import * as plugins from './plugins.js'; import * as paths from './paths.js'; import { MultiModalModel } from './abstract.classes.multimodal.js'; import type { ChatOptions, ChatResponse, ChatMessage } from './abstract.classes.multimodal.js'; export interface IOllamaProviderOptions { baseUrl?: string; model?: string; visionModel?: string; // Model to use for vision tasks (e.g. 'llava') } export class OllamaProvider extends MultiModalModel { private options: IOllamaProviderOptions; private baseUrl: string; private model: string; private visionModel: string; constructor(optionsArg: IOllamaProviderOptions = {}) { super(); this.options = optionsArg; this.baseUrl = optionsArg.baseUrl || 'http://localhost:11434'; this.model = optionsArg.model || 'llama2'; this.visionModel = optionsArg.visionModel || 'llava'; } async start() { // Verify Ollama is running try { const response = await fetch(`${this.baseUrl}/api/tags`); if (!response.ok) { throw new Error('Failed to connect to Ollama server'); } } catch (error) { throw new Error(`Failed to connect to Ollama server at ${this.baseUrl}: ${error.message}`); } } async stop() {} public async chatStream(input: ReadableStream): Promise> { // Create a TextDecoder to handle incoming chunks const decoder = new TextDecoder(); let buffer = ''; let currentMessage: { role: string; content: string; } | null = null; // Create a TransformStream to process the input const transform = new TransformStream({ async transform(chunk, controller) { buffer += decoder.decode(chunk, { stream: true }); // Try to parse complete JSON messages from the buffer while (true) { const newlineIndex = buffer.indexOf('\n'); if (newlineIndex === -1) break; const line = buffer.slice(0, newlineIndex); buffer = buffer.slice(newlineIndex + 1); if (line.trim()) { try { const message = JSON.parse(line); currentMessage = { role: message.role || 'user', content: message.content || '', }; } catch (e) { console.error('Failed to parse message:', e); } } } // If we have a complete message, send it to Ollama if (currentMessage) { const response = await fetch(`${this.baseUrl}/api/chat`, { method: 'POST', headers: { 'Content-Type': 'application/json', }, body: JSON.stringify({ model: this.model, messages: [{ role: currentMessage.role, content: currentMessage.content }], stream: true, }), }); // Process each chunk from Ollama const reader = response.body?.getReader(); if (reader) { try { while (true) { const { done, value } = await reader.read(); if (done) break; const chunk = new TextDecoder().decode(value); const lines = chunk.split('\n'); for (const line of lines) { if (line.trim()) { try { const parsed = JSON.parse(line); const content = parsed.message?.content; if (content) { controller.enqueue(content); } } catch (e) { console.error('Failed to parse Ollama response:', e); } } } } } finally { reader.releaseLock(); } } currentMessage = null; } }, flush(controller) { if (buffer) { try { const message = JSON.parse(buffer); controller.enqueue(message.content || ''); } catch (e) { console.error('Failed to parse remaining buffer:', e); } } } }); // Connect the input to our transform stream return input.pipeThrough(transform); } // Implementing the synchronous chat interaction public async chat(optionsArg: ChatOptions): Promise { // Format messages for Ollama const messages = [ { role: 'system', content: optionsArg.systemMessage }, ...optionsArg.messageHistory, { role: 'user', content: optionsArg.userMessage } ]; // Make API call to Ollama const response = await fetch(`${this.baseUrl}/api/chat`, { method: 'POST', headers: { 'Content-Type': 'application/json', }, body: JSON.stringify({ model: this.model, messages: messages, stream: false }), }); if (!response.ok) { throw new Error(`Ollama API error: ${response.statusText}`); } const result = await response.json(); return { role: 'assistant' as const, message: result.message.content, }; } public async audio(optionsArg: { message: string }): Promise { throw new Error('Audio generation is not supported by Ollama.'); } public async vision(optionsArg: { image: Buffer; prompt: string }): Promise { const base64Image = optionsArg.image.toString('base64'); const response = await fetch(`${this.baseUrl}/api/chat`, { method: 'POST', headers: { 'Content-Type': 'application/json', }, body: JSON.stringify({ model: this.visionModel, messages: [{ role: 'user', content: optionsArg.prompt, images: [base64Image] }], stream: false }), }); if (!response.ok) { throw new Error(`Ollama API error: ${response.statusText}`); } const result = await response.json(); return result.message.content; } public async document(optionsArg: { systemMessage: string; userMessage: string; pdfDocuments: Uint8Array[]; messageHistory: ChatMessage[]; }): Promise<{ message: any }> { // Convert PDF documents to images using SmartPDF const smartpdfInstance = new plugins.smartpdf.SmartPdf(); let documentImageBytesArray: Uint8Array[] = []; for (const pdfDocument of optionsArg.pdfDocuments) { const documentImageArray = await smartpdfInstance.convertPDFToPngBytes(pdfDocument); documentImageBytesArray = documentImageBytesArray.concat(documentImageArray); } // Convert images to base64 const base64Images = documentImageBytesArray.map(bytes => Buffer.from(bytes).toString('base64')); // Send request to Ollama with images const response = await fetch(`${this.baseUrl}/api/chat`, { method: 'POST', headers: { 'Content-Type': 'application/json', }, body: JSON.stringify({ model: this.visionModel, messages: [ { role: 'system', content: optionsArg.systemMessage }, ...optionsArg.messageHistory, { role: 'user', content: optionsArg.userMessage, images: base64Images } ], stream: false }), }); if (!response.ok) { throw new Error(`Ollama API error: ${response.statusText}`); } const result = await response.json(); return { message: { role: 'assistant', content: result.message.content } }; } }