docs: Create comprehensive Deno-based readme
All checks were successful
CI / Type Check & Lint (push) Successful in 9s
CI / Build Test (Current Platform) (push) Successful in 21s
CI / Build All Platforms (push) Successful in 1m53s

- Updated installation instructions for binary distribution
- Removed all npm/Node.js references
- Added detailed CLI command reference
- Included programmatic usage examples
- Added architecture diagrams
- Added troubleshooting section
- Added emojis for modern appeal
- Documented Deno development workflow
- Kept legal section up to date
This commit is contained in:
2025-10-23 23:25:01 +00:00
parent 526b4f46dd
commit da4b5ff9a3

738
readme.md
View File

@@ -1,284 +1,544 @@
# @serve.zone/spark
A comprehensive tool for maintaining and configuring servers, integrating with Docker and supporting advanced task scheduling, targeted at the serve.zone infrastructure. It's mainly designed to be utilized by @serve.zone/cloudly as a cluster node server system manager, maintaining and configuring servers on the base OS level.
# @serve.zone/spark 🔥
## Install
To install `@serve.zone/spark`, run the following command in your terminal:
> **A powerful Deno-powered server management tool for the modern infrastructure**
```sh
npm install @serve.zone/spark --save
Spark is a comprehensive tool for maintaining and configuring servers at the OS level, with deep Docker integration and advanced task scheduling capabilities. Built for the serve.zone infrastructure, Spark serves as the backbone for [@serve.zone/cloudly](https://code.foss.global/serve.zone/cloudly) cluster management, handling everything from daemon orchestration to container lifecycle management.
## ✨ Features
- 🚀 **Standalone Binary** - No runtime dependencies, just download and run
- 🐳 **Docker Integration** - Native support for Docker services, stacks, secrets, and networks
- ⚙️ **Daemon Management** - Systemd integration for reliable service operation
- 📅 **Task Scheduling** - Cron-like task scheduling for automation
- 🔄 **Auto-Updates** - Self-updating capabilities for zero-downtime deployments
- 🔐 **Secure Secrets** - Docker secrets management for sensitive data
- 📊 **Comprehensive Logging** - Built-in logging with multiple severity levels
- 🎯 **Mode Support** - Cloudly and CoreFlow node operation modes
## 🚀 Installation
### Quick Install (Recommended)
Install the latest version via our installation script:
```bash
curl -sSL https://code.foss.global/serve.zone/spark/raw/branch/master/install.sh | sudo bash
```
Ensure you have both Node.js and npm installed on your machine.
### Specific Version
## Usage
### Getting Started
To use `@serve.zone/spark` in your project, you need to include and initiate it in your TypeScript project. Ensure you have TypeScript and the necessary build tools set up in your project.
First, import `@serve.zone/spark`:
```typescript
import { Spark } from '@serve.zone/spark';
```bash
curl -sSL https://code.foss.global/serve.zone/spark/raw/branch/master/install.sh | sudo bash -s -- --version v1.2.2
```
### Initializing Spark
Create an instance of the `Spark` class to start using Spark. This instance will serve as the main entry point for interacting with Spark functionalities.
### Manual Installation
```typescript
const sparkInstance = new Spark();
Download the binary for your platform from the [releases page](https://code.foss.global/serve.zone/spark/releases) and make it executable:
```bash
# Example for Linux x64
wget https://code.foss.global/serve.zone/spark/releases/download/v1.2.2/spark-linux-x64
chmod +x spark-linux-x64
sudo mv spark-linux-x64 /usr/local/bin/spark
```
### Running Spark as a Daemon
To run Spark as a daemon, which is useful for maintaining and configuring servers at the OS level, you can use the CLI feature bundled with Spark. This should ideally be handled outside of your code through a command-line terminal but can also be automated within your Node.js scripts if required.
### Supported Platforms
```shell
spark installdaemon
- 🐧 Linux (x86_64, ARM64)
- 🍎 macOS (Intel, Apple Silicon)
- 🪟 Windows (x86_64)
## 🎯 Quick Start
### Install as System Daemon
Set up Spark to run as a systemd service:
```bash
sudo spark installdaemon
```
The command above sets up Spark as a system service, enabling it to run and maintain server configurations automatically.
This command:
- Creates a systemd service unit
- Enables automatic startup on boot
- Starts the Spark daemon immediately
### Updating Spark or Maintained Services
Spark can self-update and manage updates for its maintained services. Trigger an update check and process by calling the `updateServices` method on the Spark instance.
### Configure Operation Mode
```typescript
await sparkInstance.sparkUpdateManager.updateServices();
Spark supports different operation modes for various use cases:
```bash
# For Cloudly cluster management
sudo spark asdaemon --mode cloudly
# For CoreFlow node management
sudo spark asdaemon --mode coreflow-node
```
### Managing Configuration and Logging
Spark allows extensive configuration and logging customization. Use the `SparkLocalConfig` and logging features to tailor Spark's operation to your needs.
### View Logs
```typescript
// Accessing the local configuration
const localConfig = sparkInstance.sparkLocalConfig;
Monitor Spark daemon activity in real-time:
// Utilizing the logger for custom log messages
import { logger } from '@serve.zone/spark';
logger.log('info', 'Custom log message');
```bash
sudo spark logs
```
## 📖 CLI Reference
### Core Commands
#### `spark installdaemon`
Installs Spark as a system daemon service. This sets up a systemd unit that automatically starts on boot.
```bash
sudo spark installdaemon
```
#### `spark updatedaemon`
Updates the daemon service configuration to the current Spark version.
```bash
sudo spark updatedaemon
```
#### `spark asdaemon [--mode MODE]`
Runs Spark in daemon mode. Requires a mode to be specified (either via `--mode` flag or from saved configuration).
```bash
sudo spark asdaemon --mode cloudly
```
**Available modes:**
- `cloudly` - Manages Cloudly services
- `coreflow-node` - Manages CoreFlow node services
#### `spark logs`
Displays real-time logs from the Spark daemon service.
```bash
sudo spark logs
```
#### `spark prune`
Performs a complete cleanup of Docker resources and restarts services. Use with caution!
```bash
sudo spark prune
```
This command:
1. Stops the Spark daemon
2. Removes all Docker stacks
3. Removes all Docker services
4. Removes all Docker secrets
5. Removes specified Docker networks
6. Prunes the Docker system
7. Restarts Docker
8. Restarts the Spark daemon
### Advanced Usage
`@serve.zone/spark` offers tools for detailed server and service management, including but not limited to task scheduling, daemon management, and service updates. Explore the `SparkTaskManager` for scheduling specific tasks, `SparkUpdateManager` for handling service updates, and `SparkLocalConfig` for configuration.
### Example: Scheduling Custom Tasks
#### Check Version
```bash
spark --version
```
#### Get Help
```bash
spark help
```
## 🔧 Programmatic Usage
While Spark is primarily designed as a CLI tool and daemon, you can also use it as a library in your Deno projects.
### Import from Deno
```typescript
import { SparkTaskManager } from '@serve.zone/spark';
import { Spark } from 'https://code.foss.global/serve.zone/spark/raw/branch/master/mod.ts';
```
const sparkInstance = new Spark();
const myTask = {
name: 'customTask',
### Basic Usage
```typescript
import { Spark } from './mod.ts';
// Create a Spark instance
const spark = new Spark();
// Start the daemon programmatically
await spark.daemonStart();
```
### Task Scheduling
Schedule automated tasks using the built-in task manager:
```typescript
import { Spark } from './mod.ts';
const spark = new Spark();
// Define a custom task
const backupTask = {
name: 'daily-backup',
taskFunction: async () => {
console.log('Running custom task');
console.log('Running backup...');
// Your backup logic here
},
};
sparkInstance.sparkTaskManager.taskmanager.addAndScheduleTask(myTask, '* * * * * *');
```
The example above creates a simple task that logs a message every second, demonstrating how to use Spark's task manager for custom scheduled tasks.
### Detailed Service Management
For advanced configurations, including Docker and service management, you can utilize the following patterns:
- Use `SparkUpdateManager` to handle Docker image updates, service creation, and management.
- Access and modify Docker and service configurations through Spark's integration with configuration files and environment variables.
```typescript
// Managing Docker services with Spark
await sparkInstance.sparkUpdateManager.dockerHost.someDockerMethod();
// Example: Creating a Docker service
const newServiceDefinition = {...};
await sparkInstance.sparkUpdateManager.createService(newServiceDefinition);
```
### CLI Commands
Spark provides several CLI commands to interact with and manage the system services:
#### Installing Spark as a Daemon
```shell
spark installdaemon
```
Sets up Spark as a system service to maintain server configurations automatically.
#### Updating the Daemon
```shell
spark updatedaemon
```
Updates the daemon service if a new version is available.
#### Running Spark as Daemon
```shell
spark asdaemon
```
Runs Spark in daemon mode, which is suitable for executing automated tasks.
#### Viewing Logs
```shell
spark logs
```
Views the logs of the Spark daemon service.
#### Cleaning Up Services
```shell
spark prune
```
Stops and cleans up all Docker services (stacks, networks, secrets, etc.) and prunes the Docker system.
### Programmatic Daemon Management
You can also manage the daemon programmatically:
```typescript
import { SmartDaemon } from '@push.rocks/smartdaemon';
import { Spark } from '@serve.zone/spark';
const sparkInstance = new Spark();
const smartDaemon = new SmartDaemon();
const startDaemon = async () => {
const sparkService = await smartDaemon.addService({
name: 'spark',
version: sparkInstance.sparkInfo.projectInfo.version,
command: 'spark asdaemon',
description: 'Spark daemon service',
workingDir: '/path/to/project',
});
await sparkService.save();
await sparkService.enable();
await sparkService.start();
};
const updateDaemon = async () => {
const sparkService = await smartDaemon.addService({
name: 'spark',
version: sparkInstance.sparkInfo.projectInfo.version,
command: 'spark asdaemon',
description: 'Spark daemon service',
workingDir: '/path/to/project',
});
await sparkService.reload();
};
startDaemon();
updateDaemon();
```
This illustrates how to initiate and update the Spark daemon using the `SmartDaemon` class from `@push.rocks/smartdaemon`.
### Configuration Management
Extensive configuration management is possible through the `SparkLocalConfig` and other configuration classes. This feature allows you to make your application's behavior adaptable based on different environments and requirements.
```typescript
// Example on setting local config
import { SparkLocalConfig } from '@serve.zone/spark';
const localConfig = new SparkLocalConfig(sparkInstance);
await localConfig.kvStore.set('someKey', 'someValue');
// Retrieving a value from local config
const someConfigValue = await localConfig.kvStore.get('someKey');
console.log(someConfigValue); // Outputs: someValue
```
### Detailed Log Management
Logging is a crucial aspect of any automation tool, and `@serve.zone/spark` offers rich logging functionality through its built-in logging library.
```typescript
import { logger, Spark } from '@serve.zone/spark';
const sparkInstance = new Spark();
logger.log('info', 'Spark instance created.');
// Using logger in various levels of severity
logger.log('debug', 'This is a debug message');
logger.log('warn', 'This is a warning message');
logger.log('error', 'This is an error message');
logger.log('ok', 'This is a success message');
```
### Real-World Scenarios
#### Automated System Update and Restart
In real-world scenarios, you might want to automate system updates and reboots to ensure your services are running the latest security patches and features.
```typescript
import { Spark } from '@serve.zone/spark';
import { SmartShell } from '@push.rocks/smartshell';
const sparkInstance = new Spark();
const shell = new SmartShell({ executor: 'bash' });
const updateAndRestart = async () => {
await shell.exec('apt-get update && apt-get upgrade -y');
console.log('System updated.');
await shell.exec('reboot');
};
sparkInstance.sparkTaskManager.taskmanager.addAndScheduleTask(
{ name: 'updateAndRestart', taskFunction: updateAndRestart },
'0 3 * * 7' // Every Sunday at 3 AM
// Schedule it to run daily at 2 AM
spark.sparkTaskManager.taskmanager.addAndScheduleTask(
backupTask,
'0 2 * * *'
);
```
This example demonstrates creating and scheduling a task to update and restart the server every Sunday at 3 AM using Spark's task management capabilities.
### Service Management
#### Integrating with Docker for Service Deployment
Spark's tight integration with Docker makes it an excellent tool for deploying containerized applications across your infrastructure.
Manage Docker services programmatically:
```typescript
import { Spark } from '@serve.zone/spark';
import { DockerHost } from '@apiclient.xyz/docker';
import { Spark } from './mod.ts';
const sparkInstance = new Spark();
const dockerHost = new DockerHost({});
const spark = new Spark();
const deployService = async () => {
const image = await dockerHost.pullImage('my-docker-repo/my-service:latest');
const newService = await dockerHost.createService({
name: 'my-service',
image,
ports: ['80:8080'],
environmentVariables: {
NODE_ENV: 'production',
// Add a service to manage
spark.sparkUpdateManager.services.push({
name: 'my-app',
image: 'code.foss.global/myorg/myapp',
url: 'myapp',
environment: 'production',
port: '3000',
secretJson: {
API_KEY: 'secret-value',
DATABASE_URL: 'postgresql://...',
},
});
// Start managing services
await spark.sparkUpdateManager.start();
```
### Configuration Management
Access and modify Spark's configuration:
```typescript
import { Spark } from './mod.ts';
const spark = new Spark();
// Write configuration
await spark.sparkConfig.kvStore.writeKey('mode', 'cloudly');
// Read configuration
const mode = await spark.sparkConfig.kvStore.readKey('mode');
console.log(`Current mode: ${mode}`);
```
### Logging
Use Spark's built-in logger for consistent logging:
```typescript
import { logger } from './ts/spark.logging.ts';
// Log at different levels
logger.log('info', 'Application starting...');
logger.log('ok', 'Service deployed successfully');
logger.log('warn', 'High memory usage detected');
logger.log('error', 'Failed to connect to database');
logger.log('success', 'Backup completed');
```
## 🏗️ Architecture
### Core Components
```
┌─────────────────────────────────────────┐
│ Spark Instance │
├─────────────────────────────────────────┤
│ │
│ ┌─────────────────────────────────┐ │
│ │ SparkConfig │ │
│ │ - KV Store │ │
│ │ - Mode Configuration │ │
│ └─────────────────────────────────┘ │
│ │
│ ┌─────────────────────────────────┐ │
│ │ SparkTaskManager │ │
│ │ - Cron Scheduling │ │
│ │ - Task Execution │ │
│ └─────────────────────────────────┘ │
│ │
│ ┌─────────────────────────────────┐ │
│ │ SparkServicesManager │ │
│ │ - Docker Integration │ │
│ │ - Service Updates │ │
│ │ - Secret Management │ │
│ └─────────────────────────────────┘ │
│ │
│ ┌─────────────────────────────────┐ │
│ │ SmartDaemon │ │
│ │ - Systemd Integration │ │
│ │ - Service Lifecycle │ │
│ └─────────────────────────────────┘ │
│ │
└─────────────────────────────────────────┘
```
### Key Classes
- **`Spark`** - Main orchestrator class that coordinates all components
- **`SparkConfig`** - Handles configuration storage and retrieval
- **`SparkTaskManager`** - Manages scheduled tasks and automation
- **`SparkServicesManager`** - Manages Docker services and updates
- **`SparkInfo`** - Provides project and version information
## 🔄 Update Management
Spark includes self-updating capabilities:
```typescript
import { Spark } from './mod.ts';
const spark = new Spark();
// Check for and apply updates
await spark.sparkUpdateManager.updateServices();
```
The update manager:
- Pulls latest Docker images
- Manages service rollouts
- Handles zero-downtime deployments
- Manages Docker secrets securely
## 🐳 Docker Integration
### Service Definition
```typescript
const serviceDefinition = {
name: 'api-server',
image: 'code.foss.global/myorg/api',
url: 'api',
environment: 'production',
port: '8080',
secretJson: {
JWT_SECRET: 'your-jwt-secret',
DB_PASSWORD: 'your-db-password',
},
};
spark.sparkUpdateManager.services.push(serviceDefinition);
```
### Stack Management
Spark manages Docker stacks for complex multi-service deployments:
```bash
# View running stacks
docker stack ls
# Spark manages these automatically
```
## 🛠️ Development
### Prerequisites
- [Deno](https://deno.land/) v2.x or later
### Running from Source
```bash
# Clone the repository
git clone https://code.foss.global/serve.zone/spark.git
cd spark
# Run directly
deno run --allow-all mod.ts
# Run tests
deno test --allow-all test/
# Type check
deno check mod.ts
# Format code
deno fmt
# Lint
deno lint
```
### Building Binaries
Compile for all supported platforms:
```bash
bash scripts/compile-all.sh
```
Binaries will be output to `dist/binaries/`.
### Compile for Specific Platform
```bash
# Linux x64
deno compile --allow-all --output spark-linux-x64 --target x86_64-unknown-linux-gnu mod.ts
# macOS ARM64
deno compile --allow-all --output spark-macos-arm64 --target aarch64-apple-darwin mod.ts
```
## 🔐 Security
### Permissions
Spark requires the following Deno permissions:
- `--allow-net` - API communication, Docker socket access
- `--allow-read` - Configuration files, project files
- `--allow-write` - Logs, configuration updates
- `--allow-run` - systemctl, Docker commands
- `--allow-env` - Environment variables
- `--allow-sys` - System information
### Secrets Management
Always use Docker secrets for sensitive data:
```typescript
const serviceWithSecrets = {
name: 'secure-app',
image: 'myapp:latest',
secretJson: {
API_KEY: Deno.env.get('API_KEY')!,
DB_PASSWORD: Deno.env.get('DB_PASSWORD')!,
},
};
```
## 🐛 Troubleshooting
### Service Won't Start
Check the daemon status:
```bash
sudo systemctl status smartdaemon_spark
```
View recent logs:
```bash
sudo journalctl -u smartdaemon_spark -n 100
```
### Docker Issues
Verify Docker is running:
```bash
sudo systemctl status docker
```
Check Docker socket permissions:
```bash
sudo ls -la /var/run/docker.sock
```
### Configuration Issues
Check current mode:
```bash
# Run spark programmatically
deno run --allow-all -e "
import { Spark } from './mod.ts';
const s = new Spark();
const mode = await s.sparkConfig.kvStore.readKey('mode');
console.log('Mode:', mode);
"
```
## 📝 Examples
### Automated System Maintenance
```typescript
import { Spark } from './mod.ts';
const spark = new Spark();
// Schedule weekly system updates
const updateTask = {
name: 'system-update',
taskFunction: async () => {
const shell = new Deno.Command('bash', {
args: ['-c', 'apt-get update && apt-get upgrade -y'],
});
await shell.output();
},
};
// Every Sunday at 3 AM
spark.sparkTaskManager.taskmanager.addAndScheduleTask(
updateTask,
'0 3 * * 0'
);
await spark.daemonStart();
```
### Multi-Service Deployment
```typescript
import { Spark } from './mod.ts';
const spark = new Spark();
// Add multiple services
const services = [
{
name: 'frontend',
image: 'code.foss.global/myorg/frontend',
url: 'frontend',
port: '80',
environment: 'production',
},
{
name: 'backend',
image: 'code.foss.global/myorg/backend',
url: 'backend',
port: '3000',
environment: 'production',
secretJson: {
DATABASE_URL: Deno.env.get('DATABASE_URL')!,
},
});
console.log(`Service ${newService.name} deployed.`);
};
},
{
name: 'worker',
image: 'code.foss.global/myorg/worker',
url: 'worker',
environment: 'production',
},
];
deployService();
services.forEach(svc => spark.sparkUpdateManager.services.push(svc));
await spark.daemonStart();
```
This example demonstrates how to pull a Docker image and deploy it as a new service in your infrastructure using Spark's Docker integration.
## 🤝 Support
### Managing Secrets
Managing secrets and sensitive data is crucial in any configuration and automation tool. Spark's integration with Docker allows you to handle secrets securely.
```typescript
import { Spark, SparkUpdateManager } from '@serve.zone/spark';
import { DockerSecret } from '@apiclient.xyz/docker';
const sparkInstance = new Spark();
const updateManager = new SparkUpdateManager(sparkInstance);
const createDockerSecret = async () => {
const secret = await DockerSecret.createSecret(updateManager.dockerHost, {
name: 'dbPassword',
contentArg: 'superSecretPassword',
});
console.log(`Secret ${secret.Spec.Name} created.`);
};
createDockerSecret();
```
This example shows how to create a Docker secret using Spark's `SparkUpdateManager` class, ensuring that sensitive information is securely stored and managed.
For issues, questions, or contributions:
- 🐛 [Report Issues](https://code.foss.global/serve.zone/spark/issues)
- 📖 [View Source](https://code.foss.global/serve.zone/spark)
## License and Legal Information