fix(image_support_files): remove PaddleOCR-VL server scripts from image_support_files
This commit is contained in:
@@ -1,636 +0,0 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
PaddleOCR-VL Full Pipeline API Server (Transformers backend)
|
||||
|
||||
Provides REST API for document parsing using:
|
||||
- PP-DocLayoutV2 for layout detection
|
||||
- PaddleOCR-VL (transformers) for recognition
|
||||
- Structured JSON/Markdown output
|
||||
"""
|
||||
|
||||
import os
|
||||
import io
|
||||
import re
|
||||
import base64
|
||||
import logging
|
||||
import tempfile
|
||||
import time
|
||||
import json
|
||||
from typing import Optional, List, Union
|
||||
from pathlib import Path
|
||||
|
||||
from fastapi import FastAPI, HTTPException, UploadFile, File, Form
|
||||
from fastapi.responses import JSONResponse
|
||||
from pydantic import BaseModel
|
||||
from PIL import Image
|
||||
import torch
|
||||
|
||||
# Configure logging
|
||||
logging.basicConfig(
|
||||
level=logging.INFO,
|
||||
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
||||
)
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Environment configuration
|
||||
SERVER_HOST = os.environ.get('SERVER_HOST', '0.0.0.0')
|
||||
SERVER_PORT = int(os.environ.get('SERVER_PORT', '8000'))
|
||||
MODEL_NAME = "PaddlePaddle/PaddleOCR-VL"
|
||||
|
||||
# Device configuration
|
||||
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
logger.info(f"Using device: {DEVICE}")
|
||||
|
||||
# Task prompts
|
||||
TASK_PROMPTS = {
|
||||
"ocr": "OCR:",
|
||||
"table": "Table Recognition:",
|
||||
"formula": "Formula Recognition:",
|
||||
"chart": "Chart Recognition:",
|
||||
}
|
||||
|
||||
# Initialize FastAPI app
|
||||
app = FastAPI(
|
||||
title="PaddleOCR-VL Full Pipeline Server",
|
||||
description="Document parsing with PP-DocLayoutV2 + PaddleOCR-VL (transformers)",
|
||||
version="1.0.0"
|
||||
)
|
||||
|
||||
# Global model instances
|
||||
vl_model = None
|
||||
vl_processor = None
|
||||
layout_model = None
|
||||
|
||||
|
||||
def load_vl_model():
|
||||
"""Load the PaddleOCR-VL model for element recognition"""
|
||||
global vl_model, vl_processor
|
||||
|
||||
if vl_model is not None:
|
||||
return
|
||||
|
||||
logger.info(f"Loading PaddleOCR-VL model: {MODEL_NAME}")
|
||||
from transformers import AutoModelForCausalLM, AutoProcessor
|
||||
|
||||
vl_processor = AutoProcessor.from_pretrained(MODEL_NAME, trust_remote_code=True)
|
||||
|
||||
if DEVICE == "cuda":
|
||||
vl_model = AutoModelForCausalLM.from_pretrained(
|
||||
MODEL_NAME,
|
||||
trust_remote_code=True,
|
||||
torch_dtype=torch.bfloat16,
|
||||
).to(DEVICE).eval()
|
||||
else:
|
||||
vl_model = AutoModelForCausalLM.from_pretrained(
|
||||
MODEL_NAME,
|
||||
trust_remote_code=True,
|
||||
torch_dtype=torch.float32,
|
||||
low_cpu_mem_usage=True,
|
||||
).eval()
|
||||
|
||||
logger.info("PaddleOCR-VL model loaded successfully")
|
||||
|
||||
|
||||
def load_layout_model():
|
||||
"""Load the LayoutDetection model for layout detection"""
|
||||
global layout_model
|
||||
|
||||
if layout_model is not None:
|
||||
return
|
||||
|
||||
try:
|
||||
logger.info("Loading LayoutDetection model (PP-DocLayout_plus-L)...")
|
||||
from paddleocr import LayoutDetection
|
||||
|
||||
layout_model = LayoutDetection()
|
||||
logger.info("LayoutDetection model loaded successfully")
|
||||
except Exception as e:
|
||||
logger.warning(f"Could not load LayoutDetection: {e}")
|
||||
logger.info("Falling back to VL-only mode (no layout detection)")
|
||||
|
||||
|
||||
def recognize_element(image: Image.Image, task: str = "ocr") -> str:
|
||||
"""Recognize a single element using PaddleOCR-VL"""
|
||||
load_vl_model()
|
||||
|
||||
prompt = TASK_PROMPTS.get(task, TASK_PROMPTS["ocr"])
|
||||
|
||||
messages = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "image", "image": image},
|
||||
{"type": "text", "text": prompt},
|
||||
]
|
||||
}
|
||||
]
|
||||
|
||||
inputs = vl_processor.apply_chat_template(
|
||||
messages,
|
||||
tokenize=True,
|
||||
add_generation_prompt=True,
|
||||
return_dict=True,
|
||||
return_tensors="pt"
|
||||
)
|
||||
|
||||
if DEVICE == "cuda":
|
||||
inputs = {k: v.to(DEVICE) for k, v in inputs.items()}
|
||||
|
||||
with torch.inference_mode():
|
||||
outputs = vl_model.generate(
|
||||
**inputs,
|
||||
max_new_tokens=4096,
|
||||
do_sample=False,
|
||||
use_cache=True
|
||||
)
|
||||
|
||||
response = vl_processor.batch_decode(outputs, skip_special_tokens=True)[0]
|
||||
|
||||
# Extract only the assistant's response content
|
||||
# The response format is: "User: <prompt>\nAssistant: <content>"
|
||||
# We want to extract just the content after "Assistant:"
|
||||
if "Assistant:" in response:
|
||||
parts = response.split("Assistant:")
|
||||
if len(parts) > 1:
|
||||
response = parts[-1].strip()
|
||||
elif "assistant:" in response.lower():
|
||||
# Case-insensitive fallback
|
||||
import re
|
||||
match = re.split(r'[Aa]ssistant:', response)
|
||||
if len(match) > 1:
|
||||
response = match[-1].strip()
|
||||
|
||||
return response
|
||||
|
||||
|
||||
def detect_layout(image: Image.Image) -> List[dict]:
|
||||
"""Detect layout regions in the image"""
|
||||
load_layout_model()
|
||||
|
||||
if layout_model is None:
|
||||
# No layout model - return a single region covering the whole image
|
||||
return [{
|
||||
"type": "text",
|
||||
"bbox": [0, 0, image.width, image.height],
|
||||
"score": 1.0
|
||||
}]
|
||||
|
||||
# Save image to temp file
|
||||
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp:
|
||||
image.save(tmp.name, "PNG")
|
||||
tmp_path = tmp.name
|
||||
|
||||
try:
|
||||
results = layout_model.predict(tmp_path)
|
||||
regions = []
|
||||
|
||||
for res in results:
|
||||
# LayoutDetection returns boxes in 'boxes' key
|
||||
for box in res.get("boxes", []):
|
||||
coord = box.get("coordinate", [0, 0, image.width, image.height])
|
||||
# Convert numpy floats to regular floats
|
||||
bbox = [float(c) for c in coord]
|
||||
regions.append({
|
||||
"type": box.get("label", "text"),
|
||||
"bbox": bbox,
|
||||
"score": float(box.get("score", 1.0))
|
||||
})
|
||||
|
||||
# Sort regions by vertical position (top to bottom)
|
||||
regions.sort(key=lambda r: r["bbox"][1])
|
||||
|
||||
return regions if regions else [{
|
||||
"type": "text",
|
||||
"bbox": [0, 0, image.width, image.height],
|
||||
"score": 1.0
|
||||
}]
|
||||
|
||||
finally:
|
||||
os.unlink(tmp_path)
|
||||
|
||||
|
||||
def process_document(image: Image.Image) -> dict:
|
||||
"""Process a document through the full pipeline"""
|
||||
logger.info(f"Processing document: {image.size}")
|
||||
|
||||
# Step 1: Detect layout
|
||||
regions = detect_layout(image)
|
||||
logger.info(f"Detected {len(regions)} layout regions")
|
||||
|
||||
# Step 2: Recognize each region
|
||||
blocks = []
|
||||
for i, region in enumerate(regions):
|
||||
region_type = region["type"].lower()
|
||||
bbox = region["bbox"]
|
||||
|
||||
# Crop region from image
|
||||
x1, y1, x2, y2 = [int(c) for c in bbox]
|
||||
region_image = image.crop((x1, y1, x2, y2))
|
||||
|
||||
# Determine task based on region type
|
||||
if "table" in region_type:
|
||||
task = "table"
|
||||
elif "formula" in region_type or "math" in region_type:
|
||||
task = "formula"
|
||||
elif "chart" in region_type or "figure" in region_type:
|
||||
task = "chart"
|
||||
else:
|
||||
task = "ocr"
|
||||
|
||||
# Recognize the region
|
||||
try:
|
||||
content = recognize_element(region_image, task)
|
||||
blocks.append({
|
||||
"index": i,
|
||||
"type": region_type,
|
||||
"bbox": bbox,
|
||||
"content": content,
|
||||
"task": task
|
||||
})
|
||||
logger.info(f" Region {i} ({region_type}): {len(content)} chars")
|
||||
except Exception as e:
|
||||
logger.error(f" Region {i} error: {e}")
|
||||
blocks.append({
|
||||
"index": i,
|
||||
"type": region_type,
|
||||
"bbox": bbox,
|
||||
"content": "",
|
||||
"error": str(e)
|
||||
})
|
||||
|
||||
return {"blocks": blocks, "image_size": list(image.size)}
|
||||
|
||||
|
||||
def result_to_markdown(result: dict) -> str:
|
||||
"""Convert result to Markdown format with structural hints for LLM processing.
|
||||
|
||||
Adds positional and type-based formatting to help downstream LLMs
|
||||
understand document structure:
|
||||
- Tables are marked with **[TABLE]** prefix
|
||||
- Header zone content (top 15%) is bolded
|
||||
- Footer zone content (bottom 15%) is separated with horizontal rule
|
||||
- Titles are formatted as # headers
|
||||
- Figures/charts are marked with *[Figure: ...]*
|
||||
"""
|
||||
lines = []
|
||||
image_height = result.get("image_size", [0, 1000])[1]
|
||||
|
||||
for block in result.get("blocks", []):
|
||||
block_type = block.get("type", "text").lower()
|
||||
content = block.get("content", "").strip()
|
||||
bbox = block.get("bbox", [])
|
||||
|
||||
if not content:
|
||||
continue
|
||||
|
||||
# Determine position zone (top 15%, middle, bottom 15%)
|
||||
y_pos = bbox[1] if bbox and len(bbox) > 1 else 0
|
||||
y_end = bbox[3] if bbox and len(bbox) > 3 else y_pos
|
||||
is_header_zone = y_pos < image_height * 0.15
|
||||
is_footer_zone = y_end > image_height * 0.85
|
||||
|
||||
# Format based on type and position
|
||||
if "table" in block_type:
|
||||
lines.append(f"\n**[TABLE]**\n{content}\n")
|
||||
elif "title" in block_type:
|
||||
lines.append(f"# {content}")
|
||||
elif "formula" in block_type or "math" in block_type:
|
||||
lines.append(f"\n$$\n{content}\n$$\n")
|
||||
elif "figure" in block_type or "chart" in block_type:
|
||||
lines.append(f"*[Figure: {content}]*")
|
||||
elif is_header_zone:
|
||||
lines.append(f"**{content}**")
|
||||
elif is_footer_zone:
|
||||
lines.append(f"---\n{content}")
|
||||
else:
|
||||
lines.append(content)
|
||||
|
||||
return "\n\n".join(lines)
|
||||
|
||||
|
||||
def parse_markdown_table(content: str) -> str:
|
||||
"""Convert table content to HTML table.
|
||||
|
||||
Handles:
|
||||
- PaddleOCR-VL format: <fcel>cell<lcel>cell<nl> (detected by <fcel> tags)
|
||||
- Pipe-delimited tables: | Header | Header |
|
||||
- Separator rows: |---|---|
|
||||
- Returns HTML <table> structure
|
||||
"""
|
||||
content_stripped = content.strip()
|
||||
|
||||
# Check for PaddleOCR-VL table format (<fcel>, <lcel>, <ecel>, <nl>)
|
||||
if '<fcel>' in content_stripped or '<nl>' in content_stripped:
|
||||
return parse_paddleocr_table(content_stripped)
|
||||
|
||||
lines = content_stripped.split('\n')
|
||||
if not lines:
|
||||
return f'<pre>{content}</pre>'
|
||||
|
||||
# Check if it looks like a markdown table
|
||||
if not any('|' in line for line in lines):
|
||||
return f'<pre>{content}</pre>'
|
||||
|
||||
html_rows = []
|
||||
is_header = True
|
||||
|
||||
for line in lines:
|
||||
line = line.strip()
|
||||
if not line or line.startswith('|') == False and '|' not in line:
|
||||
continue
|
||||
|
||||
# Skip separator rows (|---|---|)
|
||||
if re.match(r'^[\|\s\-:]+$', line):
|
||||
is_header = False
|
||||
continue
|
||||
|
||||
# Parse cells
|
||||
cells = [c.strip() for c in line.split('|')]
|
||||
cells = [c for c in cells if c] # Remove empty from edges
|
||||
|
||||
if is_header:
|
||||
row = '<tr>' + ''.join(f'<th>{c}</th>' for c in cells) + '</tr>'
|
||||
html_rows.append(f'<thead>{row}</thead>')
|
||||
is_header = False
|
||||
else:
|
||||
row = '<tr>' + ''.join(f'<td>{c}</td>' for c in cells) + '</tr>'
|
||||
html_rows.append(row)
|
||||
|
||||
if html_rows:
|
||||
# Wrap body rows in tbody
|
||||
header = html_rows[0] if '<thead>' in html_rows[0] else ''
|
||||
body_rows = [r for r in html_rows if '<thead>' not in r]
|
||||
body = f'<tbody>{"".join(body_rows)}</tbody>' if body_rows else ''
|
||||
return f'<table>{header}{body}</table>'
|
||||
|
||||
return f'<pre>{content}</pre>'
|
||||
|
||||
|
||||
def parse_paddleocr_table(content: str) -> str:
|
||||
"""Convert PaddleOCR-VL table format to HTML table.
|
||||
|
||||
PaddleOCR-VL uses:
|
||||
- <fcel> = first cell in a row
|
||||
- <lcel> = subsequent cells
|
||||
- <ecel> = empty cell
|
||||
- <nl> = row separator (newline)
|
||||
|
||||
Example input:
|
||||
<fcel>Header1<lcel>Header2<nl><fcel>Value1<lcel>Value2<nl>
|
||||
"""
|
||||
# Split into rows by <nl>
|
||||
rows_raw = re.split(r'<nl>', content)
|
||||
html_rows = []
|
||||
is_first_row = True
|
||||
|
||||
for row_content in rows_raw:
|
||||
row_content = row_content.strip()
|
||||
if not row_content:
|
||||
continue
|
||||
|
||||
# Extract cells: split by <fcel>, <lcel>, or <ecel>
|
||||
# Each cell is the text between these markers
|
||||
cells = []
|
||||
|
||||
# Pattern to match cell markers and capture content
|
||||
# Content is everything between markers
|
||||
parts = re.split(r'<fcel>|<lcel>|<ecel>', row_content)
|
||||
for part in parts:
|
||||
part = part.strip()
|
||||
if part:
|
||||
cells.append(part)
|
||||
|
||||
if not cells:
|
||||
continue
|
||||
|
||||
# First row is header
|
||||
if is_first_row:
|
||||
row_html = '<tr>' + ''.join(f'<th>{c}</th>' for c in cells) + '</tr>'
|
||||
html_rows.append(f'<thead>{row_html}</thead>')
|
||||
is_first_row = False
|
||||
else:
|
||||
row_html = '<tr>' + ''.join(f'<td>{c}</td>' for c in cells) + '</tr>'
|
||||
html_rows.append(row_html)
|
||||
|
||||
if html_rows:
|
||||
header = html_rows[0] if '<thead>' in html_rows[0] else ''
|
||||
body_rows = [r for r in html_rows if '<thead>' not in r]
|
||||
body = f'<tbody>{"".join(body_rows)}</tbody>' if body_rows else ''
|
||||
return f'<table>{header}{body}</table>'
|
||||
|
||||
return f'<pre>{content}</pre>'
|
||||
|
||||
|
||||
def result_to_html(result: dict) -> str:
|
||||
"""Convert result to semantic HTML for optimal LLM processing.
|
||||
|
||||
Uses semantic HTML5 tags with position metadata as data-* attributes.
|
||||
Markdown tables are converted to proper HTML <table> tags for
|
||||
unambiguous parsing by downstream LLMs.
|
||||
"""
|
||||
parts = []
|
||||
image_height = result.get("image_size", [0, 1000])[1]
|
||||
|
||||
parts.append('<!DOCTYPE html><html><body>')
|
||||
|
||||
for block in result.get("blocks", []):
|
||||
block_type = block.get("type", "text").lower()
|
||||
content = block.get("content", "").strip()
|
||||
bbox = block.get("bbox", [])
|
||||
|
||||
if not content:
|
||||
continue
|
||||
|
||||
# Position metadata
|
||||
y_pos = bbox[1] / image_height if bbox and len(bbox) > 1 else 0
|
||||
data_attrs = f'data-type="{block_type}" data-y="{y_pos:.2f}"'
|
||||
|
||||
# Format based on type
|
||||
if "table" in block_type:
|
||||
table_html = parse_markdown_table(content)
|
||||
parts.append(f'<section {data_attrs} class="table-region">{table_html}</section>')
|
||||
elif "title" in block_type:
|
||||
parts.append(f'<h1 {data_attrs}>{content}</h1>')
|
||||
elif "formula" in block_type or "math" in block_type:
|
||||
parts.append(f'<div {data_attrs} class="formula"><code>{content}</code></div>')
|
||||
elif "figure" in block_type or "chart" in block_type:
|
||||
parts.append(f'<figure {data_attrs}><figcaption>{content}</figcaption></figure>')
|
||||
elif y_pos < 0.15:
|
||||
parts.append(f'<header {data_attrs}><strong>{content}</strong></header>')
|
||||
elif y_pos > 0.85:
|
||||
parts.append(f'<footer {data_attrs}>{content}</footer>')
|
||||
else:
|
||||
parts.append(f'<p {data_attrs}>{content}</p>')
|
||||
|
||||
parts.append('</body></html>')
|
||||
return '\n'.join(parts)
|
||||
|
||||
|
||||
# Request/Response models
|
||||
class ParseRequest(BaseModel):
|
||||
image: str # base64 encoded image
|
||||
output_format: Optional[str] = "json"
|
||||
|
||||
|
||||
class ParseResponse(BaseModel):
|
||||
success: bool
|
||||
format: str
|
||||
result: Union[dict, str]
|
||||
processing_time: float
|
||||
error: Optional[str] = None
|
||||
|
||||
|
||||
def decode_image(image_source: str) -> Image.Image:
|
||||
"""Decode image from base64 or data URL"""
|
||||
if image_source.startswith("data:"):
|
||||
header, data = image_source.split(",", 1)
|
||||
image_data = base64.b64decode(data)
|
||||
else:
|
||||
image_data = base64.b64decode(image_source)
|
||||
|
||||
return Image.open(io.BytesIO(image_data)).convert("RGB")
|
||||
|
||||
|
||||
@app.on_event("startup")
|
||||
async def startup_event():
|
||||
"""Pre-load models on startup"""
|
||||
logger.info("Starting PaddleOCR-VL Full Pipeline Server...")
|
||||
try:
|
||||
load_vl_model()
|
||||
load_layout_model()
|
||||
logger.info("Models loaded successfully")
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to pre-load models: {e}")
|
||||
|
||||
|
||||
@app.get("/health")
|
||||
async def health_check():
|
||||
"""Health check endpoint"""
|
||||
return {
|
||||
"status": "healthy" if vl_model is not None else "loading",
|
||||
"service": "PaddleOCR-VL Full Pipeline (Transformers)",
|
||||
"device": DEVICE,
|
||||
"vl_model_loaded": vl_model is not None,
|
||||
"layout_model_loaded": layout_model is not None
|
||||
}
|
||||
|
||||
|
||||
@app.get("/formats")
|
||||
async def supported_formats():
|
||||
"""List supported output formats"""
|
||||
return {
|
||||
"output_formats": ["json", "markdown", "html"],
|
||||
"image_formats": ["PNG", "JPEG", "WebP", "BMP", "GIF", "TIFF"],
|
||||
"capabilities": [
|
||||
"Layout detection (PP-DocLayoutV2)",
|
||||
"Text recognition (OCR)",
|
||||
"Table recognition",
|
||||
"Formula recognition (LaTeX)",
|
||||
"Chart recognition",
|
||||
"Multi-language support (109 languages)"
|
||||
]
|
||||
}
|
||||
|
||||
|
||||
@app.post("/parse", response_model=ParseResponse)
|
||||
async def parse_document_endpoint(request: ParseRequest):
|
||||
"""Parse a document image and return structured output"""
|
||||
try:
|
||||
start_time = time.time()
|
||||
|
||||
image = decode_image(request.image)
|
||||
result = process_document(image)
|
||||
|
||||
if request.output_format == "markdown":
|
||||
markdown = result_to_markdown(result)
|
||||
output = {"markdown": markdown}
|
||||
elif request.output_format == "html":
|
||||
html = result_to_html(result)
|
||||
output = {"html": html}
|
||||
else:
|
||||
output = result
|
||||
|
||||
elapsed = time.time() - start_time
|
||||
logger.info(f"Processing complete in {elapsed:.2f}s")
|
||||
|
||||
return ParseResponse(
|
||||
success=True,
|
||||
format=request.output_format,
|
||||
result=output,
|
||||
processing_time=elapsed
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error processing document: {e}", exc_info=True)
|
||||
return ParseResponse(
|
||||
success=False,
|
||||
format=request.output_format,
|
||||
result={},
|
||||
processing_time=0,
|
||||
error=str(e)
|
||||
)
|
||||
|
||||
|
||||
@app.post("/v1/chat/completions")
|
||||
async def chat_completions(request: dict):
|
||||
"""OpenAI-compatible chat completions endpoint"""
|
||||
try:
|
||||
messages = request.get("messages", [])
|
||||
output_format = request.get("output_format", "json")
|
||||
|
||||
# Find user message with image
|
||||
image = None
|
||||
for msg in reversed(messages):
|
||||
if msg.get("role") == "user":
|
||||
content = msg.get("content", [])
|
||||
if isinstance(content, list):
|
||||
for item in content:
|
||||
if item.get("type") == "image_url":
|
||||
url = item.get("image_url", {}).get("url", "")
|
||||
image = decode_image(url)
|
||||
break
|
||||
break
|
||||
|
||||
if image is None:
|
||||
raise HTTPException(status_code=400, detail="No image provided")
|
||||
|
||||
start_time = time.time()
|
||||
result = process_document(image)
|
||||
|
||||
if output_format == "markdown":
|
||||
content = result_to_markdown(result)
|
||||
elif output_format == "html":
|
||||
content = result_to_html(result)
|
||||
else:
|
||||
content = json.dumps(result, ensure_ascii=False, indent=2)
|
||||
|
||||
elapsed = time.time() - start_time
|
||||
|
||||
return {
|
||||
"id": f"chatcmpl-{int(time.time()*1000)}",
|
||||
"object": "chat.completion",
|
||||
"created": int(time.time()),
|
||||
"model": "paddleocr-vl-full",
|
||||
"choices": [{
|
||||
"index": 0,
|
||||
"message": {"role": "assistant", "content": content},
|
||||
"finish_reason": "stop"
|
||||
}],
|
||||
"usage": {
|
||||
"prompt_tokens": 100,
|
||||
"completion_tokens": len(content) // 4,
|
||||
"total_tokens": 100 + len(content) // 4
|
||||
},
|
||||
"processing_time": elapsed
|
||||
}
|
||||
|
||||
except HTTPException:
|
||||
raise
|
||||
except Exception as e:
|
||||
logger.error(f"Error in chat completions: {e}", exc_info=True)
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import uvicorn
|
||||
uvicorn.run(app, host=SERVER_HOST, port=SERVER_PORT)
|
||||
@@ -1,465 +0,0 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
PaddleOCR-VL FastAPI Server (CPU variant)
|
||||
Provides OpenAI-compatible REST API for document parsing using PaddleOCR-VL
|
||||
"""
|
||||
|
||||
import os
|
||||
import io
|
||||
import base64
|
||||
import logging
|
||||
import time
|
||||
from typing import Optional, List, Any, Dict, Union
|
||||
|
||||
from fastapi import FastAPI, HTTPException
|
||||
from fastapi.responses import JSONResponse
|
||||
from pydantic import BaseModel
|
||||
import torch
|
||||
from PIL import Image
|
||||
|
||||
# Configure logging
|
||||
logging.basicConfig(
|
||||
level=logging.INFO,
|
||||
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
||||
)
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Environment configuration
|
||||
SERVER_HOST = os.environ.get('SERVER_HOST', '0.0.0.0')
|
||||
SERVER_PORT = int(os.environ.get('SERVER_PORT', '8000'))
|
||||
MODEL_NAME = os.environ.get('MODEL_NAME', 'PaddlePaddle/PaddleOCR-VL')
|
||||
|
||||
# Device configuration
|
||||
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
logger.info(f"Using device: {DEVICE}")
|
||||
|
||||
# Task prompts for PaddleOCR-VL
|
||||
TASK_PROMPTS = {
|
||||
"ocr": "OCR:",
|
||||
"table": "Table Recognition:",
|
||||
"formula": "Formula Recognition:",
|
||||
"chart": "Chart Recognition:",
|
||||
}
|
||||
|
||||
# Initialize FastAPI app
|
||||
app = FastAPI(
|
||||
title="PaddleOCR-VL Server",
|
||||
description="OpenAI-compatible REST API for document parsing using PaddleOCR-VL",
|
||||
version="1.0.0"
|
||||
)
|
||||
|
||||
# Global model instances
|
||||
model = None
|
||||
processor = None
|
||||
|
||||
|
||||
# Request/Response models (OpenAI-compatible)
|
||||
class ImageUrl(BaseModel):
|
||||
url: str
|
||||
|
||||
|
||||
class ContentItem(BaseModel):
|
||||
type: str
|
||||
text: Optional[str] = None
|
||||
image_url: Optional[ImageUrl] = None
|
||||
|
||||
|
||||
class Message(BaseModel):
|
||||
role: str
|
||||
content: Union[str, List[ContentItem]]
|
||||
|
||||
|
||||
class ChatCompletionRequest(BaseModel):
|
||||
model: str = "paddleocr-vl"
|
||||
messages: List[Message]
|
||||
temperature: Optional[float] = 0.0
|
||||
max_tokens: Optional[int] = 4096
|
||||
|
||||
|
||||
class Choice(BaseModel):
|
||||
index: int
|
||||
message: Message
|
||||
finish_reason: str
|
||||
|
||||
|
||||
class Usage(BaseModel):
|
||||
prompt_tokens: int
|
||||
completion_tokens: int
|
||||
total_tokens: int
|
||||
|
||||
|
||||
class ChatCompletionResponse(BaseModel):
|
||||
id: str
|
||||
object: str = "chat.completion"
|
||||
created: int
|
||||
model: str
|
||||
choices: List[Choice]
|
||||
usage: Usage
|
||||
|
||||
|
||||
class HealthResponse(BaseModel):
|
||||
status: str
|
||||
model: str
|
||||
device: str
|
||||
|
||||
|
||||
def load_model():
|
||||
"""Load the PaddleOCR-VL model and processor"""
|
||||
global model, processor
|
||||
|
||||
if model is not None:
|
||||
return
|
||||
|
||||
logger.info(f"Loading PaddleOCR-VL model: {MODEL_NAME}")
|
||||
|
||||
from transformers import AutoModelForCausalLM, AutoProcessor
|
||||
|
||||
# Load processor
|
||||
processor = AutoProcessor.from_pretrained(MODEL_NAME, trust_remote_code=True)
|
||||
|
||||
# Load model with appropriate settings for CPU/GPU
|
||||
if DEVICE == "cuda":
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
MODEL_NAME,
|
||||
trust_remote_code=True,
|
||||
torch_dtype=torch.bfloat16,
|
||||
).to(DEVICE).eval()
|
||||
else:
|
||||
# CPU mode - use float32 for compatibility
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
MODEL_NAME,
|
||||
trust_remote_code=True,
|
||||
torch_dtype=torch.float32,
|
||||
low_cpu_mem_usage=True,
|
||||
).eval()
|
||||
|
||||
logger.info("PaddleOCR-VL model loaded successfully")
|
||||
|
||||
|
||||
def optimize_image_resolution(image: Image.Image, max_size: int = 2048, min_size: int = 1080) -> Image.Image:
|
||||
"""
|
||||
Optimize image resolution for PaddleOCR-VL.
|
||||
|
||||
Best results are achieved with images in the 1080p-2K range.
|
||||
- Images larger than max_size are scaled down
|
||||
- Very small images are scaled up to min_size
|
||||
"""
|
||||
width, height = image.size
|
||||
max_dim = max(width, height)
|
||||
min_dim = min(width, height)
|
||||
|
||||
# Scale down if too large (4K+ images often miss text)
|
||||
if max_dim > max_size:
|
||||
scale = max_size / max_dim
|
||||
new_width = int(width * scale)
|
||||
new_height = int(height * scale)
|
||||
logger.info(f"Scaling down image from {width}x{height} to {new_width}x{new_height}")
|
||||
image = image.resize((new_width, new_height), Image.Resampling.LANCZOS)
|
||||
# Scale up if too small
|
||||
elif max_dim < min_size and min_dim < min_size:
|
||||
scale = min_size / max_dim
|
||||
new_width = int(width * scale)
|
||||
new_height = int(height * scale)
|
||||
logger.info(f"Scaling up image from {width}x{height} to {new_width}x{new_height}")
|
||||
image = image.resize((new_width, new_height), Image.Resampling.LANCZOS)
|
||||
else:
|
||||
logger.info(f"Image size {width}x{height} is optimal, no scaling needed")
|
||||
|
||||
return image
|
||||
|
||||
|
||||
def decode_image(image_source: str, optimize: bool = True) -> Image.Image:
|
||||
"""
|
||||
Decode image from various sources.
|
||||
|
||||
Supported formats:
|
||||
- Base64 data URL: data:image/png;base64,... or data:image/jpeg;base64,...
|
||||
- HTTP/HTTPS URL: https://example.com/image.png
|
||||
- Raw base64 string
|
||||
- Local file path
|
||||
|
||||
Supported image types: PNG, JPEG, WebP, BMP, GIF, TIFF
|
||||
"""
|
||||
image = None
|
||||
|
||||
if image_source.startswith("data:"):
|
||||
# Base64 encoded image with MIME type header
|
||||
# Supports: data:image/png;base64,... data:image/jpeg;base64,... etc.
|
||||
header, data = image_source.split(",", 1)
|
||||
image_data = base64.b64decode(data)
|
||||
image = Image.open(io.BytesIO(image_data)).convert("RGB")
|
||||
logger.debug(f"Decoded base64 image with header: {header}")
|
||||
elif image_source.startswith("http://") or image_source.startswith("https://"):
|
||||
# URL - fetch image
|
||||
import httpx
|
||||
response = httpx.get(image_source, timeout=30.0)
|
||||
response.raise_for_status()
|
||||
image = Image.open(io.BytesIO(response.content)).convert("RGB")
|
||||
logger.debug(f"Fetched image from URL: {image_source[:50]}...")
|
||||
else:
|
||||
# Assume it's a file path or raw base64
|
||||
try:
|
||||
image_data = base64.b64decode(image_source)
|
||||
image = Image.open(io.BytesIO(image_data)).convert("RGB")
|
||||
logger.debug("Decoded raw base64 image")
|
||||
except:
|
||||
# Try as file path
|
||||
image = Image.open(image_source).convert("RGB")
|
||||
logger.debug(f"Loaded image from file: {image_source}")
|
||||
|
||||
# Optimize resolution for best OCR results
|
||||
if optimize:
|
||||
image = optimize_image_resolution(image)
|
||||
|
||||
return image
|
||||
|
||||
|
||||
def extract_image_and_text(content: Union[str, List[ContentItem]]) -> tuple:
|
||||
"""Extract image and text prompt from message content"""
|
||||
if isinstance(content, str):
|
||||
return None, content
|
||||
|
||||
image = None
|
||||
text = ""
|
||||
|
||||
for item in content:
|
||||
if item.type == "image_url" and item.image_url:
|
||||
image = decode_image(item.image_url.url)
|
||||
elif item.type == "text" and item.text:
|
||||
text = item.text
|
||||
|
||||
return image, text
|
||||
|
||||
|
||||
def generate_response(image: Image.Image, prompt: str, max_tokens: int = 4096) -> str:
|
||||
"""Generate response using PaddleOCR-VL"""
|
||||
load_model()
|
||||
|
||||
messages = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "image", "image": image},
|
||||
{"type": "text", "text": prompt},
|
||||
]
|
||||
}
|
||||
]
|
||||
|
||||
inputs = processor.apply_chat_template(
|
||||
messages,
|
||||
tokenize=True,
|
||||
add_generation_prompt=True,
|
||||
return_dict=True,
|
||||
return_tensors="pt"
|
||||
)
|
||||
|
||||
if DEVICE == "cuda":
|
||||
inputs = {k: v.to(DEVICE) for k, v in inputs.items()}
|
||||
|
||||
with torch.inference_mode():
|
||||
outputs = model.generate(
|
||||
**inputs,
|
||||
max_new_tokens=max_tokens,
|
||||
do_sample=False,
|
||||
use_cache=True
|
||||
)
|
||||
|
||||
response = processor.batch_decode(outputs, skip_special_tokens=True)[0]
|
||||
|
||||
# Extract the assistant's response (after the prompt)
|
||||
if "assistant" in response.lower():
|
||||
parts = response.split("assistant")
|
||||
if len(parts) > 1:
|
||||
response = parts[-1].strip()
|
||||
|
||||
return response
|
||||
|
||||
|
||||
@app.on_event("startup")
|
||||
async def startup_event():
|
||||
"""Pre-load the model on startup"""
|
||||
logger.info("Pre-loading PaddleOCR-VL model...")
|
||||
try:
|
||||
load_model()
|
||||
logger.info("Model pre-loaded successfully")
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to pre-load model: {e}")
|
||||
# Don't fail startup - model will be loaded on first request
|
||||
|
||||
|
||||
@app.get("/health", response_model=HealthResponse)
|
||||
async def health_check():
|
||||
"""Health check endpoint"""
|
||||
return HealthResponse(
|
||||
status="healthy" if model is not None else "loading",
|
||||
model=MODEL_NAME,
|
||||
device=DEVICE
|
||||
)
|
||||
|
||||
|
||||
@app.get("/formats")
|
||||
async def supported_formats():
|
||||
"""List supported image formats and input methods"""
|
||||
return {
|
||||
"image_formats": {
|
||||
"supported": ["PNG", "JPEG", "WebP", "BMP", "GIF", "TIFF"],
|
||||
"recommended": ["PNG", "JPEG"],
|
||||
"mime_types": [
|
||||
"image/png",
|
||||
"image/jpeg",
|
||||
"image/webp",
|
||||
"image/bmp",
|
||||
"image/gif",
|
||||
"image/tiff"
|
||||
]
|
||||
},
|
||||
"input_methods": {
|
||||
"base64_data_url": {
|
||||
"description": "Base64 encoded image with MIME type header",
|
||||
"example": "..."
|
||||
},
|
||||
"http_url": {
|
||||
"description": "Direct HTTP/HTTPS URL to image",
|
||||
"example": "https://example.com/image.png"
|
||||
},
|
||||
"raw_base64": {
|
||||
"description": "Raw base64 string without header",
|
||||
"example": "iVBORw0KGgo..."
|
||||
}
|
||||
},
|
||||
"resolution": {
|
||||
"optimal_range": "1080p to 2K (1080-2048 pixels on longest side)",
|
||||
"auto_scaling": True,
|
||||
"note": "Images are automatically scaled to optimal range. 4K+ images are scaled down for better accuracy."
|
||||
},
|
||||
"task_prompts": TASK_PROMPTS
|
||||
}
|
||||
|
||||
|
||||
@app.get("/v1/models")
|
||||
async def list_models():
|
||||
"""List available models (OpenAI-compatible)"""
|
||||
return {
|
||||
"object": "list",
|
||||
"data": [
|
||||
{
|
||||
"id": "paddleocr-vl",
|
||||
"object": "model",
|
||||
"created": int(time.time()),
|
||||
"owned_by": "paddlepaddle"
|
||||
}
|
||||
]
|
||||
}
|
||||
|
||||
|
||||
@app.post("/v1/chat/completions", response_model=ChatCompletionResponse)
|
||||
async def chat_completions(request: ChatCompletionRequest):
|
||||
"""
|
||||
OpenAI-compatible chat completions endpoint for PaddleOCR-VL
|
||||
|
||||
Supports tasks:
|
||||
- "OCR:" - Text recognition
|
||||
- "Table Recognition:" - Table extraction
|
||||
- "Formula Recognition:" - Formula extraction
|
||||
- "Chart Recognition:" - Chart extraction
|
||||
"""
|
||||
try:
|
||||
# Get the last user message
|
||||
user_message = None
|
||||
for msg in reversed(request.messages):
|
||||
if msg.role == "user":
|
||||
user_message = msg
|
||||
break
|
||||
|
||||
if not user_message:
|
||||
raise HTTPException(status_code=400, detail="No user message found")
|
||||
|
||||
# Extract image and prompt
|
||||
image, prompt = extract_image_and_text(user_message.content)
|
||||
|
||||
if image is None:
|
||||
raise HTTPException(status_code=400, detail="No image provided in message")
|
||||
|
||||
# Default to OCR if no specific prompt
|
||||
if not prompt or prompt.strip() == "":
|
||||
prompt = "OCR:"
|
||||
|
||||
logger.info(f"Processing request with prompt: {prompt[:50]}...")
|
||||
|
||||
# Generate response
|
||||
start_time = time.time()
|
||||
response_text = generate_response(image, prompt, request.max_tokens or 4096)
|
||||
elapsed = time.time() - start_time
|
||||
|
||||
logger.info(f"Generated response in {elapsed:.2f}s ({len(response_text)} chars)")
|
||||
|
||||
# Build OpenAI-compatible response
|
||||
return ChatCompletionResponse(
|
||||
id=f"chatcmpl-{int(time.time()*1000)}",
|
||||
created=int(time.time()),
|
||||
model=request.model,
|
||||
choices=[
|
||||
Choice(
|
||||
index=0,
|
||||
message=Message(role="assistant", content=response_text),
|
||||
finish_reason="stop"
|
||||
)
|
||||
],
|
||||
usage=Usage(
|
||||
prompt_tokens=100, # Approximate
|
||||
completion_tokens=len(response_text) // 4,
|
||||
total_tokens=100 + len(response_text) // 4
|
||||
)
|
||||
)
|
||||
|
||||
except HTTPException:
|
||||
raise
|
||||
except Exception as e:
|
||||
logger.error(f"Error processing request: {e}")
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
|
||||
|
||||
# Legacy endpoint for compatibility with old PaddleOCR API
|
||||
class LegacyOCRRequest(BaseModel):
|
||||
image: str
|
||||
task: Optional[str] = "ocr"
|
||||
|
||||
|
||||
class LegacyOCRResponse(BaseModel):
|
||||
success: bool
|
||||
result: str
|
||||
task: str
|
||||
error: Optional[str] = None
|
||||
|
||||
|
||||
@app.post("/ocr", response_model=LegacyOCRResponse)
|
||||
async def legacy_ocr(request: LegacyOCRRequest):
|
||||
"""
|
||||
Legacy OCR endpoint for backwards compatibility
|
||||
|
||||
Tasks: ocr, table, formula, chart
|
||||
"""
|
||||
try:
|
||||
image = decode_image(request.image)
|
||||
prompt = TASK_PROMPTS.get(request.task, TASK_PROMPTS["ocr"])
|
||||
|
||||
result = generate_response(image, prompt)
|
||||
|
||||
return LegacyOCRResponse(
|
||||
success=True,
|
||||
result=result,
|
||||
task=request.task
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"Legacy OCR error: {e}")
|
||||
return LegacyOCRResponse(
|
||||
success=False,
|
||||
result="",
|
||||
task=request.task,
|
||||
error=str(e)
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import uvicorn
|
||||
uvicorn.run(app, host=SERVER_HOST, port=SERVER_PORT)
|
||||
Reference in New Issue
Block a user