!reader) {
|
||||||
|
throw new Error('No response body');
|
||||||
|
}
|
||||||
|
|
||||||
|
const decoder = new TextDecoder();
|
||||||
|
let fullText = '';
|
||||||
|
|
||||||
|
while (true) {
|
||||||
|
const { done, value } = await reader.read();
|
||||||
|
if (done) break;
|
||||||
|
|
||||||
|
const chunk = decoder.decode(value, { stream: true });
|
||||||
|
const lines = chunk.split('\n').filter((l) => l.trim());
|
||||||
|
|
||||||
|
for (const line of lines) {
|
||||||
|
try {
|
||||||
|
const json = JSON.parse(line);
|
||||||
|
if (json.message?.content) {
|
||||||
|
fullText += json.message.content;
|
||||||
|
}
|
||||||
|
} catch {
|
||||||
|
// Skip invalid JSON lines
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return fullText;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Extract invoice data directly from images using Qwen3-VL Vision
|
||||||
|
* Includes retry logic for empty responses
|
||||||
|
*/
|
||||||
|
async function extractInvoiceFromImages(images: string[]): Promise<IInvoice> {
|
||||||
|
console.log(` [Vision] Processing ${images.length} page(s) with Qwen3-VL`);
|
||||||
|
|
||||||
|
// JSON schema for structured output - force the model to output valid JSON
|
||||||
|
const invoiceSchema = {
|
||||||
|
type: 'object',
|
||||||
|
properties: {
|
||||||
|
invoice_number: { type: 'string' },
|
||||||
|
invoice_date: { type: 'string' },
|
||||||
|
vendor_name: { type: 'string' },
|
||||||
|
currency: { type: 'string' },
|
||||||
|
net_amount: { type: 'number' },
|
||||||
|
vat_amount: { type: 'number' },
|
||||||
|
total_amount: { type: 'number' },
|
||||||
|
},
|
||||||
|
required: ['invoice_number', 'invoice_date', 'vendor_name', 'currency', 'net_amount', 'vat_amount', 'total_amount'],
|
||||||
|
};
|
||||||
|
|
||||||
|
// Simple, direct prompt - don't overthink, just read the labeled fields
|
||||||
|
const prompt = `Extract invoice data from this image. Return JSON only.
|
||||||
|
|
||||||
|
Find these fields:
|
||||||
|
- invoice_number: The invoice/document number
|
||||||
|
- invoice_date: Date in YYYY-MM-DD format
|
||||||
|
- vendor_name: Company issuing the invoice
|
||||||
|
- currency: EUR, USD, or GBP
|
||||||
|
- net_amount: Amount before tax
|
||||||
|
- vat_amount: Tax/VAT amount
|
||||||
|
- total_amount: Final total amount
|
||||||
|
|
||||||
|
Return: {"invoice_number":"...", "invoice_date":"YYYY-MM-DD", "vendor_name":"...", "currency":"EUR", "net_amount":0.00, "vat_amount":0.00, "total_amount":0.00}`;
|
||||||
|
|
||||||
|
// Retry logic for empty responses (model sometimes returns nothing)
|
||||||
|
const MAX_RETRIES = 3;
|
||||||
|
let fullText = '';
|
||||||
|
|
||||||
|
for (let attempt = 1; attempt <= MAX_RETRIES; attempt++) {
|
||||||
|
fullText = await tryExtractOnce(images, prompt);
|
||||||
|
|
||||||
|
if (fullText.trim().length > 0) {
|
||||||
|
console.log(` [Attempt ${attempt}] Got ${fullText.length} chars`);
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
|
||||||
|
console.log(` [Attempt ${attempt}] Empty response, retrying...`);
|
||||||
|
// Small delay before retry
|
||||||
|
await new Promise((r) => setTimeout(r, 1000));
|
||||||
|
}
|
||||||
|
|
||||||
|
if (fullText.trim().length === 0) {
|
||||||
|
throw new Error(`Model returned empty response after ${MAX_RETRIES} attempts`);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Parse JSON response
|
||||||
|
let jsonStr = fullText.trim();
|
||||||
|
|
||||||
|
if (jsonStr.startsWith('```json')) jsonStr = jsonStr.slice(7);
|
||||||
|
else if (jsonStr.startsWith('```')) jsonStr = jsonStr.slice(3);
|
||||||
|
if (jsonStr.endsWith('```')) jsonStr = jsonStr.slice(0, -3);
|
||||||
|
jsonStr = jsonStr.trim();
|
||||||
|
|
||||||
|
const startIdx = jsonStr.indexOf('{');
|
||||||
|
const endIdx = jsonStr.lastIndexOf('}') + 1;
|
||||||
|
|
||||||
|
if (startIdx < 0 || endIdx <= startIdx) {
|
||||||
|
throw new Error(`No JSON found in: ${fullText.substring(0, 500)}`);
|
||||||
|
}
|
||||||
|
|
||||||
|
const extractedJson = jsonStr.substring(startIdx, endIdx);
|
||||||
|
console.log(` [Debug] Extracted JSON: ${extractedJson.substring(0, 200)}...`);
|
||||||
|
|
||||||
|
let parsed;
|
||||||
|
try {
|
||||||
|
parsed = JSON.parse(extractedJson);
|
||||||
|
} catch (e) {
|
||||||
|
throw new Error(`Invalid JSON: ${extractedJson.substring(0, 500)}`);
|
||||||
|
}
|
||||||
|
|
||||||
|
return {
|
||||||
|
invoice_number: parsed.invoice_number || null,
|
||||||
|
invoice_date: parsed.invoice_date || null,
|
||||||
|
vendor_name: parsed.vendor_name || null,
|
||||||
|
currency: parsed.currency || 'EUR',
|
||||||
|
net_amount: parseFloat(parsed.net_amount) || 0,
|
||||||
|
vat_amount: parseFloat(parsed.vat_amount) || 0,
|
||||||
|
total_amount: parseFloat(parsed.total_amount) || 0,
|
||||||
|
};
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Normalize date to YYYY-MM-DD
|
||||||
|
*/
|
||||||
|
function normalizeDate(dateStr: string | null): string {
|
||||||
|
if (!dateStr) return '';
|
||||||
|
if (/^\d{4}-\d{2}-\d{2}$/.test(dateStr)) return dateStr;
|
||||||
|
|
||||||
|
const monthMap: Record<string, string> = {
|
||||||
|
JAN: '01', FEB: '02', MAR: '03', APR: '04', MAY: '05', JUN: '06',
|
||||||
|
JUL: '07', AUG: '08', SEP: '09', OCT: '10', NOV: '11', DEC: '12',
|
||||||
|
};
|
||||||
|
|
||||||
|
let match = dateStr.match(/^(\d{1,2})-([A-Z]{3})-(\d{4})$/i);
|
||||||
|
if (match) {
|
||||||
|
return `${match[3]}-${monthMap[match[2].toUpperCase()] || '01'}-${match[1].padStart(2, '0')}`;
|
||||||
|
}
|
||||||
|
|
||||||
|
match = dateStr.match(/^(\d{1,2})[\/.](\d{1,2})[\/.](\d{4})$/);
|
||||||
|
if (match) {
|
||||||
|
return `${match[3]}-${match[2].padStart(2, '0')}-${match[1].padStart(2, '0')}`;
|
||||||
|
}
|
||||||
|
|
||||||
|
return dateStr;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Compare extracted vs expected
|
||||||
|
*/
|
||||||
|
function compareInvoice(extracted: IInvoice, expected: IInvoice): { match: boolean; errors: string[] } {
|
||||||
|
const errors: string[] = [];
|
||||||
|
|
||||||
|
const extNum = extracted.invoice_number?.replace(/\s/g, '').toLowerCase() || '';
|
||||||
|
const expNum = expected.invoice_number?.replace(/\s/g, '').toLowerCase() || '';
|
||||||
|
if (extNum !== expNum) {
|
||||||
|
errors.push(`invoice_number: expected "${expected.invoice_number}", got "${extracted.invoice_number}"`);
|
||||||
|
}
|
||||||
|
|
||||||
|
if (normalizeDate(extracted.invoice_date) !== normalizeDate(expected.invoice_date)) {
|
||||||
|
errors.push(`invoice_date: expected "${expected.invoice_date}", got "${extracted.invoice_date}"`);
|
||||||
|
}
|
||||||
|
|
||||||
|
if (Math.abs(extracted.total_amount - expected.total_amount) > 0.02) {
|
||||||
|
errors.push(`total_amount: expected ${expected.total_amount}, got ${extracted.total_amount}`);
|
||||||
|
}
|
||||||
|
|
||||||
|
if (extracted.currency?.toUpperCase() !== expected.currency?.toUpperCase()) {
|
||||||
|
errors.push(`currency: expected "${expected.currency}", got "${extracted.currency}"`);
|
||||||
|
}
|
||||||
|
|
||||||
|
return { match: errors.length === 0, errors };
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Find test cases
|
||||||
|
*/
|
||||||
|
function findTestCases(): Array<{ name: string; pdfPath: string; jsonPath: string }> {
|
||||||
|
const testDir = path.join(process.cwd(), '.nogit/invoices');
|
||||||
|
if (!fs.existsSync(testDir)) return [];
|
||||||
|
|
||||||
|
const files = fs.readdirSync(testDir);
|
||||||
|
const testCases: Array<{ name: string; pdfPath: string; jsonPath: string }> = [];
|
||||||
|
|
||||||
|
for (const pdf of files.filter((f) => f.endsWith('.pdf'))) {
|
||||||
|
const baseName = pdf.replace('.pdf', '');
|
||||||
|
const jsonFile = `${baseName}.json`;
|
||||||
|
if (files.includes(jsonFile)) {
|
||||||
|
testCases.push({
|
||||||
|
name: baseName,
|
||||||
|
pdfPath: path.join(testDir, pdf),
|
||||||
|
jsonPath: path.join(testDir, jsonFile),
|
||||||
|
});
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return testCases.sort((a, b) => a.name.localeCompare(b.name));
|
||||||
|
}
|
||||||
|
|
||||||
|
// Tests
|
||||||
|
|
||||||
|
tap.test('setup: ensure Qwen3-VL is running', async () => {
|
||||||
|
console.log('\n[Setup] Checking Qwen3-VL 8B (~5GB)...\n');
|
||||||
|
const ok = await ensureQwen3Vl();
|
||||||
|
expect(ok).toBeTrue();
|
||||||
|
console.log('\n[Setup] Ready!\n');
|
||||||
|
});
|
||||||
|
|
||||||
|
const testCases = findTestCases();
|
||||||
|
console.log(`\nFound ${testCases.length} invoice test cases (Qwen3-VL Vision)\n`);
|
||||||
|
|
||||||
|
let passedCount = 0;
|
||||||
|
let failedCount = 0;
|
||||||
|
const times: number[] = [];
|
||||||
|
|
||||||
|
for (const testCase of testCases) {
|
||||||
|
tap.test(`should extract invoice: ${testCase.name}`, async () => {
|
||||||
|
const expected: IInvoice = JSON.parse(fs.readFileSync(testCase.jsonPath, 'utf-8'));
|
||||||
|
console.log(`\n=== ${testCase.name} ===`);
|
||||||
|
console.log(`Expected: ${expected.invoice_number} | ${expected.invoice_date} | ${expected.total_amount} ${expected.currency}`);
|
||||||
|
|
||||||
|
const start = Date.now();
|
||||||
|
const images = convertPdfToImages(testCase.pdfPath);
|
||||||
|
console.log(` Pages: ${images.length}`);
|
||||||
|
|
||||||
|
const extracted = await extractInvoiceFromImages(images);
|
||||||
|
console.log(` Extracted: ${extracted.invoice_number} | ${extracted.invoice_date} | ${extracted.total_amount} ${extracted.currency}`);
|
||||||
|
const elapsed = Date.now() - start;
|
||||||
|
times.push(elapsed);
|
||||||
|
|
||||||
|
const result = compareInvoice(extracted, expected);
|
||||||
|
|
||||||
|
if (result.match) {
|
||||||
|
passedCount++;
|
||||||
|
console.log(` Result: MATCH (${(elapsed / 1000).toFixed(1)}s)`);
|
||||||
|
} else {
|
||||||
|
failedCount++;
|
||||||
|
console.log(` Result: MISMATCH (${(elapsed / 1000).toFixed(1)}s)`);
|
||||||
|
result.errors.forEach((e) => console.log(` - ${e}`));
|
||||||
|
}
|
||||||
|
|
||||||
|
expect(result.match).toBeTrue();
|
||||||
|
});
|
||||||
|
}
|
||||||
|
|
||||||
|
tap.test('summary', async () => {
|
||||||
|
const total = testCases.length;
|
||||||
|
const accuracy = total > 0 ? (passedCount / total) * 100 : 0;
|
||||||
|
const totalTime = times.reduce((a, b) => a + b, 0) / 1000;
|
||||||
|
const avgTime = times.length > 0 ? totalTime / times.length : 0;
|
||||||
|
|
||||||
|
console.log(`\n======================================================`);
|
||||||
|
console.log(` Invoice Extraction Summary (Qwen3-VL Vision)`);
|
||||||
|
console.log(`======================================================`);
|
||||||
|
console.log(` Method: Qwen3-VL 8B (Direct Vision)`);
|
||||||
|
console.log(` Passed: ${passedCount}/${total}`);
|
||||||
|
console.log(` Failed: ${failedCount}/${total}`);
|
||||||
|
console.log(` Accuracy: ${accuracy.toFixed(1)}%`);
|
||||||
|
console.log(`------------------------------------------------------`);
|
||||||
|
console.log(` Total time: ${totalTime.toFixed(1)}s`);
|
||||||
|
console.log(` Avg per inv: ${avgTime.toFixed(1)}s`);
|
||||||
|
console.log(`======================================================\n`);
|
||||||
|
});
|
||||||
|
|
||||||
|
export default tap.start();
|
||||||
Reference in New Issue
Block a user