initial
This commit is contained in:
387
ts/containers/ollama.ts
Normal file
387
ts/containers/ollama.ts
Normal file
@@ -0,0 +1,387 @@
|
||||
/**
|
||||
* Ollama Container
|
||||
*
|
||||
* Manages Ollama containers for running local LLMs.
|
||||
*/
|
||||
|
||||
import type {
|
||||
IContainerConfig,
|
||||
ILoadedModel,
|
||||
TContainerType,
|
||||
} from '../interfaces/container.ts';
|
||||
import type {
|
||||
IChatCompletionRequest,
|
||||
IChatCompletionResponse,
|
||||
IChatCompletionChoice,
|
||||
IChatMessage,
|
||||
} from '../interfaces/api.ts';
|
||||
import { CONTAINER_IMAGES, CONTAINER_PORTS } from '../constants.ts';
|
||||
import { logger } from '../logger.ts';
|
||||
import { BaseContainer, type TModelPullProgress } from './base-container.ts';
|
||||
|
||||
/**
|
||||
* Ollama API response types
|
||||
*/
|
||||
interface IOllamaTagsResponse {
|
||||
models: Array<{
|
||||
name: string;
|
||||
size: number;
|
||||
digest: string;
|
||||
modified_at: string;
|
||||
}>;
|
||||
}
|
||||
|
||||
interface IOllamaChatRequest {
|
||||
model: string;
|
||||
messages: Array<{
|
||||
role: string;
|
||||
content: string;
|
||||
}>;
|
||||
stream?: boolean;
|
||||
options?: {
|
||||
temperature?: number;
|
||||
top_p?: number;
|
||||
num_predict?: number;
|
||||
stop?: string[];
|
||||
};
|
||||
}
|
||||
|
||||
interface IOllamaChatResponse {
|
||||
model: string;
|
||||
created_at: string;
|
||||
message: {
|
||||
role: string;
|
||||
content: string;
|
||||
};
|
||||
done: boolean;
|
||||
total_duration?: number;
|
||||
load_duration?: number;
|
||||
prompt_eval_count?: number;
|
||||
eval_count?: number;
|
||||
}
|
||||
|
||||
interface IOllamaPullResponse {
|
||||
status: string;
|
||||
digest?: string;
|
||||
total?: number;
|
||||
completed?: number;
|
||||
}
|
||||
|
||||
/**
|
||||
* Ollama container implementation
|
||||
*/
|
||||
export class OllamaContainer extends BaseContainer {
|
||||
public readonly type: TContainerType = 'ollama';
|
||||
public readonly displayName = 'Ollama';
|
||||
public readonly defaultImage = CONTAINER_IMAGES.OLLAMA;
|
||||
public readonly defaultPort = CONTAINER_PORTS.OLLAMA;
|
||||
|
||||
constructor(config: IContainerConfig) {
|
||||
super(config);
|
||||
|
||||
// Set defaults if not provided
|
||||
if (!config.image) {
|
||||
config.image = this.defaultImage;
|
||||
}
|
||||
if (!config.port) {
|
||||
config.port = this.defaultPort;
|
||||
}
|
||||
|
||||
// Add default volume for model storage
|
||||
if (!config.volumes || config.volumes.length === 0) {
|
||||
config.volumes = [`modelgrid-ollama-${config.id}:/root/.ollama`];
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Create Ollama container configuration
|
||||
*/
|
||||
public static createConfig(
|
||||
id: string,
|
||||
name: string,
|
||||
gpuIds: string[],
|
||||
options: Partial<IContainerConfig> = {},
|
||||
): IContainerConfig {
|
||||
return {
|
||||
id,
|
||||
name,
|
||||
type: 'ollama',
|
||||
image: options.image || CONTAINER_IMAGES.OLLAMA,
|
||||
gpuIds,
|
||||
port: options.port || CONTAINER_PORTS.OLLAMA,
|
||||
externalPort: options.externalPort,
|
||||
models: options.models || [],
|
||||
env: options.env,
|
||||
volumes: options.volumes || [`modelgrid-ollama-${id}:/root/.ollama`],
|
||||
autoStart: options.autoStart ?? true,
|
||||
restartPolicy: options.restartPolicy || 'unless-stopped',
|
||||
memoryLimit: options.memoryLimit,
|
||||
cpuLimit: options.cpuLimit,
|
||||
command: options.command,
|
||||
};
|
||||
}
|
||||
|
||||
/**
|
||||
* Check if Ollama is healthy
|
||||
*/
|
||||
public async isHealthy(): Promise<boolean> {
|
||||
try {
|
||||
const response = await this.fetch('/api/tags', { timeout: 5000 });
|
||||
return response.ok;
|
||||
} catch {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* List available models
|
||||
*/
|
||||
public async listModels(): Promise<string[]> {
|
||||
try {
|
||||
const data = await this.fetchJson<IOllamaTagsResponse>('/api/tags');
|
||||
return (data.models || []).map((m) => m.name);
|
||||
} catch (error) {
|
||||
logger.warn(`Failed to list Ollama models: ${error instanceof Error ? error.message : String(error)}`);
|
||||
return [];
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Get loaded models with details
|
||||
*/
|
||||
public async getLoadedModels(): Promise<ILoadedModel[]> {
|
||||
try {
|
||||
const data = await this.fetchJson<IOllamaTagsResponse>('/api/tags');
|
||||
return (data.models || []).map((m) => ({
|
||||
name: m.name,
|
||||
size: m.size,
|
||||
format: m.digest.substring(0, 12),
|
||||
loaded: true, // Ollama doesn't distinguish loaded vs available
|
||||
requestCount: 0,
|
||||
}));
|
||||
} catch {
|
||||
return [];
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Pull a model
|
||||
*/
|
||||
public async pullModel(modelName: string, onProgress?: TModelPullProgress): Promise<boolean> {
|
||||
try {
|
||||
logger.info(`Pulling model: ${modelName}`);
|
||||
|
||||
const response = await this.fetch('/api/pull', {
|
||||
method: 'POST',
|
||||
body: { name: modelName },
|
||||
timeout: 3600000, // 1 hour for large models
|
||||
});
|
||||
|
||||
if (!response.ok) {
|
||||
throw new Error(`HTTP ${response.status}`);
|
||||
}
|
||||
|
||||
// Read streaming response
|
||||
const reader = response.body?.getReader();
|
||||
if (!reader) {
|
||||
throw new Error('No response body');
|
||||
}
|
||||
|
||||
const decoder = new TextDecoder();
|
||||
let lastStatus = '';
|
||||
|
||||
while (true) {
|
||||
const { done, value } = await reader.read();
|
||||
if (done) break;
|
||||
|
||||
const text = decoder.decode(value);
|
||||
const lines = text.split('\n').filter((l) => l.trim());
|
||||
|
||||
for (const line of lines) {
|
||||
try {
|
||||
const data = JSON.parse(line) as IOllamaPullResponse;
|
||||
const status = data.status;
|
||||
|
||||
if (status !== lastStatus) {
|
||||
lastStatus = status;
|
||||
let percent: number | undefined;
|
||||
|
||||
if (data.total && data.completed) {
|
||||
percent = Math.round((data.completed / data.total) * 100);
|
||||
}
|
||||
|
||||
if (onProgress) {
|
||||
onProgress({ model: modelName, status, percent });
|
||||
} else {
|
||||
const progressStr = percent !== undefined ? ` (${percent}%)` : '';
|
||||
logger.dim(` ${status}${progressStr}`);
|
||||
}
|
||||
}
|
||||
} catch {
|
||||
// Invalid JSON line, skip
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
logger.success(`Model ${modelName} pulled successfully`);
|
||||
return true;
|
||||
} catch (error) {
|
||||
logger.error(`Failed to pull model ${modelName}: ${error instanceof Error ? error.message : String(error)}`);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Remove a model
|
||||
*/
|
||||
public async removeModel(modelName: string): Promise<boolean> {
|
||||
try {
|
||||
const response = await this.fetch('/api/delete', {
|
||||
method: 'DELETE',
|
||||
body: { name: modelName },
|
||||
});
|
||||
|
||||
if (response.ok) {
|
||||
logger.success(`Model ${modelName} removed`);
|
||||
return true;
|
||||
}
|
||||
|
||||
throw new Error(`HTTP ${response.status}`);
|
||||
} catch (error) {
|
||||
logger.error(`Failed to remove model ${modelName}: ${error instanceof Error ? error.message : String(error)}`);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Send a chat completion request
|
||||
*/
|
||||
public async chatCompletion(request: IChatCompletionRequest): Promise<IChatCompletionResponse> {
|
||||
const ollamaRequest: IOllamaChatRequest = {
|
||||
model: request.model,
|
||||
messages: request.messages.map((m) => ({
|
||||
role: m.role,
|
||||
content: m.content,
|
||||
})),
|
||||
stream: false,
|
||||
options: {
|
||||
temperature: request.temperature,
|
||||
top_p: request.top_p,
|
||||
num_predict: request.max_tokens,
|
||||
stop: Array.isArray(request.stop) ? request.stop : request.stop ? [request.stop] : undefined,
|
||||
},
|
||||
};
|
||||
|
||||
const response = await this.fetchJson<IOllamaChatResponse>('/api/chat', {
|
||||
method: 'POST',
|
||||
body: ollamaRequest,
|
||||
timeout: 300000, // 5 minutes
|
||||
});
|
||||
|
||||
// Convert to OpenAI format
|
||||
const created = Math.floor(Date.now() / 1000);
|
||||
|
||||
const choice: IChatCompletionChoice = {
|
||||
index: 0,
|
||||
message: {
|
||||
role: 'assistant',
|
||||
content: response.message.content,
|
||||
},
|
||||
finish_reason: response.done ? 'stop' : null,
|
||||
};
|
||||
|
||||
return {
|
||||
id: this.generateRequestId(),
|
||||
object: 'chat.completion',
|
||||
created,
|
||||
model: request.model,
|
||||
choices: [choice],
|
||||
usage: {
|
||||
prompt_tokens: response.prompt_eval_count || 0,
|
||||
completion_tokens: response.eval_count || 0,
|
||||
total_tokens: (response.prompt_eval_count || 0) + (response.eval_count || 0),
|
||||
},
|
||||
};
|
||||
}
|
||||
|
||||
/**
|
||||
* Stream a chat completion request
|
||||
*/
|
||||
public async chatCompletionStream(
|
||||
request: IChatCompletionRequest,
|
||||
onChunk: (chunk: string) => void,
|
||||
): Promise<void> {
|
||||
const ollamaRequest: IOllamaChatRequest = {
|
||||
model: request.model,
|
||||
messages: request.messages.map((m) => ({
|
||||
role: m.role,
|
||||
content: m.content,
|
||||
})),
|
||||
stream: true,
|
||||
options: {
|
||||
temperature: request.temperature,
|
||||
top_p: request.top_p,
|
||||
num_predict: request.max_tokens,
|
||||
stop: Array.isArray(request.stop) ? request.stop : request.stop ? [request.stop] : undefined,
|
||||
},
|
||||
};
|
||||
|
||||
const response = await this.fetch('/api/chat', {
|
||||
method: 'POST',
|
||||
body: ollamaRequest,
|
||||
timeout: 300000,
|
||||
});
|
||||
|
||||
if (!response.ok) {
|
||||
throw new Error(`HTTP ${response.status}`);
|
||||
}
|
||||
|
||||
const reader = response.body?.getReader();
|
||||
if (!reader) {
|
||||
throw new Error('No response body');
|
||||
}
|
||||
|
||||
const decoder = new TextDecoder();
|
||||
const requestId = this.generateRequestId();
|
||||
const created = Math.floor(Date.now() / 1000);
|
||||
|
||||
while (true) {
|
||||
const { done, value } = await reader.read();
|
||||
if (done) break;
|
||||
|
||||
const text = decoder.decode(value);
|
||||
const lines = text.split('\n').filter((l) => l.trim());
|
||||
|
||||
for (const line of lines) {
|
||||
try {
|
||||
const data = JSON.parse(line) as IOllamaChatResponse;
|
||||
|
||||
// Convert to OpenAI streaming format
|
||||
const chunk = {
|
||||
id: requestId,
|
||||
object: 'chat.completion.chunk',
|
||||
created,
|
||||
model: request.model,
|
||||
choices: [
|
||||
{
|
||||
index: 0,
|
||||
delta: {
|
||||
content: data.message.content,
|
||||
} as Partial<IChatMessage>,
|
||||
finish_reason: data.done ? 'stop' : null,
|
||||
},
|
||||
],
|
||||
};
|
||||
|
||||
onChunk(`data: ${JSON.stringify(chunk)}\n\n`);
|
||||
|
||||
if (data.done) {
|
||||
onChunk('data: [DONE]\n\n');
|
||||
}
|
||||
} catch {
|
||||
// Invalid JSON, skip
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user