Files
modelgrid/ts/containers/tgi.ts

418 lines
11 KiB
TypeScript
Raw Normal View History

2026-01-30 03:16:57 +00:00
/**
* TGI Container (Text Generation Inference)
*
* Manages HuggingFace Text Generation Inference containers.
*/
import type {
IContainerConfig,
ILoadedModel,
TContainerType,
} from '../interfaces/container.ts';
import type {
IChatCompletionRequest,
IChatCompletionResponse,
IChatCompletionChoice,
IChatMessage,
} from '../interfaces/api.ts';
import { CONTAINER_IMAGES, CONTAINER_PORTS } from '../constants.ts';
import { logger } from '../logger.ts';
import { BaseContainer, type TModelPullProgress } from './base-container.ts';
/**
* TGI info response
*/
interface ITgiInfoResponse {
model_id: string;
model_sha: string;
model_dtype: string;
model_device_type: string;
max_concurrent_requests: number;
max_best_of: number;
max_stop_sequences: number;
max_input_length: number;
max_total_tokens: number;
version: string;
}
/**
* TGI generate request
*/
interface ITgiGenerateRequest {
inputs: string;
parameters?: {
temperature?: number;
top_p?: number;
max_new_tokens?: number;
stop?: string[];
do_sample?: boolean;
return_full_text?: boolean;
};
}
/**
* TGI generate response
*/
interface ITgiGenerateResponse {
generated_text: string;
details?: {
finish_reason: string;
generated_tokens: number;
seed?: number;
};
}
/**
* TGI container implementation
*
* TGI is optimized for:
* - Production deployments
* - Flash Attention support
* - Quantization (bitsandbytes, GPTQ, AWQ)
* - Multiple GPU support with tensor parallelism
*/
export class TgiContainer extends BaseContainer {
public readonly type: TContainerType = 'tgi';
public readonly displayName = 'TGI';
public readonly defaultImage = CONTAINER_IMAGES.TGI;
public readonly defaultPort = CONTAINER_PORTS.TGI;
constructor(config: IContainerConfig) {
super(config);
// Set defaults if not provided
if (!config.image) {
config.image = this.defaultImage;
}
if (!config.port) {
config.port = this.defaultPort;
}
// Add default volume for model cache
if (!config.volumes || config.volumes.length === 0) {
config.volumes = [`modelgrid-tgi-${config.id}:/data`];
}
}
/**
* Create TGI container configuration
*/
public static createConfig(
id: string,
name: string,
modelName: string,
gpuIds: string[],
options: Partial<IContainerConfig> = {},
): IContainerConfig {
const env: Record<string, string> = {
MODEL_ID: modelName,
PORT: String(options.port || CONTAINER_PORTS.TGI),
HUGGING_FACE_HUB_TOKEN: options.env?.HF_TOKEN || options.env?.HUGGING_FACE_HUB_TOKEN || '',
...options.env,
};
// Add GPU configuration
if (gpuIds.length > 1) {
env.NUM_SHARD = String(gpuIds.length);
}
// Add quantization if specified
if (options.env?.QUANTIZE) {
env.QUANTIZE = options.env.QUANTIZE;
}
return {
id,
name,
type: 'tgi',
image: options.image || CONTAINER_IMAGES.TGI,
gpuIds,
port: options.port || CONTAINER_PORTS.TGI,
externalPort: options.externalPort,
models: [modelName],
env,
volumes: options.volumes || [`modelgrid-tgi-${id}:/data`],
autoStart: options.autoStart ?? true,
restartPolicy: options.restartPolicy || 'unless-stopped',
memoryLimit: options.memoryLimit,
cpuLimit: options.cpuLimit,
command: options.command,
};
}
/**
* Check if TGI is healthy
*/
public async isHealthy(): Promise<boolean> {
try {
const response = await this.fetch('/health', { timeout: 5000 });
return response.ok;
} catch {
return false;
}
}
/**
* List available models
* TGI serves a single model per instance
*/
public async listModels(): Promise<string[]> {
try {
const info = await this.fetchJson<ITgiInfoResponse>('/info');
return [info.model_id];
} catch (error) {
logger.warn(`Failed to get TGI info: ${error instanceof Error ? error.message : String(error)}`);
return this.config.models || [];
}
}
/**
* Get loaded models with details
*/
public async getLoadedModels(): Promise<ILoadedModel[]> {
try {
const info = await this.fetchJson<ITgiInfoResponse>('/info');
return [{
name: info.model_id,
size: 0, // TGI doesn't expose model size
format: info.model_dtype,
loaded: true,
requestCount: 0,
}];
} catch {
return this.config.models.map((name) => ({
name,
size: 0,
loaded: true,
requestCount: 0,
}));
}
}
/**
* Pull a model
* TGI downloads models automatically at startup
*/
public async pullModel(modelName: string, onProgress?: TModelPullProgress): Promise<boolean> {
logger.info(`TGI downloads models at startup. Model: ${modelName}`);
logger.info('To use a different model, create a new TGI container.');
if (onProgress) {
onProgress({
model: modelName,
status: 'TGI models are loaded at container startup',
percent: 100,
});
}
return true;
}
/**
* Remove a model
* TGI serves a single model per instance
*/
public async removeModel(modelName: string): Promise<boolean> {
logger.info(`TGI serves a single model per instance.`);
logger.info(`To remove model ${modelName}, stop and remove this container.`);
return true;
}
/**
* Send a chat completion request
* Convert OpenAI format to TGI format
*/
public async chatCompletion(request: IChatCompletionRequest): Promise<IChatCompletionResponse> {
// Convert messages to TGI prompt format
const prompt = this.messagesToPrompt(request.messages);
const tgiRequest: ITgiGenerateRequest = {
inputs: prompt,
parameters: {
temperature: request.temperature,
top_p: request.top_p,
max_new_tokens: request.max_tokens || 1024,
stop: Array.isArray(request.stop) ? request.stop : request.stop ? [request.stop] : undefined,
do_sample: (request.temperature || 0) > 0,
return_full_text: false,
},
};
const response = await this.fetchJson<ITgiGenerateResponse>('/generate', {
method: 'POST',
body: tgiRequest,
timeout: 300000, // 5 minutes
});
// Convert to OpenAI format
const created = Math.floor(Date.now() / 1000);
const choice: IChatCompletionChoice = {
index: 0,
message: {
role: 'assistant',
content: response.generated_text,
},
finish_reason: response.details?.finish_reason === 'eos_token' ? 'stop' : 'length',
};
return {
id: this.generateRequestId(),
object: 'chat.completion',
created,
model: this.config.models[0] || 'unknown',
choices: [choice],
usage: {
prompt_tokens: 0, // TGI doesn't always report this
completion_tokens: response.details?.generated_tokens || 0,
total_tokens: response.details?.generated_tokens || 0,
},
};
}
/**
* Stream a chat completion request
*/
public async chatCompletionStream(
request: IChatCompletionRequest,
onChunk: (chunk: string) => void,
): Promise<void> {
// Convert messages to TGI prompt format
const prompt = this.messagesToPrompt(request.messages);
const response = await this.fetch('/generate_stream', {
method: 'POST',
body: {
inputs: prompt,
parameters: {
temperature: request.temperature,
top_p: request.top_p,
max_new_tokens: request.max_tokens || 1024,
stop: Array.isArray(request.stop) ? request.stop : request.stop ? [request.stop] : undefined,
do_sample: (request.temperature || 0) > 0,
},
},
timeout: 300000,
});
if (!response.ok) {
const error = await response.text();
throw new Error(`HTTP ${response.status}: ${error}`);
}
const reader = response.body?.getReader();
if (!reader) {
throw new Error('No response body');
}
const decoder = new TextDecoder();
const requestId = this.generateRequestId();
const created = Math.floor(Date.now() / 1000);
const model = this.config.models[0] || 'unknown';
while (true) {
const { done, value } = await reader.read();
if (done) break;
const text = decoder.decode(value);
const lines = text.split('\n').filter((l) => l.startsWith('data:'));
for (const line of lines) {
try {
const jsonStr = line.substring(5).trim();
if (jsonStr === '[DONE]') {
onChunk('data: [DONE]\n\n');
continue;
}
const data = JSON.parse(jsonStr);
// Convert to OpenAI streaming format
const chunk = {
id: requestId,
object: 'chat.completion.chunk',
created,
model,
choices: [
{
index: 0,
delta: {
content: data.token?.text || '',
} as Partial<IChatMessage>,
finish_reason: data.details?.finish_reason ? 'stop' : null,
},
],
};
onChunk(`data: ${JSON.stringify(chunk)}\n\n`);
} catch {
// Invalid JSON, skip
}
}
}
}
/**
* Convert chat messages to TGI prompt format
*/
private messagesToPrompt(messages: IChatMessage[]): string {
// Use a simple chat template
// TGI can use model-specific templates via the Messages API
let prompt = '';
for (const message of messages) {
switch (message.role) {
case 'system':
prompt += `System: ${message.content}\n\n`;
break;
case 'user':
prompt += `User: ${message.content}\n\n`;
break;
case 'assistant':
prompt += `Assistant: ${message.content}\n\n`;
break;
}
}
prompt += 'Assistant:';
return prompt;
}
/**
* Get TGI server info
*/
public async getInfo(): Promise<ITgiInfoResponse | null> {
try {
return await this.fetchJson<ITgiInfoResponse>('/info');
} catch {
return null;
}
}
/**
* Get TGI metrics
*/
public async getMetrics(): Promise<Record<string, unknown>> {
try {
const response = await this.fetch('/metrics', { timeout: 5000 });
if (response.ok) {
const text = await response.text();
// Parse Prometheus metrics
const metrics: Record<string, unknown> = {};
const lines = text.split('\n');
for (const line of lines) {
if (line.startsWith('#') || !line.trim()) continue;
const match = line.match(/^(\w+)(?:\{[^}]*\})?\s+([\d.e+-]+)/);
if (match) {
metrics[match[1]] = parseFloat(match[2]);
}
}
return metrics;
}
} catch {
// Metrics endpoint may not be available
}
return {};
}
}