3 Commits

Author SHA1 Message Date
4c368dfef9 v1.11.0
Some checks failed
Docker (tags) / security (push) Successful in 29s
Docker (tags) / test (push) Failing after 40s
Docker (tags) / release (push) Has been skipped
Docker (tags) / metadata (push) Has been skipped
2026-01-18 04:50:57 +00:00
e76768da55 feat(vision): process pages separately and make Qwen3-VL vision extraction more robust; add per-page parsing, safer JSON handling, reduced token usage, and multi-query invoice extraction 2026-01-18 04:50:57 +00:00
63d72a52c9 update 2026-01-18 04:28:57 +00:00
4 changed files with 340 additions and 47 deletions

View File

@@ -1,5 +1,16 @@
# Changelog
## 2026-01-18 - 1.11.0 - feat(vision)
process pages separately and make Qwen3-VL vision extraction more robust; add per-page parsing, safer JSON handling, reduced token usage, and multi-query invoice extraction
- Bank statements: split extraction into extractTransactionsFromPage and sequentially process pages to avoid thinking-token exhaustion
- Bank statements: reduced num_predict from 8000 to 4000, send single image per request, added per-page logging and non-throwing handling for empty or non-JSON responses
- Bank statements: catch JSON.parse errors and return empty array instead of throwing
- Invoices: introduced queryField to request single values and perform multiple simple queries (reduces model thinking usage)
- Invoices: reduced num_predict for invoice queries from 4000 to 500 and parse amounts robustly (handles European formats like 1.234,56)
- Invoices: normalize currency to uppercase 3-letter code, return safe defaults (empty strings / 0) instead of nulls, and parse net/vat/total with fallbacks
- General: simplified Ollama API error messages to avoid including response body content in thrown errors
## 2026-01-18 - 1.10.1 - fix(tests)
improve Qwen3-VL invoice extraction test by switching to non-stream API, adding model availability/pull checks, simplifying response parsing, and tightening model options

View File

@@ -1,6 +1,6 @@
{
"name": "@host.today/ht-docker-ai",
"version": "1.10.1",
"version": "1.11.0",
"type": "module",
"private": false,
"description": "Docker images for AI vision-language models including MiniCPM-V 4.5",

View File

@@ -0,0 +1,284 @@
/**
* Bank statement extraction using Qwen3-VL 8B Vision (Direct)
*
* Single-step pipeline: PDF → Images → Qwen3-VL → JSON
*
* Key insights:
* - Use /no_think in prompt + think:false in API to disable reasoning
* - Need high num_predict (8000+) for many transactions
* - Single pass extraction, no consensus needed
*/
import { tap, expect } from '@git.zone/tstest/tapbundle';
import * as fs from 'fs';
import * as path from 'path';
import { execSync } from 'child_process';
import * as os from 'os';
import { ensureMiniCpm } from './helpers/docker.js';
const OLLAMA_URL = 'http://localhost:11434';
const VISION_MODEL = 'qwen3-vl:8b';
interface ITransaction {
date: string;
counterparty: string;
amount: number;
}
/**
* Convert PDF to PNG images
*/
function convertPdfToImages(pdfPath: string): string[] {
const tempDir = fs.mkdtempSync(path.join(os.tmpdir(), 'pdf-convert-'));
const outputPattern = path.join(tempDir, 'page-%d.png');
try {
execSync(
`convert -density 150 -quality 90 "${pdfPath}" -background white -alpha remove "${outputPattern}"`,
{ stdio: 'pipe' }
);
const files = fs.readdirSync(tempDir).filter((f: string) => f.endsWith('.png')).sort();
const images: string[] = [];
for (const file of files) {
const imagePath = path.join(tempDir, file);
const imageData = fs.readFileSync(imagePath);
images.push(imageData.toString('base64'));
}
return images;
} finally {
fs.rmSync(tempDir, { recursive: true, force: true });
}
}
/**
* Extract transactions from a single page
* Processes one page at a time to minimize thinking tokens
*/
async function extractTransactionsFromPage(image: string, pageNum: number): Promise<ITransaction[]> {
const prompt = `/no_think
Extract transactions from this bank statement page.
Amount: "- 21,47 €" = -21.47, "+ 1.000,00 €" = 1000.00 (European format)
Return JSON array only: [{"date":"YYYY-MM-DD","counterparty":"NAME","amount":-21.47},...]`;
const response = await fetch(`${OLLAMA_URL}/api/chat`, {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({
model: VISION_MODEL,
messages: [{
role: 'user',
content: prompt,
images: [image],
}],
stream: false,
think: false,
options: {
num_predict: 4000,
temperature: 0.1,
},
}),
});
if (!response.ok) {
throw new Error(`Ollama API error: ${response.status}`);
}
const data = await response.json();
let content = data.message?.content || '';
if (!content) {
console.log(` [Page ${pageNum}] Empty response`);
return [];
}
// Parse JSON array
if (content.startsWith('```json')) content = content.slice(7);
else if (content.startsWith('```')) content = content.slice(3);
if (content.endsWith('```')) content = content.slice(0, -3);
content = content.trim();
const startIdx = content.indexOf('[');
const endIdx = content.lastIndexOf(']') + 1;
if (startIdx < 0 || endIdx <= startIdx) {
console.log(` [Page ${pageNum}] No JSON array found`);
return [];
}
try {
const transactions = JSON.parse(content.substring(startIdx, endIdx));
console.log(` [Page ${pageNum}] Found ${transactions.length} transactions`);
return transactions;
} catch {
console.log(` [Page ${pageNum}] JSON parse error`);
return [];
}
}
/**
* Extract transactions using Qwen3-VL vision
* Processes each page separately to avoid thinking token exhaustion
*/
async function extractTransactions(images: string[]): Promise<ITransaction[]> {
console.log(` [Vision] Processing ${images.length} page(s) with Qwen3-VL`);
const allTransactions: ITransaction[] = [];
// Process pages sequentially to avoid overwhelming the model
for (let i = 0; i < images.length; i++) {
const pageTransactions = await extractTransactionsFromPage(images[i], i + 1);
allTransactions.push(...pageTransactions);
}
console.log(` [Vision] Total: ${allTransactions.length} transactions`);
return allTransactions;
}
/**
* Compare transactions
*/
function compareTransactions(
extracted: ITransaction[],
expected: ITransaction[]
): { matches: number; total: number; errors: string[] } {
const errors: string[] = [];
let matches = 0;
for (let i = 0; i < expected.length; i++) {
const exp = expected[i];
const ext = extracted[i];
if (!ext) {
errors.push(`Missing transaction ${i}: ${exp.date} ${exp.counterparty}`);
continue;
}
const dateMatch = ext.date === exp.date;
const amountMatch = Math.abs(ext.amount - exp.amount) < 0.01;
if (dateMatch && amountMatch) {
matches++;
} else {
errors.push(`Mismatch at ${i}: expected ${exp.date}/${exp.amount}, got ${ext.date}/${ext.amount}`);
}
}
if (extracted.length > expected.length) {
errors.push(`Extra transactions: ${extracted.length - expected.length}`);
}
return { matches, total: expected.length, errors };
}
/**
* Find test cases in .nogit/
*/
function findTestCases(): Array<{ name: string; pdfPath: string; jsonPath: string }> {
const testDir = path.join(process.cwd(), '.nogit');
if (!fs.existsSync(testDir)) return [];
const files = fs.readdirSync(testDir);
const testCases: Array<{ name: string; pdfPath: string; jsonPath: string }> = [];
for (const pdf of files.filter((f: string) => f.endsWith('.pdf'))) {
const baseName = pdf.replace('.pdf', '');
const jsonFile = `${baseName}.json`;
if (files.includes(jsonFile)) {
testCases.push({
name: baseName,
pdfPath: path.join(testDir, pdf),
jsonPath: path.join(testDir, jsonFile),
});
}
}
return testCases.sort((a, b) => a.name.localeCompare(b.name));
}
/**
* Ensure Qwen3-VL model is available
*/
async function ensureQwen3Vl(): Promise<boolean> {
try {
const response = await fetch(`${OLLAMA_URL}/api/tags`);
if (response.ok) {
const data = await response.json();
const models = data.models || [];
if (models.some((m: { name: string }) => m.name === VISION_MODEL)) {
console.log(`[Ollama] Model available: ${VISION_MODEL}`);
return true;
}
}
} catch {
return false;
}
console.log(`[Ollama] Pulling ${VISION_MODEL}...`);
const pullResponse = await fetch(`${OLLAMA_URL}/api/pull`, {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({ name: VISION_MODEL, stream: false }),
});
return pullResponse.ok;
}
// Tests
tap.test('setup: ensure Qwen3-VL is running', async () => {
console.log('\n[Setup] Checking Qwen3-VL 8B...\n');
const ollamaOk = await ensureMiniCpm();
expect(ollamaOk).toBeTrue();
const visionOk = await ensureQwen3Vl();
expect(visionOk).toBeTrue();
console.log('\n[Setup] Ready!\n');
});
const testCases = findTestCases();
console.log(`\nFound ${testCases.length} bank statement test cases (Qwen3-VL)\n`);
let passedCount = 0;
let failedCount = 0;
for (const testCase of testCases) {
tap.test(`should extract: ${testCase.name}`, async () => {
const expected: ITransaction[] = JSON.parse(fs.readFileSync(testCase.jsonPath, 'utf-8'));
console.log(`\n=== ${testCase.name} ===`);
console.log(`Expected: ${expected.length} transactions`);
const images = convertPdfToImages(testCase.pdfPath);
console.log(` Pages: ${images.length}`);
const extracted = await extractTransactions(images);
console.log(` Extracted: ${extracted.length} transactions`);
const result = compareTransactions(extracted, expected);
const accuracy = result.total > 0 ? result.matches / result.total : 0;
if (accuracy >= 0.95 && extracted.length === expected.length) {
passedCount++;
console.log(` Result: PASS (${result.matches}/${result.total})`);
} else {
failedCount++;
console.log(` Result: FAIL (${result.matches}/${result.total})`);
result.errors.slice(0, 5).forEach((e) => console.log(` - ${e}`));
}
expect(accuracy).toBeGreaterThan(0.95);
expect(extracted.length).toEqual(expected.length);
});
}
tap.test('summary', async () => {
const total = testCases.length;
console.log(`\n======================================================`);
console.log(` Bank Statement Summary (Qwen3-VL Vision)`);
console.log(`======================================================`);
console.log(` Passed: ${passedCount}/${total}`);
console.log(` Failed: ${failedCount}/${total}`);
console.log(`======================================================\n`);
});
export default tap.start();

View File

@@ -56,26 +56,10 @@ function convertPdfToImages(pdfPath: string): string[] {
}
/**
* Extract invoice data directly from images using Qwen3-VL Vision
* Uses /no_think to disable reasoning mode for fast, direct JSON output
* Query Qwen3-VL for a single field
* Uses simple prompts to minimize thinking tokens
*/
async function extractInvoiceFromImages(images: string[]): Promise<IInvoice> {
console.log(` [Vision] Processing ${images.length} page(s) with Qwen3-VL`);
// /no_think disables Qwen3's reasoning mode - crucial for getting direct output
const prompt = `/no_think
Look at this invoice and extract these fields. Reply with ONLY JSON, no explanation.
- invoice_number
- invoice_date (format: YYYY-MM-DD)
- vendor_name
- currency (EUR, USD, or GBP)
- net_amount
- vat_amount
- total_amount
JSON: {"invoice_number":"...","invoice_date":"YYYY-MM-DD","vendor_name":"...","currency":"EUR","net_amount":0,"vat_amount":0,"total_amount":0}`;
async function queryField(images: string[], question: string): Promise<string> {
const response = await fetch(`${OLLAMA_URL}/api/chat`, {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
@@ -83,50 +67,64 @@ JSON: {"invoice_number":"...","invoice_date":"YYYY-MM-DD","vendor_name":"...","c
model: VISION_MODEL,
messages: [{
role: 'user',
content: prompt,
images: images, // Pass all pages
content: `/no_think\n${question} Reply with just the value, nothing else.`,
images: images,
}],
stream: false,
think: false,
options: {
num_predict: 512,
temperature: 0.0,
num_predict: 500,
temperature: 0.1,
},
}),
});
if (!response.ok) {
const err = await response.text();
throw new Error(`Ollama API error: ${response.status} - ${err}`);
throw new Error(`Ollama API error: ${response.status}`);
}
const data = await response.json();
let content = data.message?.content || '';
return (data.message?.content || '').trim();
}
console.log(` [Vision] Response (${content.length} chars): ${content.substring(0, 200)}...`);
/**
* Extract invoice data using multiple simple queries
* Each query asks for 1-2 fields to minimize thinking tokens
* (Qwen3's thinking mode uses all tokens on complex prompts)
*/
async function extractInvoiceFromImages(images: string[]): Promise<IInvoice> {
console.log(` [Vision] Processing ${images.length} page(s) with Qwen3-VL (multi-query)`);
// Parse JSON from response
if (content.startsWith('```json')) content = content.slice(7);
else if (content.startsWith('```')) content = content.slice(3);
if (content.endsWith('```')) content = content.slice(0, -3);
content = content.trim();
// Query each field separately to avoid excessive thinking tokens
const [invoiceNum, invoiceDate, vendor, currency, amounts] = await Promise.all([
queryField(images, 'What is the invoice number on this document?'),
queryField(images, 'What is the invoice date? Format as YYYY-MM-DD.'),
queryField(images, 'What company issued this invoice?'),
queryField(images, 'What currency is used? Answer EUR, USD, or GBP.'),
queryField(images, 'What are the net amount, VAT amount, and total amount? Format: net,vat,total'),
]);
const startIdx = content.indexOf('{');
const endIdx = content.lastIndexOf('}') + 1;
console.log(` [Vision] Got: ${invoiceNum} | ${invoiceDate} | ${vendor} | ${currency}`);
if (startIdx < 0 || endIdx <= startIdx) {
throw new Error(`No JSON found: ${content.substring(0, 300)}`);
}
const parsed = JSON.parse(content.substring(startIdx, endIdx));
// Parse amounts (format: "net,vat,total" or similar)
const amountMatch = amounts.match(/([\d.,]+)/g) || [];
const parseAmount = (s: string): number => {
if (!s) return 0;
// Handle European format: 1.234,56 → 1234.56
const normalized = s.includes(',') && s.indexOf(',') > s.lastIndexOf('.')
? s.replace(/\./g, '').replace(',', '.')
: s.replace(/,/g, '');
return parseFloat(normalized) || 0;
};
return {
invoice_number: parsed.invoice_number || null,
invoice_date: parsed.invoice_date || null,
vendor_name: parsed.vendor_name || null,
currency: parsed.currency || 'EUR',
net_amount: parseFloat(parsed.net_amount) || 0,
vat_amount: parseFloat(parsed.vat_amount) || 0,
total_amount: parseFloat(parsed.total_amount) || 0,
invoice_number: invoiceNum || '',
invoice_date: invoiceDate || '',
vendor_name: vendor || '',
currency: (currency || 'EUR').toUpperCase().replace(/[^A-Z]/g, '').slice(0, 3) || 'EUR',
net_amount: parseAmount(amountMatch[0] || ''),
vat_amount: parseAmount(amountMatch[1] || ''),
total_amount: parseAmount(amountMatch[2] || amountMatch[0] || ''),
};
}