feat(vision): process pages separately and make Qwen3-VL vision extraction more robust; add per-page parsing, safer JSON handling, reduced token usage, and multi-query invoice extraction

This commit is contained in:
2026-01-18 04:50:57 +00:00
parent 63d72a52c9
commit e76768da55
3 changed files with 96 additions and 68 deletions

View File

@@ -1,5 +1,16 @@
# Changelog
## 2026-01-18 - 1.11.0 - feat(vision)
process pages separately and make Qwen3-VL vision extraction more robust; add per-page parsing, safer JSON handling, reduced token usage, and multi-query invoice extraction
- Bank statements: split extraction into extractTransactionsFromPage and sequentially process pages to avoid thinking-token exhaustion
- Bank statements: reduced num_predict from 8000 to 4000, send single image per request, added per-page logging and non-throwing handling for empty or non-JSON responses
- Bank statements: catch JSON.parse errors and return empty array instead of throwing
- Invoices: introduced queryField to request single values and perform multiple simple queries (reduces model thinking usage)
- Invoices: reduced num_predict for invoice queries from 4000 to 500 and parse amounts robustly (handles European formats like 1.234,56)
- Invoices: normalize currency to uppercase 3-letter code, return safe defaults (empty strings / 0) instead of nulls, and parse net/vat/total with fallbacks
- General: simplified Ollama API error messages to avoid including response body content in thrown errors
## 2026-01-18 - 1.10.1 - fix(tests)
improve Qwen3-VL invoice extraction test by switching to non-stream API, adding model availability/pull checks, simplifying response parsing, and tightening model options

View File

@@ -53,23 +53,14 @@ function convertPdfToImages(pdfPath: string): string[] {
}
/**
* Extract transactions using Qwen3-VL vision
* Extract transactions from a single page
* Processes one page at a time to minimize thinking tokens
*/
async function extractTransactions(images: string[]): Promise<ITransaction[]> {
console.log(` [Vision] Processing ${images.length} page(s) with Qwen3-VL`);
async function extractTransactionsFromPage(image: string, pageNum: number): Promise<ITransaction[]> {
const prompt = `/no_think
Extract ALL transactions from this bank statement.
Amount format:
- "- 21,47 €" = DEBIT = -21.47
- "+ 1.000,00 €" = CREDIT = 1000.00
- European format: comma is decimal separator
For each transaction: {"date":"YYYY-MM-DD","counterparty":"NAME","amount":-21.47}
Return ONLY a JSON array, no explanation:
[{"date":"...","counterparty":"...","amount":0},...]`;
Extract transactions from this bank statement page.
Amount: "- 21,47 €" = -21.47, "+ 1.000,00 €" = 1000.00 (European format)
Return JSON array only: [{"date":"YYYY-MM-DD","counterparty":"NAME","amount":-21.47},...]`;
const response = await fetch(`${OLLAMA_URL}/api/chat`, {
method: 'POST',
@@ -79,26 +70,28 @@ Return ONLY a JSON array, no explanation:
messages: [{
role: 'user',
content: prompt,
images: images,
images: [image],
}],
stream: false,
think: false,
options: {
num_predict: 8000,
num_predict: 4000,
temperature: 0.1,
},
}),
});
if (!response.ok) {
const err = await response.text();
throw new Error(`Ollama API error: ${response.status} - ${err}`);
throw new Error(`Ollama API error: ${response.status}`);
}
const data = await response.json();
let content = data.message?.content || '';
console.log(` [Vision] Got ${content.length} chars`);
if (!content) {
console.log(` [Page ${pageNum}] Empty response`);
return [];
}
// Parse JSON array
if (content.startsWith('```json')) content = content.slice(7);
@@ -110,10 +103,37 @@ Return ONLY a JSON array, no explanation:
const endIdx = content.lastIndexOf(']') + 1;
if (startIdx < 0 || endIdx <= startIdx) {
throw new Error(`No JSON array found: ${content.substring(0, 300)}`);
console.log(` [Page ${pageNum}] No JSON array found`);
return [];
}
return JSON.parse(content.substring(startIdx, endIdx));
try {
const transactions = JSON.parse(content.substring(startIdx, endIdx));
console.log(` [Page ${pageNum}] Found ${transactions.length} transactions`);
return transactions;
} catch {
console.log(` [Page ${pageNum}] JSON parse error`);
return [];
}
}
/**
* Extract transactions using Qwen3-VL vision
* Processes each page separately to avoid thinking token exhaustion
*/
async function extractTransactions(images: string[]): Promise<ITransaction[]> {
console.log(` [Vision] Processing ${images.length} page(s) with Qwen3-VL`);
const allTransactions: ITransaction[] = [];
// Process pages sequentially to avoid overwhelming the model
for (let i = 0; i < images.length; i++) {
const pageTransactions = await extractTransactionsFromPage(images[i], i + 1);
allTransactions.push(...pageTransactions);
}
console.log(` [Vision] Total: ${allTransactions.length} transactions`);
return allTransactions;
}
/**

View File

@@ -56,26 +56,10 @@ function convertPdfToImages(pdfPath: string): string[] {
}
/**
* Extract invoice data directly from images using Qwen3-VL Vision
* Uses /no_think to disable reasoning mode for fast, direct JSON output
* Query Qwen3-VL for a single field
* Uses simple prompts to minimize thinking tokens
*/
async function extractInvoiceFromImages(images: string[]): Promise<IInvoice> {
console.log(` [Vision] Processing ${images.length} page(s) with Qwen3-VL`);
// /no_think disables Qwen3's reasoning mode - crucial for getting direct output
const prompt = `/no_think
Look at this invoice and extract these fields. Reply with ONLY JSON, no explanation.
- invoice_number
- invoice_date (format: YYYY-MM-DD)
- vendor_name
- currency (EUR, USD, or GBP)
- net_amount
- vat_amount
- total_amount
JSON: {"invoice_number":"...","invoice_date":"YYYY-MM-DD","vendor_name":"...","currency":"EUR","net_amount":0,"vat_amount":0,"total_amount":0}`;
async function queryField(images: string[], question: string): Promise<string> {
const response = await fetch(`${OLLAMA_URL}/api/chat`, {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
@@ -83,51 +67,64 @@ JSON: {"invoice_number":"...","invoice_date":"YYYY-MM-DD","vendor_name":"...","c
model: VISION_MODEL,
messages: [{
role: 'user',
content: prompt,
images: images, // Pass all pages
content: `/no_think\n${question} Reply with just the value, nothing else.`,
images: images,
}],
stream: false,
think: false, // Disable thinking mode via API
think: false,
options: {
num_predict: 4000, // Need enough tokens for model to finish thinking + output
num_predict: 500,
temperature: 0.1,
},
}),
});
if (!response.ok) {
const err = await response.text();
throw new Error(`Ollama API error: ${response.status} - ${err}`);
throw new Error(`Ollama API error: ${response.status}`);
}
const data = await response.json();
let content = data.message?.content || '';
return (data.message?.content || '').trim();
}
console.log(` [Vision] Response (${content.length} chars): ${content.substring(0, 200)}...`);
/**
* Extract invoice data using multiple simple queries
* Each query asks for 1-2 fields to minimize thinking tokens
* (Qwen3's thinking mode uses all tokens on complex prompts)
*/
async function extractInvoiceFromImages(images: string[]): Promise<IInvoice> {
console.log(` [Vision] Processing ${images.length} page(s) with Qwen3-VL (multi-query)`);
// Parse JSON from response
if (content.startsWith('```json')) content = content.slice(7);
else if (content.startsWith('```')) content = content.slice(3);
if (content.endsWith('```')) content = content.slice(0, -3);
content = content.trim();
// Query each field separately to avoid excessive thinking tokens
const [invoiceNum, invoiceDate, vendor, currency, amounts] = await Promise.all([
queryField(images, 'What is the invoice number on this document?'),
queryField(images, 'What is the invoice date? Format as YYYY-MM-DD.'),
queryField(images, 'What company issued this invoice?'),
queryField(images, 'What currency is used? Answer EUR, USD, or GBP.'),
queryField(images, 'What are the net amount, VAT amount, and total amount? Format: net,vat,total'),
]);
const startIdx = content.indexOf('{');
const endIdx = content.lastIndexOf('}') + 1;
console.log(` [Vision] Got: ${invoiceNum} | ${invoiceDate} | ${vendor} | ${currency}`);
if (startIdx < 0 || endIdx <= startIdx) {
throw new Error(`No JSON found: ${content.substring(0, 300)}`);
}
const parsed = JSON.parse(content.substring(startIdx, endIdx));
// Parse amounts (format: "net,vat,total" or similar)
const amountMatch = amounts.match(/([\d.,]+)/g) || [];
const parseAmount = (s: string): number => {
if (!s) return 0;
// Handle European format: 1.234,56 → 1234.56
const normalized = s.includes(',') && s.indexOf(',') > s.lastIndexOf('.')
? s.replace(/\./g, '').replace(',', '.')
: s.replace(/,/g, '');
return parseFloat(normalized) || 0;
};
return {
invoice_number: parsed.invoice_number || null,
invoice_date: parsed.invoice_date || null,
vendor_name: parsed.vendor_name || null,
currency: parsed.currency || 'EUR',
net_amount: parseFloat(parsed.net_amount) || 0,
vat_amount: parseFloat(parsed.vat_amount) || 0,
total_amount: parseFloat(parsed.total_amount) || 0,
invoice_number: invoiceNum || '',
invoice_date: invoiceDate || '',
vendor_name: vendor || '',
currency: (currency || 'EUR').toUpperCase().replace(/[^A-Z]/g, '').slice(0, 3) || 'EUR',
net_amount: parseAmount(amountMatch[0] || ''),
vat_amount: parseAmount(amountMatch[1] || ''),
total_amount: parseAmount(amountMatch[2] || amountMatch[0] || ''),
};
}