17 Commits

Author SHA1 Message Date
d1ff95bd94 v1.14.1
Some checks failed
Docker (tags) / security (push) Successful in 26s
Docker (tags) / test (push) Failing after 39s
Docker (tags) / release (push) Has been skipped
Docker (tags) / metadata (push) Has been skipped
2026-01-19 21:19:37 +00:00
09770d3177 fix(extraction): improve JSON extraction prompts and model options for invoice and bank statement tests 2026-01-19 21:19:37 +00:00
235aa1352b v1.14.0
Some checks failed
Docker (tags) / security (push) Successful in 29s
Docker (tags) / test (push) Failing after 39s
Docker (tags) / release (push) Has been skipped
Docker (tags) / metadata (push) Has been skipped
2026-01-19 21:05:51 +00:00
08728ada4d feat(docker-images): add vLLM-based Nanonets-OCR2-3B image, Qwen3-VL Ollama image and refactor build/docs/tests to use new runtime/layout 2026-01-19 21:05:51 +00:00
b58bcabc76 update 2026-01-19 11:51:23 +00:00
6dbd06073b v1.13.2
Some checks failed
Docker (tags) / security (push) Successful in 31s
Docker (tags) / test (push) Failing after 40s
Docker (tags) / release (push) Has been skipped
Docker (tags) / metadata (push) Has been skipped
2026-01-18 23:00:24 +00:00
ae28a64902 fix(tests): stabilize OCR extraction tests and manage GPU containers 2026-01-18 23:00:24 +00:00
09ea7440e8 update 2026-01-18 15:54:16 +00:00
177e87d3b8 v1.13.1
Some checks failed
Docker (tags) / security (push) Successful in 24s
Docker (tags) / test (push) Failing after 40s
Docker (tags) / release (push) Has been skipped
Docker (tags) / metadata (push) Has been skipped
2026-01-18 13:58:26 +00:00
17ea7717eb fix(image_support_files): remove PaddleOCR-VL server scripts from image_support_files 2026-01-18 13:58:26 +00:00
bd5bb5d874 v1.13.0
Some checks failed
Docker (tags) / security (push) Successful in 29s
Docker (tags) / test (push) Failing after 40s
Docker (tags) / release (push) Has been skipped
Docker (tags) / metadata (push) Has been skipped
2026-01-18 13:56:46 +00:00
d91df70fff feat(tests): revamp tests and remove legacy Dockerfiles: adopt JSON/consensus workflows, switch MiniCPM model, and delete deprecated Docker/test variants 2026-01-18 13:56:46 +00:00
d6c97a9625 v1.12.0
Some checks failed
Docker (tags) / security (push) Successful in 31s
Docker (tags) / test (push) Failing after 57s
Docker (tags) / release (push) Has been skipped
Docker (tags) / metadata (push) Has been skipped
2026-01-18 11:26:38 +00:00
76b21f1f7b feat(tests): switch vision tests to multi-query extraction (count then per-row/field queries) and add logging/summaries 2026-01-18 11:26:38 +00:00
4c368dfef9 v1.11.0
Some checks failed
Docker (tags) / security (push) Successful in 29s
Docker (tags) / test (push) Failing after 40s
Docker (tags) / release (push) Has been skipped
Docker (tags) / metadata (push) Has been skipped
2026-01-18 04:50:57 +00:00
e76768da55 feat(vision): process pages separately and make Qwen3-VL vision extraction more robust; add per-page parsing, safer JSON handling, reduced token usage, and multi-query invoice extraction 2026-01-18 04:50:57 +00:00
63d72a52c9 update 2026-01-18 04:28:57 +00:00
32 changed files with 4134 additions and 5265 deletions

View File

@@ -1,27 +0,0 @@
# MiniCPM-V 4.5 CPU Variant
# Vision-Language Model optimized for CPU-only inference
FROM ollama/ollama:latest
LABEL maintainer="Task Venture Capital GmbH <hello@task.vc>"
LABEL description="MiniCPM-V 4.5 Vision-Language Model - CPU optimized (GGUF)"
LABEL org.opencontainers.image.source="https://code.foss.global/host.today/ht-docker-ai"
# Environment configuration for CPU-only mode
ENV MODEL_NAME="minicpm-v"
ENV OLLAMA_HOST="0.0.0.0"
ENV OLLAMA_ORIGINS="*"
# Disable GPU usage for CPU-only variant
ENV CUDA_VISIBLE_DEVICES=""
# Copy and setup entrypoint
COPY image_support_files/minicpm45v_entrypoint.sh /usr/local/bin/docker-entrypoint.sh
RUN chmod +x /usr/local/bin/docker-entrypoint.sh
# Expose Ollama API port
EXPOSE 11434
# Health check
HEALTHCHECK --interval=30s --timeout=10s --start-period=120s --retries=3 \
CMD curl -f http://localhost:11434/api/tags || exit 1
ENTRYPOINT ["/usr/local/bin/docker-entrypoint.sh"]

View File

@@ -0,0 +1,34 @@
# Nanonets-OCR2-3B Vision Language Model
# Based on Qwen2.5-VL-3B, fine-tuned for document OCR (Oct 2025 release)
# Improvements over OCR-s: better semantic tagging, LaTeX equations, flowcharts
# ~12-16GB VRAM with 30K context, outputs structured markdown with semantic tags
#
# Build: docker build -f Dockerfile_nanonets_vllm_gpu_VRAM10GB -t nanonets-ocr .
# Run: docker run --gpus all -p 8000:8000 -v ht-huggingface-cache:/root/.cache/huggingface nanonets-ocr
FROM vllm/vllm-openai:latest
LABEL maintainer="Task Venture Capital GmbH <hello@task.vc>"
LABEL description="Nanonets-OCR2-3B - Document OCR optimized Vision Language Model"
LABEL org.opencontainers.image.source="https://code.foss.global/host.today/ht-docker-ai"
# Environment configuration
ENV MODEL_NAME="nanonets/Nanonets-OCR2-3B"
ENV HOST="0.0.0.0"
ENV PORT="8000"
ENV MAX_MODEL_LEN="30000"
ENV GPU_MEMORY_UTILIZATION="0.9"
# Expose OpenAI-compatible API port
EXPOSE 8000
# Health check - vLLM exposes /health endpoint
HEALTHCHECK --interval=30s --timeout=10s --start-period=120s --retries=5 \
CMD curl -f http://localhost:8000/health || exit 1
# Start vLLM server with Nanonets-OCR2-3B model
CMD ["--model", "nanonets/Nanonets-OCR2-3B", \
"--trust-remote-code", \
"--max-model-len", "30000", \
"--host", "0.0.0.0", \
"--port", "8000"]

View File

@@ -1,57 +0,0 @@
# PaddleOCR-VL CPU Variant
# Vision-Language Model for document parsing using transformers (slower, no GPU required)
FROM python:3.11-slim-bookworm
LABEL maintainer="Task Venture Capital GmbH <hello@task.vc>"
LABEL description="PaddleOCR-VL 0.9B CPU - Vision-Language Model for document parsing"
LABEL org.opencontainers.image.source="https://code.foss.global/host.today/ht-docker-ai"
# Environment configuration
ENV PYTHONUNBUFFERED=1
ENV HF_HOME=/root/.cache/huggingface
ENV CUDA_VISIBLE_DEVICES=""
ENV SERVER_PORT=8000
ENV SERVER_HOST=0.0.0.0
# Set working directory
WORKDIR /app
# Install system dependencies
RUN apt-get update && apt-get install -y --no-install-recommends \
libgl1-mesa-glx \
libglib2.0-0 \
libgomp1 \
curl \
git \
&& rm -rf /var/lib/apt/lists/*
# Install Python dependencies
RUN pip install --no-cache-dir --upgrade pip && \
pip install --no-cache-dir \
torch==2.5.1 torchvision==0.20.1 --index-url https://download.pytorch.org/whl/cpu && \
pip install --no-cache-dir \
transformers \
accelerate \
safetensors \
pillow \
fastapi \
uvicorn[standard] \
python-multipart \
httpx \
protobuf \
sentencepiece \
einops
# Copy server files
COPY image_support_files/paddleocr_vl_server.py /app/paddleocr_vl_server.py
COPY image_support_files/paddleocr_vl_entrypoint.sh /usr/local/bin/paddleocr-vl-cpu-entrypoint.sh
RUN chmod +x /usr/local/bin/paddleocr-vl-cpu-entrypoint.sh
# Expose API port
EXPOSE 8000
# Health check (longer start-period for CPU + model download)
HEALTHCHECK --interval=30s --timeout=10s --start-period=600s --retries=3 \
CMD curl -f http://localhost:8000/health || exit 1
ENTRYPOINT ["/usr/local/bin/paddleocr-vl-cpu-entrypoint.sh"]

View File

@@ -1,90 +0,0 @@
# PaddleOCR-VL Full Pipeline (PP-DocLayoutV2 + PaddleOCR-VL + Structured Output)
# Self-contained GPU image with complete document parsing pipeline
FROM nvidia/cuda:12.4.0-devel-ubuntu22.04
LABEL maintainer="Task Venture Capital GmbH <hello@task.vc>"
LABEL description="PaddleOCR-VL Full Pipeline - Layout Detection + VL Recognition + JSON/Markdown Output"
LABEL org.opencontainers.image.source="https://code.foss.global/host.today/ht-docker-ai"
# Environment configuration
ENV DEBIAN_FRONTEND=noninteractive
ENV PYTHONUNBUFFERED=1
ENV HF_HOME=/root/.cache/huggingface
ENV PADDLEOCR_HOME=/root/.paddleocr
ENV SERVER_PORT=8000
ENV SERVER_HOST=0.0.0.0
ENV VLM_PORT=8080
# Set working directory
WORKDIR /app
# Install system dependencies
RUN apt-get update && apt-get install -y --no-install-recommends \
python3.11 \
python3.11-venv \
python3.11-dev \
python3-pip \
libgl1-mesa-glx \
libglib2.0-0 \
libgomp1 \
libsm6 \
libxext6 \
libxrender1 \
curl \
git \
wget \
&& rm -rf /var/lib/apt/lists/* \
&& update-alternatives --install /usr/bin/python python /usr/bin/python3.11 1 \
&& update-alternatives --install /usr/bin/python3 python3 /usr/bin/python3.11 1
# Create and activate virtual environment
RUN python -m venv /opt/venv
ENV PATH="/opt/venv/bin:$PATH"
# Upgrade pip
RUN pip install --no-cache-dir --upgrade pip setuptools wheel
# Install PaddlePaddle GPU (CUDA 12.x)
RUN pip install --no-cache-dir \
paddlepaddle-gpu==3.2.1 \
--extra-index-url https://www.paddlepaddle.org.cn/packages/stable/cu126/
# Install PaddleOCR with doc-parser (includes PP-DocLayoutV2)
RUN pip install --no-cache-dir \
"paddleocr[doc-parser]" \
safetensors
# Install PyTorch with CUDA support
RUN pip install --no-cache-dir \
torch==2.5.1 \
torchvision \
--index-url https://download.pytorch.org/whl/cu124
# Install transformers for PaddleOCR-VL inference (no vLLM - use local inference)
# PaddleOCR-VL requires transformers>=4.55.0 for use_kernel_forward_from_hub
RUN pip install --no-cache-dir \
transformers>=4.55.0 \
accelerate \
hf-kernels
# Install our API server dependencies
RUN pip install --no-cache-dir \
fastapi \
uvicorn[standard] \
python-multipart \
httpx \
pillow
# Copy server files
COPY image_support_files/paddleocr_vl_full_server.py /app/server.py
COPY image_support_files/paddleocr_vl_full_entrypoint.sh /usr/local/bin/entrypoint.sh
RUN chmod +x /usr/local/bin/entrypoint.sh
# Expose ports (8000 = API, 8080 = internal VLM server)
EXPOSE 8000
# Health check
HEALTHCHECK --interval=30s --timeout=10s --start-period=600s --retries=3 \
CMD curl -f http://localhost:8000/health || exit 1
ENTRYPOINT ["/usr/local/bin/entrypoint.sh"]

View File

@@ -1,71 +0,0 @@
# PaddleOCR-VL GPU Variant (Transformers-based, not vLLM)
# Vision-Language Model for document parsing using transformers with CUDA
FROM nvidia/cuda:12.4.0-runtime-ubuntu22.04
LABEL maintainer="Task Venture Capital GmbH <hello@task.vc>"
LABEL description="PaddleOCR-VL 0.9B GPU - Vision-Language Model using transformers"
LABEL org.opencontainers.image.source="https://code.foss.global/host.today/ht-docker-ai"
# Environment configuration
ENV DEBIAN_FRONTEND=noninteractive
ENV PYTHONUNBUFFERED=1
ENV HF_HOME=/root/.cache/huggingface
ENV SERVER_PORT=8000
ENV SERVER_HOST=0.0.0.0
# Set working directory
WORKDIR /app
# Install system dependencies
RUN apt-get update && apt-get install -y --no-install-recommends \
python3.11 \
python3.11-venv \
python3.11-dev \
python3-pip \
libgl1-mesa-glx \
libglib2.0-0 \
libgomp1 \
curl \
git \
&& rm -rf /var/lib/apt/lists/* \
&& update-alternatives --install /usr/bin/python python /usr/bin/python3.11 1 \
&& update-alternatives --install /usr/bin/python3 python3 /usr/bin/python3.11 1
# Create and activate virtual environment
RUN python -m venv /opt/venv
ENV PATH="/opt/venv/bin:$PATH"
# Install PyTorch with CUDA support
RUN pip install --no-cache-dir --upgrade pip && \
pip install --no-cache-dir \
torch==2.5.1 \
torchvision \
--index-url https://download.pytorch.org/whl/cu124
# Install Python dependencies (transformers-based, not vLLM)
RUN pip install --no-cache-dir \
transformers \
accelerate \
safetensors \
pillow \
fastapi \
uvicorn[standard] \
python-multipart \
httpx \
protobuf \
sentencepiece \
einops
# Copy server files (same as CPU variant - it auto-detects CUDA)
COPY image_support_files/paddleocr_vl_server.py /app/paddleocr_vl_server.py
COPY image_support_files/paddleocr_vl_entrypoint.sh /usr/local/bin/paddleocr-vl-entrypoint.sh
RUN chmod +x /usr/local/bin/paddleocr-vl-entrypoint.sh
# Expose API port
EXPOSE 8000
# Health check
HEALTHCHECK --interval=30s --timeout=10s --start-period=300s --retries=3 \
CMD curl -f http://localhost:8000/health || exit 1
ENTRYPOINT ["/usr/local/bin/paddleocr-vl-entrypoint.sh"]

View File

@@ -13,46 +13,38 @@ NC='\033[0m' # No Color
echo -e "${BLUE}Building ht-docker-ai images...${NC}"
# Build GPU variant
# Build MiniCPM-V 4.5 GPU variant
echo -e "${GREEN}Building MiniCPM-V 4.5 GPU variant...${NC}"
docker build \
-f Dockerfile_minicpm45v_gpu \
-f Dockerfile_minicpm45v_ollama_gpu_VRAM9GB \
-t ${REGISTRY}/${NAMESPACE}/${IMAGE_NAME}:minicpm45v \
-t ${REGISTRY}/${NAMESPACE}/${IMAGE_NAME}:minicpm45v-gpu \
-t ${REGISTRY}/${NAMESPACE}/${IMAGE_NAME}:latest \
.
# Build CPU variant
echo -e "${GREEN}Building MiniCPM-V 4.5 CPU variant...${NC}"
# Build Qwen3-VL GPU variant
echo -e "${GREEN}Building Qwen3-VL-30B-A3B GPU variant...${NC}"
docker build \
-f Dockerfile_minicpm45v_cpu \
-t ${REGISTRY}/${NAMESPACE}/${IMAGE_NAME}:minicpm45v-cpu \
-f Dockerfile_qwen3vl_ollama_gpu_VRAM20GB \
-t ${REGISTRY}/${NAMESPACE}/${IMAGE_NAME}:qwen3vl \
.
# Build PaddleOCR-VL GPU variant
echo -e "${GREEN}Building PaddleOCR-VL GPU variant...${NC}"
# Build Nanonets-OCR GPU variant
echo -e "${GREEN}Building Nanonets-OCR-s GPU variant...${NC}"
docker build \
-f Dockerfile_paddleocr_vl_gpu \
-t ${REGISTRY}/${NAMESPACE}/${IMAGE_NAME}:paddleocr-vl \
-t ${REGISTRY}/${NAMESPACE}/${IMAGE_NAME}:paddleocr-vl-gpu \
.
# Build PaddleOCR-VL CPU variant
echo -e "${GREEN}Building PaddleOCR-VL CPU variant...${NC}"
docker build \
-f Dockerfile_paddleocr_vl_cpu \
-t ${REGISTRY}/${NAMESPACE}/${IMAGE_NAME}:paddleocr-vl-cpu \
-f Dockerfile_nanonets_vllm_gpu_VRAM10GB \
-t ${REGISTRY}/${NAMESPACE}/${IMAGE_NAME}:nanonets-ocr \
.
echo -e "${GREEN}All images built successfully!${NC}"
echo ""
echo "Available images:"
echo " MiniCPM-V 4.5:"
echo " - ${REGISTRY}/${NAMESPACE}/${IMAGE_NAME}:minicpm45v (GPU)"
echo " - ${REGISTRY}/${NAMESPACE}/${IMAGE_NAME}:minicpm45v-cpu (CPU)"
echo " - ${REGISTRY}/${NAMESPACE}/${IMAGE_NAME}:latest (GPU)"
echo " MiniCPM-V 4.5 (Ollama, ~9GB VRAM):"
echo " - ${REGISTRY}/${NAMESPACE}/${IMAGE_NAME}:minicpm45v"
echo " - ${REGISTRY}/${NAMESPACE}/${IMAGE_NAME}:latest"
echo ""
echo " PaddleOCR-VL (Vision-Language Model):"
echo " - ${REGISTRY}/${NAMESPACE}/${IMAGE_NAME}:paddleocr-vl (GPU/vLLM)"
echo " - ${REGISTRY}/${NAMESPACE}/${IMAGE_NAME}:paddleocr-vl-gpu (GPU/vLLM)"
echo " - ${REGISTRY}/${NAMESPACE}/${IMAGE_NAME}:paddleocr-vl-cpu (CPU)"
echo " Qwen3-VL-30B-A3B (Ollama, ~20GB VRAM):"
echo " - ${REGISTRY}/${NAMESPACE}/${IMAGE_NAME}:qwen3vl"
echo ""
echo " Nanonets-OCR-s (vLLM, ~10GB VRAM):"
echo " - ${REGISTRY}/${NAMESPACE}/${IMAGE_NAME}:nanonets-ocr"

View File

@@ -1,5 +1,70 @@
# Changelog
## 2026-01-19 - 1.14.1 - fix(extraction)
improve JSON extraction prompts and model options for invoice and bank statement tests
- Refactor JSON extraction prompts to be sent after the document text and add explicit 'WHERE TO FIND DATA' and 'RULES' sections for clearer extraction guidance
- Change chat message flow to: send document, assistant acknowledgement, then the JSON extraction prompt (avoids concatenating large prompts into one message)
- Add model options (num_ctx: 32768, temperature: 0) to give larger context windows and deterministic JSON output
- Simplify logging to avoid printing full prompt contents; log document and prompt lengths instead
- Increase timeouts for large documents to 600000ms (10 minutes) where applicable
## 2026-01-19 - 1.14.0 - feat(docker-images)
add vLLM-based Nanonets-OCR2-3B image, Qwen3-VL Ollama image and refactor build/docs/tests to use new runtime/layout
- Add new Dockerfiles for Nanonets (Dockerfile_nanonets_vllm_gpu_VRAM10GB), Qwen3 (Dockerfile_qwen3vl_ollama_gpu_VRAM20GB) and a clarified MiniCPM Ollama variant (Dockerfile_minicpm45v_ollama_gpu_VRAM9GB); remove older, redundant Dockerfiles.
- Update build-images.sh to build the new image tags (minicpm45v, qwen3vl, nanonets-ocr) and adjust messaging/targets accordingly.
- Documentation overhaul: readme.md and readme.hints.md updated to reflect vLLM vs Ollama runtimes, corrected ports/VRAM estimates, volume recommendations, and API endpoint details.
- Tests updated to target the new model ID (nanonets/Nanonets-OCR2-3B), to process one page per batch, and to include a 10-minute AbortSignal timeout for OCR requests.
- Added focused extraction test suites (test/test.invoices.extraction.ts and test/test.invoices.failed.ts) for faster iteration and debugging of invoice extraction.
- Bump devDependencies: @git.zone/tsrun -> ^2.0.1 and @git.zone/tstest -> ^3.1.5.
- Misc: test helper references and docker compose/test port mapping fixed (nanonets uses 8000), and various README sections cleaned and reorganized.
## 2026-01-18 - 1.13.2 - fix(tests)
stabilize OCR extraction tests and manage GPU containers
- Add stopAllGpuContainers() and call it before starting GPU images to free GPU memory.
- Remove PaddleOCR-VL image configs and associated ensure helpers from docker test helper to simplify images list.
- Split invoice/bankstatement tests into two sequential stages: Stage 1 runs Nanonets OCR to produce markdown files, Stage 2 stops Nanonets and runs model extraction from saved markdown (avoids GPU contention).
- Introduce temporary markdown directory handling and cleanup; add stopNanonets() and container running checks in tests.
- Switch bank statement extraction model from qwen3:8b to gpt-oss:20b; add request timeout and improved logging/console output across tests.
- Refactor extractWithConsensus and extraction functions to accept document identifiers, improve error messages and JSON extraction robustness.
## 2026-01-18 - 1.13.1 - fix(image_support_files)
remove PaddleOCR-VL server scripts from image_support_files
- Deleted files: image_support_files/paddleocr_vl_full_server.py (approx. 636 lines) and image_support_files/paddleocr_vl_server.py (approx. 465 lines)
- Cleanup/removal of legacy PaddleOCR-VL FastAPI server implementations — may affect users who relied on these local scripts
## 2026-01-18 - 1.13.0 - feat(tests)
revamp tests and remove legacy Dockerfiles: adopt JSON/consensus workflows, switch MiniCPM model, and delete deprecated Docker/test variants
- Removed multiple Dockerfiles and related entrypoints for MiniCPM and PaddleOCR-VL (cpu/gpu/full), cleaning up legacy image recipes.
- Pruned many older test files (combined, ministral3, paddleocr-vl, and several invoice/test variants) to consolidate the test suite.
- Updated bank statement MiniCPM test: now uses MODEL='openbmb/minicpm-v4.5:q8_0', JSON per-page extraction prompt, consensus retry logic, expanded logging, and stricter result matching.
- Updated invoice MiniCPM test: switched to a consensus flow (fast JSON pass + thinking pass), increased PDF conversion quality, endpoints migrated to chat-style API calls with image-in-message payloads, and improved finalization logic.
- API usage changed from /api/generate to /api/chat with message-based payloads and embedded images — CI and local test runners will need model availability and possible pipeline adjustments.
## 2026-01-18 - 1.12.0 - feat(tests)
switch vision tests to multi-query extraction (count then per-row/field queries) and add logging/summaries
- Replace streaming + consensus pipeline with multi-query approach: count rows per page, then query each transaction/field individually (batched parallel queries).
- Introduce unified helpers (queryVision / queryField / getTransaction / countTransactions) and simplify Ollama requests (stream:false, reduced num_predict, /no_think prompts).
- Improve parsing and normalization for amounts (European formats), invoice numbers, dates and currency extraction.
- Adjust model checks to look for generic 'minicpm' and update test names/messages; add pass/fail counters and a summary test output.
- Remove previous consensus voting and streaming JSON accumulation logic, and add immediate per-transaction logging and batching.
## 2026-01-18 - 1.11.0 - feat(vision)
process pages separately and make Qwen3-VL vision extraction more robust; add per-page parsing, safer JSON handling, reduced token usage, and multi-query invoice extraction
- Bank statements: split extraction into extractTransactionsFromPage and sequentially process pages to avoid thinking-token exhaustion
- Bank statements: reduced num_predict from 8000 to 4000, send single image per request, added per-page logging and non-throwing handling for empty or non-JSON responses
- Bank statements: catch JSON.parse errors and return empty array instead of throwing
- Invoices: introduced queryField to request single values and perform multiple simple queries (reduces model thinking usage)
- Invoices: reduced num_predict for invoice queries from 4000 to 500 and parse amounts robustly (handles European formats like 1.234,56)
- Invoices: normalize currency to uppercase 3-letter code, return safe defaults (empty strings / 0) instead of nulls, and parse net/vat/total with fallbacks
- General: simplified Ollama API error messages to avoid including response body content in thrown errors
## 2026-01-18 - 1.10.1 - fix(tests)
improve Qwen3-VL invoice extraction test by switching to non-stream API, adding model availability/pull checks, simplifying response parsing, and tightening model options

View File

@@ -1,19 +0,0 @@
#!/bin/bash
set -e
echo "==================================="
echo "PaddleOCR-VL Server (CPU)"
echo "==================================="
HOST="${SERVER_HOST:-0.0.0.0}"
PORT="${SERVER_PORT:-8000}"
echo "Host: ${HOST}"
echo "Port: ${PORT}"
echo "Device: CPU (no GPU)"
echo ""
echo "Starting PaddleOCR-VL CPU server..."
echo "==================================="
exec python /app/paddleocr_vl_server.py

View File

@@ -1,12 +0,0 @@
#!/bin/bash
set -e
echo "Starting PaddleOCR-VL Full Pipeline Server (Transformers backend)..."
# Environment
SERVER_PORT=${SERVER_PORT:-8000}
SERVER_HOST=${SERVER_HOST:-0.0.0.0}
# Start our API server directly (no vLLM - uses local transformers inference)
echo "Starting API server on port $SERVER_PORT..."
exec python /app/server.py

View File

@@ -1,636 +0,0 @@
#!/usr/bin/env python3
"""
PaddleOCR-VL Full Pipeline API Server (Transformers backend)
Provides REST API for document parsing using:
- PP-DocLayoutV2 for layout detection
- PaddleOCR-VL (transformers) for recognition
- Structured JSON/Markdown output
"""
import os
import io
import re
import base64
import logging
import tempfile
import time
import json
from typing import Optional, List, Union
from pathlib import Path
from fastapi import FastAPI, HTTPException, UploadFile, File, Form
from fastapi.responses import JSONResponse
from pydantic import BaseModel
from PIL import Image
import torch
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
# Environment configuration
SERVER_HOST = os.environ.get('SERVER_HOST', '0.0.0.0')
SERVER_PORT = int(os.environ.get('SERVER_PORT', '8000'))
MODEL_NAME = "PaddlePaddle/PaddleOCR-VL"
# Device configuration
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
logger.info(f"Using device: {DEVICE}")
# Task prompts
TASK_PROMPTS = {
"ocr": "OCR:",
"table": "Table Recognition:",
"formula": "Formula Recognition:",
"chart": "Chart Recognition:",
}
# Initialize FastAPI app
app = FastAPI(
title="PaddleOCR-VL Full Pipeline Server",
description="Document parsing with PP-DocLayoutV2 + PaddleOCR-VL (transformers)",
version="1.0.0"
)
# Global model instances
vl_model = None
vl_processor = None
layout_model = None
def load_vl_model():
"""Load the PaddleOCR-VL model for element recognition"""
global vl_model, vl_processor
if vl_model is not None:
return
logger.info(f"Loading PaddleOCR-VL model: {MODEL_NAME}")
from transformers import AutoModelForCausalLM, AutoProcessor
vl_processor = AutoProcessor.from_pretrained(MODEL_NAME, trust_remote_code=True)
if DEVICE == "cuda":
vl_model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
trust_remote_code=True,
torch_dtype=torch.bfloat16,
).to(DEVICE).eval()
else:
vl_model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
trust_remote_code=True,
torch_dtype=torch.float32,
low_cpu_mem_usage=True,
).eval()
logger.info("PaddleOCR-VL model loaded successfully")
def load_layout_model():
"""Load the LayoutDetection model for layout detection"""
global layout_model
if layout_model is not None:
return
try:
logger.info("Loading LayoutDetection model (PP-DocLayout_plus-L)...")
from paddleocr import LayoutDetection
layout_model = LayoutDetection()
logger.info("LayoutDetection model loaded successfully")
except Exception as e:
logger.warning(f"Could not load LayoutDetection: {e}")
logger.info("Falling back to VL-only mode (no layout detection)")
def recognize_element(image: Image.Image, task: str = "ocr") -> str:
"""Recognize a single element using PaddleOCR-VL"""
load_vl_model()
prompt = TASK_PROMPTS.get(task, TASK_PROMPTS["ocr"])
messages = [
{
"role": "user",
"content": [
{"type": "image", "image": image},
{"type": "text", "text": prompt},
]
}
]
inputs = vl_processor.apply_chat_template(
messages,
tokenize=True,
add_generation_prompt=True,
return_dict=True,
return_tensors="pt"
)
if DEVICE == "cuda":
inputs = {k: v.to(DEVICE) for k, v in inputs.items()}
with torch.inference_mode():
outputs = vl_model.generate(
**inputs,
max_new_tokens=4096,
do_sample=False,
use_cache=True
)
response = vl_processor.batch_decode(outputs, skip_special_tokens=True)[0]
# Extract only the assistant's response content
# The response format is: "User: <prompt>\nAssistant: <content>"
# We want to extract just the content after "Assistant:"
if "Assistant:" in response:
parts = response.split("Assistant:")
if len(parts) > 1:
response = parts[-1].strip()
elif "assistant:" in response.lower():
# Case-insensitive fallback
import re
match = re.split(r'[Aa]ssistant:', response)
if len(match) > 1:
response = match[-1].strip()
return response
def detect_layout(image: Image.Image) -> List[dict]:
"""Detect layout regions in the image"""
load_layout_model()
if layout_model is None:
# No layout model - return a single region covering the whole image
return [{
"type": "text",
"bbox": [0, 0, image.width, image.height],
"score": 1.0
}]
# Save image to temp file
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp:
image.save(tmp.name, "PNG")
tmp_path = tmp.name
try:
results = layout_model.predict(tmp_path)
regions = []
for res in results:
# LayoutDetection returns boxes in 'boxes' key
for box in res.get("boxes", []):
coord = box.get("coordinate", [0, 0, image.width, image.height])
# Convert numpy floats to regular floats
bbox = [float(c) for c in coord]
regions.append({
"type": box.get("label", "text"),
"bbox": bbox,
"score": float(box.get("score", 1.0))
})
# Sort regions by vertical position (top to bottom)
regions.sort(key=lambda r: r["bbox"][1])
return regions if regions else [{
"type": "text",
"bbox": [0, 0, image.width, image.height],
"score": 1.0
}]
finally:
os.unlink(tmp_path)
def process_document(image: Image.Image) -> dict:
"""Process a document through the full pipeline"""
logger.info(f"Processing document: {image.size}")
# Step 1: Detect layout
regions = detect_layout(image)
logger.info(f"Detected {len(regions)} layout regions")
# Step 2: Recognize each region
blocks = []
for i, region in enumerate(regions):
region_type = region["type"].lower()
bbox = region["bbox"]
# Crop region from image
x1, y1, x2, y2 = [int(c) for c in bbox]
region_image = image.crop((x1, y1, x2, y2))
# Determine task based on region type
if "table" in region_type:
task = "table"
elif "formula" in region_type or "math" in region_type:
task = "formula"
elif "chart" in region_type or "figure" in region_type:
task = "chart"
else:
task = "ocr"
# Recognize the region
try:
content = recognize_element(region_image, task)
blocks.append({
"index": i,
"type": region_type,
"bbox": bbox,
"content": content,
"task": task
})
logger.info(f" Region {i} ({region_type}): {len(content)} chars")
except Exception as e:
logger.error(f" Region {i} error: {e}")
blocks.append({
"index": i,
"type": region_type,
"bbox": bbox,
"content": "",
"error": str(e)
})
return {"blocks": blocks, "image_size": list(image.size)}
def result_to_markdown(result: dict) -> str:
"""Convert result to Markdown format with structural hints for LLM processing.
Adds positional and type-based formatting to help downstream LLMs
understand document structure:
- Tables are marked with **[TABLE]** prefix
- Header zone content (top 15%) is bolded
- Footer zone content (bottom 15%) is separated with horizontal rule
- Titles are formatted as # headers
- Figures/charts are marked with *[Figure: ...]*
"""
lines = []
image_height = result.get("image_size", [0, 1000])[1]
for block in result.get("blocks", []):
block_type = block.get("type", "text").lower()
content = block.get("content", "").strip()
bbox = block.get("bbox", [])
if not content:
continue
# Determine position zone (top 15%, middle, bottom 15%)
y_pos = bbox[1] if bbox and len(bbox) > 1 else 0
y_end = bbox[3] if bbox and len(bbox) > 3 else y_pos
is_header_zone = y_pos < image_height * 0.15
is_footer_zone = y_end > image_height * 0.85
# Format based on type and position
if "table" in block_type:
lines.append(f"\n**[TABLE]**\n{content}\n")
elif "title" in block_type:
lines.append(f"# {content}")
elif "formula" in block_type or "math" in block_type:
lines.append(f"\n$$\n{content}\n$$\n")
elif "figure" in block_type or "chart" in block_type:
lines.append(f"*[Figure: {content}]*")
elif is_header_zone:
lines.append(f"**{content}**")
elif is_footer_zone:
lines.append(f"---\n{content}")
else:
lines.append(content)
return "\n\n".join(lines)
def parse_markdown_table(content: str) -> str:
"""Convert table content to HTML table.
Handles:
- PaddleOCR-VL format: <fcel>cell<lcel>cell<nl> (detected by <fcel> tags)
- Pipe-delimited tables: | Header | Header |
- Separator rows: |---|---|
- Returns HTML <table> structure
"""
content_stripped = content.strip()
# Check for PaddleOCR-VL table format (<fcel>, <lcel>, <ecel>, <nl>)
if '<fcel>' in content_stripped or '<nl>' in content_stripped:
return parse_paddleocr_table(content_stripped)
lines = content_stripped.split('\n')
if not lines:
return f'<pre>{content}</pre>'
# Check if it looks like a markdown table
if not any('|' in line for line in lines):
return f'<pre>{content}</pre>'
html_rows = []
is_header = True
for line in lines:
line = line.strip()
if not line or line.startswith('|') == False and '|' not in line:
continue
# Skip separator rows (|---|---|)
if re.match(r'^[\|\s\-:]+$', line):
is_header = False
continue
# Parse cells
cells = [c.strip() for c in line.split('|')]
cells = [c for c in cells if c] # Remove empty from edges
if is_header:
row = '<tr>' + ''.join(f'<th>{c}</th>' for c in cells) + '</tr>'
html_rows.append(f'<thead>{row}</thead>')
is_header = False
else:
row = '<tr>' + ''.join(f'<td>{c}</td>' for c in cells) + '</tr>'
html_rows.append(row)
if html_rows:
# Wrap body rows in tbody
header = html_rows[0] if '<thead>' in html_rows[0] else ''
body_rows = [r for r in html_rows if '<thead>' not in r]
body = f'<tbody>{"".join(body_rows)}</tbody>' if body_rows else ''
return f'<table>{header}{body}</table>'
return f'<pre>{content}</pre>'
def parse_paddleocr_table(content: str) -> str:
"""Convert PaddleOCR-VL table format to HTML table.
PaddleOCR-VL uses:
- <fcel> = first cell in a row
- <lcel> = subsequent cells
- <ecel> = empty cell
- <nl> = row separator (newline)
Example input:
<fcel>Header1<lcel>Header2<nl><fcel>Value1<lcel>Value2<nl>
"""
# Split into rows by <nl>
rows_raw = re.split(r'<nl>', content)
html_rows = []
is_first_row = True
for row_content in rows_raw:
row_content = row_content.strip()
if not row_content:
continue
# Extract cells: split by <fcel>, <lcel>, or <ecel>
# Each cell is the text between these markers
cells = []
# Pattern to match cell markers and capture content
# Content is everything between markers
parts = re.split(r'<fcel>|<lcel>|<ecel>', row_content)
for part in parts:
part = part.strip()
if part:
cells.append(part)
if not cells:
continue
# First row is header
if is_first_row:
row_html = '<tr>' + ''.join(f'<th>{c}</th>' for c in cells) + '</tr>'
html_rows.append(f'<thead>{row_html}</thead>')
is_first_row = False
else:
row_html = '<tr>' + ''.join(f'<td>{c}</td>' for c in cells) + '</tr>'
html_rows.append(row_html)
if html_rows:
header = html_rows[0] if '<thead>' in html_rows[0] else ''
body_rows = [r for r in html_rows if '<thead>' not in r]
body = f'<tbody>{"".join(body_rows)}</tbody>' if body_rows else ''
return f'<table>{header}{body}</table>'
return f'<pre>{content}</pre>'
def result_to_html(result: dict) -> str:
"""Convert result to semantic HTML for optimal LLM processing.
Uses semantic HTML5 tags with position metadata as data-* attributes.
Markdown tables are converted to proper HTML <table> tags for
unambiguous parsing by downstream LLMs.
"""
parts = []
image_height = result.get("image_size", [0, 1000])[1]
parts.append('<!DOCTYPE html><html><body>')
for block in result.get("blocks", []):
block_type = block.get("type", "text").lower()
content = block.get("content", "").strip()
bbox = block.get("bbox", [])
if not content:
continue
# Position metadata
y_pos = bbox[1] / image_height if bbox and len(bbox) > 1 else 0
data_attrs = f'data-type="{block_type}" data-y="{y_pos:.2f}"'
# Format based on type
if "table" in block_type:
table_html = parse_markdown_table(content)
parts.append(f'<section {data_attrs} class="table-region">{table_html}</section>')
elif "title" in block_type:
parts.append(f'<h1 {data_attrs}>{content}</h1>')
elif "formula" in block_type or "math" in block_type:
parts.append(f'<div {data_attrs} class="formula"><code>{content}</code></div>')
elif "figure" in block_type or "chart" in block_type:
parts.append(f'<figure {data_attrs}><figcaption>{content}</figcaption></figure>')
elif y_pos < 0.15:
parts.append(f'<header {data_attrs}><strong>{content}</strong></header>')
elif y_pos > 0.85:
parts.append(f'<footer {data_attrs}>{content}</footer>')
else:
parts.append(f'<p {data_attrs}>{content}</p>')
parts.append('</body></html>')
return '\n'.join(parts)
# Request/Response models
class ParseRequest(BaseModel):
image: str # base64 encoded image
output_format: Optional[str] = "json"
class ParseResponse(BaseModel):
success: bool
format: str
result: Union[dict, str]
processing_time: float
error: Optional[str] = None
def decode_image(image_source: str) -> Image.Image:
"""Decode image from base64 or data URL"""
if image_source.startswith("data:"):
header, data = image_source.split(",", 1)
image_data = base64.b64decode(data)
else:
image_data = base64.b64decode(image_source)
return Image.open(io.BytesIO(image_data)).convert("RGB")
@app.on_event("startup")
async def startup_event():
"""Pre-load models on startup"""
logger.info("Starting PaddleOCR-VL Full Pipeline Server...")
try:
load_vl_model()
load_layout_model()
logger.info("Models loaded successfully")
except Exception as e:
logger.error(f"Failed to pre-load models: {e}")
@app.get("/health")
async def health_check():
"""Health check endpoint"""
return {
"status": "healthy" if vl_model is not None else "loading",
"service": "PaddleOCR-VL Full Pipeline (Transformers)",
"device": DEVICE,
"vl_model_loaded": vl_model is not None,
"layout_model_loaded": layout_model is not None
}
@app.get("/formats")
async def supported_formats():
"""List supported output formats"""
return {
"output_formats": ["json", "markdown", "html"],
"image_formats": ["PNG", "JPEG", "WebP", "BMP", "GIF", "TIFF"],
"capabilities": [
"Layout detection (PP-DocLayoutV2)",
"Text recognition (OCR)",
"Table recognition",
"Formula recognition (LaTeX)",
"Chart recognition",
"Multi-language support (109 languages)"
]
}
@app.post("/parse", response_model=ParseResponse)
async def parse_document_endpoint(request: ParseRequest):
"""Parse a document image and return structured output"""
try:
start_time = time.time()
image = decode_image(request.image)
result = process_document(image)
if request.output_format == "markdown":
markdown = result_to_markdown(result)
output = {"markdown": markdown}
elif request.output_format == "html":
html = result_to_html(result)
output = {"html": html}
else:
output = result
elapsed = time.time() - start_time
logger.info(f"Processing complete in {elapsed:.2f}s")
return ParseResponse(
success=True,
format=request.output_format,
result=output,
processing_time=elapsed
)
except Exception as e:
logger.error(f"Error processing document: {e}", exc_info=True)
return ParseResponse(
success=False,
format=request.output_format,
result={},
processing_time=0,
error=str(e)
)
@app.post("/v1/chat/completions")
async def chat_completions(request: dict):
"""OpenAI-compatible chat completions endpoint"""
try:
messages = request.get("messages", [])
output_format = request.get("output_format", "json")
# Find user message with image
image = None
for msg in reversed(messages):
if msg.get("role") == "user":
content = msg.get("content", [])
if isinstance(content, list):
for item in content:
if item.get("type") == "image_url":
url = item.get("image_url", {}).get("url", "")
image = decode_image(url)
break
break
if image is None:
raise HTTPException(status_code=400, detail="No image provided")
start_time = time.time()
result = process_document(image)
if output_format == "markdown":
content = result_to_markdown(result)
elif output_format == "html":
content = result_to_html(result)
else:
content = json.dumps(result, ensure_ascii=False, indent=2)
elapsed = time.time() - start_time
return {
"id": f"chatcmpl-{int(time.time()*1000)}",
"object": "chat.completion",
"created": int(time.time()),
"model": "paddleocr-vl-full",
"choices": [{
"index": 0,
"message": {"role": "assistant", "content": content},
"finish_reason": "stop"
}],
"usage": {
"prompt_tokens": 100,
"completion_tokens": len(content) // 4,
"total_tokens": 100 + len(content) // 4
},
"processing_time": elapsed
}
except HTTPException:
raise
except Exception as e:
logger.error(f"Error in chat completions: {e}", exc_info=True)
raise HTTPException(status_code=500, detail=str(e))
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host=SERVER_HOST, port=SERVER_PORT)

View File

@@ -1,465 +0,0 @@
#!/usr/bin/env python3
"""
PaddleOCR-VL FastAPI Server (CPU variant)
Provides OpenAI-compatible REST API for document parsing using PaddleOCR-VL
"""
import os
import io
import base64
import logging
import time
from typing import Optional, List, Any, Dict, Union
from fastapi import FastAPI, HTTPException
from fastapi.responses import JSONResponse
from pydantic import BaseModel
import torch
from PIL import Image
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
# Environment configuration
SERVER_HOST = os.environ.get('SERVER_HOST', '0.0.0.0')
SERVER_PORT = int(os.environ.get('SERVER_PORT', '8000'))
MODEL_NAME = os.environ.get('MODEL_NAME', 'PaddlePaddle/PaddleOCR-VL')
# Device configuration
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
logger.info(f"Using device: {DEVICE}")
# Task prompts for PaddleOCR-VL
TASK_PROMPTS = {
"ocr": "OCR:",
"table": "Table Recognition:",
"formula": "Formula Recognition:",
"chart": "Chart Recognition:",
}
# Initialize FastAPI app
app = FastAPI(
title="PaddleOCR-VL Server",
description="OpenAI-compatible REST API for document parsing using PaddleOCR-VL",
version="1.0.0"
)
# Global model instances
model = None
processor = None
# Request/Response models (OpenAI-compatible)
class ImageUrl(BaseModel):
url: str
class ContentItem(BaseModel):
type: str
text: Optional[str] = None
image_url: Optional[ImageUrl] = None
class Message(BaseModel):
role: str
content: Union[str, List[ContentItem]]
class ChatCompletionRequest(BaseModel):
model: str = "paddleocr-vl"
messages: List[Message]
temperature: Optional[float] = 0.0
max_tokens: Optional[int] = 4096
class Choice(BaseModel):
index: int
message: Message
finish_reason: str
class Usage(BaseModel):
prompt_tokens: int
completion_tokens: int
total_tokens: int
class ChatCompletionResponse(BaseModel):
id: str
object: str = "chat.completion"
created: int
model: str
choices: List[Choice]
usage: Usage
class HealthResponse(BaseModel):
status: str
model: str
device: str
def load_model():
"""Load the PaddleOCR-VL model and processor"""
global model, processor
if model is not None:
return
logger.info(f"Loading PaddleOCR-VL model: {MODEL_NAME}")
from transformers import AutoModelForCausalLM, AutoProcessor
# Load processor
processor = AutoProcessor.from_pretrained(MODEL_NAME, trust_remote_code=True)
# Load model with appropriate settings for CPU/GPU
if DEVICE == "cuda":
model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
trust_remote_code=True,
torch_dtype=torch.bfloat16,
).to(DEVICE).eval()
else:
# CPU mode - use float32 for compatibility
model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
trust_remote_code=True,
torch_dtype=torch.float32,
low_cpu_mem_usage=True,
).eval()
logger.info("PaddleOCR-VL model loaded successfully")
def optimize_image_resolution(image: Image.Image, max_size: int = 2048, min_size: int = 1080) -> Image.Image:
"""
Optimize image resolution for PaddleOCR-VL.
Best results are achieved with images in the 1080p-2K range.
- Images larger than max_size are scaled down
- Very small images are scaled up to min_size
"""
width, height = image.size
max_dim = max(width, height)
min_dim = min(width, height)
# Scale down if too large (4K+ images often miss text)
if max_dim > max_size:
scale = max_size / max_dim
new_width = int(width * scale)
new_height = int(height * scale)
logger.info(f"Scaling down image from {width}x{height} to {new_width}x{new_height}")
image = image.resize((new_width, new_height), Image.Resampling.LANCZOS)
# Scale up if too small
elif max_dim < min_size and min_dim < min_size:
scale = min_size / max_dim
new_width = int(width * scale)
new_height = int(height * scale)
logger.info(f"Scaling up image from {width}x{height} to {new_width}x{new_height}")
image = image.resize((new_width, new_height), Image.Resampling.LANCZOS)
else:
logger.info(f"Image size {width}x{height} is optimal, no scaling needed")
return image
def decode_image(image_source: str, optimize: bool = True) -> Image.Image:
"""
Decode image from various sources.
Supported formats:
- Base64 data URL: data:image/png;base64,... or data:image/jpeg;base64,...
- HTTP/HTTPS URL: https://example.com/image.png
- Raw base64 string
- Local file path
Supported image types: PNG, JPEG, WebP, BMP, GIF, TIFF
"""
image = None
if image_source.startswith("data:"):
# Base64 encoded image with MIME type header
# Supports: data:image/png;base64,... data:image/jpeg;base64,... etc.
header, data = image_source.split(",", 1)
image_data = base64.b64decode(data)
image = Image.open(io.BytesIO(image_data)).convert("RGB")
logger.debug(f"Decoded base64 image with header: {header}")
elif image_source.startswith("http://") or image_source.startswith("https://"):
# URL - fetch image
import httpx
response = httpx.get(image_source, timeout=30.0)
response.raise_for_status()
image = Image.open(io.BytesIO(response.content)).convert("RGB")
logger.debug(f"Fetched image from URL: {image_source[:50]}...")
else:
# Assume it's a file path or raw base64
try:
image_data = base64.b64decode(image_source)
image = Image.open(io.BytesIO(image_data)).convert("RGB")
logger.debug("Decoded raw base64 image")
except:
# Try as file path
image = Image.open(image_source).convert("RGB")
logger.debug(f"Loaded image from file: {image_source}")
# Optimize resolution for best OCR results
if optimize:
image = optimize_image_resolution(image)
return image
def extract_image_and_text(content: Union[str, List[ContentItem]]) -> tuple:
"""Extract image and text prompt from message content"""
if isinstance(content, str):
return None, content
image = None
text = ""
for item in content:
if item.type == "image_url" and item.image_url:
image = decode_image(item.image_url.url)
elif item.type == "text" and item.text:
text = item.text
return image, text
def generate_response(image: Image.Image, prompt: str, max_tokens: int = 4096) -> str:
"""Generate response using PaddleOCR-VL"""
load_model()
messages = [
{
"role": "user",
"content": [
{"type": "image", "image": image},
{"type": "text", "text": prompt},
]
}
]
inputs = processor.apply_chat_template(
messages,
tokenize=True,
add_generation_prompt=True,
return_dict=True,
return_tensors="pt"
)
if DEVICE == "cuda":
inputs = {k: v.to(DEVICE) for k, v in inputs.items()}
with torch.inference_mode():
outputs = model.generate(
**inputs,
max_new_tokens=max_tokens,
do_sample=False,
use_cache=True
)
response = processor.batch_decode(outputs, skip_special_tokens=True)[0]
# Extract the assistant's response (after the prompt)
if "assistant" in response.lower():
parts = response.split("assistant")
if len(parts) > 1:
response = parts[-1].strip()
return response
@app.on_event("startup")
async def startup_event():
"""Pre-load the model on startup"""
logger.info("Pre-loading PaddleOCR-VL model...")
try:
load_model()
logger.info("Model pre-loaded successfully")
except Exception as e:
logger.error(f"Failed to pre-load model: {e}")
# Don't fail startup - model will be loaded on first request
@app.get("/health", response_model=HealthResponse)
async def health_check():
"""Health check endpoint"""
return HealthResponse(
status="healthy" if model is not None else "loading",
model=MODEL_NAME,
device=DEVICE
)
@app.get("/formats")
async def supported_formats():
"""List supported image formats and input methods"""
return {
"image_formats": {
"supported": ["PNG", "JPEG", "WebP", "BMP", "GIF", "TIFF"],
"recommended": ["PNG", "JPEG"],
"mime_types": [
"image/png",
"image/jpeg",
"image/webp",
"image/bmp",
"image/gif",
"image/tiff"
]
},
"input_methods": {
"base64_data_url": {
"description": "Base64 encoded image with MIME type header",
"example": "..."
},
"http_url": {
"description": "Direct HTTP/HTTPS URL to image",
"example": "https://example.com/image.png"
},
"raw_base64": {
"description": "Raw base64 string without header",
"example": "iVBORw0KGgo..."
}
},
"resolution": {
"optimal_range": "1080p to 2K (1080-2048 pixels on longest side)",
"auto_scaling": True,
"note": "Images are automatically scaled to optimal range. 4K+ images are scaled down for better accuracy."
},
"task_prompts": TASK_PROMPTS
}
@app.get("/v1/models")
async def list_models():
"""List available models (OpenAI-compatible)"""
return {
"object": "list",
"data": [
{
"id": "paddleocr-vl",
"object": "model",
"created": int(time.time()),
"owned_by": "paddlepaddle"
}
]
}
@app.post("/v1/chat/completions", response_model=ChatCompletionResponse)
async def chat_completions(request: ChatCompletionRequest):
"""
OpenAI-compatible chat completions endpoint for PaddleOCR-VL
Supports tasks:
- "OCR:" - Text recognition
- "Table Recognition:" - Table extraction
- "Formula Recognition:" - Formula extraction
- "Chart Recognition:" - Chart extraction
"""
try:
# Get the last user message
user_message = None
for msg in reversed(request.messages):
if msg.role == "user":
user_message = msg
break
if not user_message:
raise HTTPException(status_code=400, detail="No user message found")
# Extract image and prompt
image, prompt = extract_image_and_text(user_message.content)
if image is None:
raise HTTPException(status_code=400, detail="No image provided in message")
# Default to OCR if no specific prompt
if not prompt or prompt.strip() == "":
prompt = "OCR:"
logger.info(f"Processing request with prompt: {prompt[:50]}...")
# Generate response
start_time = time.time()
response_text = generate_response(image, prompt, request.max_tokens or 4096)
elapsed = time.time() - start_time
logger.info(f"Generated response in {elapsed:.2f}s ({len(response_text)} chars)")
# Build OpenAI-compatible response
return ChatCompletionResponse(
id=f"chatcmpl-{int(time.time()*1000)}",
created=int(time.time()),
model=request.model,
choices=[
Choice(
index=0,
message=Message(role="assistant", content=response_text),
finish_reason="stop"
)
],
usage=Usage(
prompt_tokens=100, # Approximate
completion_tokens=len(response_text) // 4,
total_tokens=100 + len(response_text) // 4
)
)
except HTTPException:
raise
except Exception as e:
logger.error(f"Error processing request: {e}")
raise HTTPException(status_code=500, detail=str(e))
# Legacy endpoint for compatibility with old PaddleOCR API
class LegacyOCRRequest(BaseModel):
image: str
task: Optional[str] = "ocr"
class LegacyOCRResponse(BaseModel):
success: bool
result: str
task: str
error: Optional[str] = None
@app.post("/ocr", response_model=LegacyOCRResponse)
async def legacy_ocr(request: LegacyOCRRequest):
"""
Legacy OCR endpoint for backwards compatibility
Tasks: ocr, table, formula, chart
"""
try:
image = decode_image(request.image)
prompt = TASK_PROMPTS.get(request.task, TASK_PROMPTS["ocr"])
result = generate_response(image, prompt)
return LegacyOCRResponse(
success=True,
result=result,
task=request.task
)
except Exception as e:
logger.error(f"Legacy OCR error: {e}")
return LegacyOCRResponse(
success=False,
result="",
task=request.task,
error=str(e)
)
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host=SERVER_HOST, port=SERVER_PORT)

View File

@@ -1,6 +1,6 @@
{
"name": "@host.today/ht-docker-ai",
"version": "1.10.1",
"version": "1.14.1",
"type": "module",
"private": false,
"description": "Docker images for AI vision-language models including MiniCPM-V 4.5",
@@ -13,8 +13,8 @@
"test": "tstest test/ --verbose"
},
"devDependencies": {
"@git.zone/tsrun": "^1.3.3",
"@git.zone/tstest": "^1.0.90"
"@git.zone/tsrun": "^2.0.1",
"@git.zone/tstest": "^3.1.5"
},
"repository": {
"type": "git",

883
pnpm-lock.yaml generated

File diff suppressed because it is too large Load Diff

View File

@@ -2,12 +2,18 @@
## Architecture
This project uses **Ollama** as the runtime framework for serving AI models. This provides:
This project uses **Ollama** and **vLLM** as runtime frameworks for serving AI models:
### Ollama-based Images (MiniCPM-V, Qwen3-VL)
- Automatic model download and caching
- Unified REST API (compatible with OpenAI format)
- Built-in quantization support
- GPU/CPU auto-detection
- GPU auto-detection
### vLLM-based Images (Nanonets-OCR)
- High-performance inference server
- OpenAI-compatible API
- Optimized for VLM workloads
## Model Details
@@ -24,18 +30,24 @@ This project uses **Ollama** as the runtime framework for serving AI models. Thi
|------|---------------|
| Full precision (bf16) | 18GB |
| int4 quantized | 9GB |
| GGUF (CPU) | 8GB RAM |
## Container Startup Flow
### Ollama-based containers
1. `docker-entrypoint.sh` starts Ollama server in background
2. Waits for server to be ready
3. Checks if model already exists in volume
4. Pulls model if not present
5. Keeps container running
### vLLM-based containers
1. vLLM server starts with model auto-download
2. Health check endpoint available at `/health`
3. OpenAI-compatible API at `/v1/chat/completions`
## Volume Persistence
### Ollama volumes
Mount `/root/.ollama` to persist downloaded models:
```bash
@@ -44,9 +56,16 @@ Mount `/root/.ollama` to persist downloaded models:
Without this volume, the model will be re-downloaded on each container start (~5GB download).
### vLLM/HuggingFace volumes
Mount `/root/.cache/huggingface` for model caching:
```bash
-v hf-cache:/root/.cache/huggingface
```
## API Endpoints
All endpoints follow the Ollama API specification:
### Ollama API (MiniCPM-V, Qwen3-VL)
| Endpoint | Method | Description |
|----------|--------|-------------|
@@ -56,113 +75,137 @@ All endpoints follow the Ollama API specification:
| `/api/pull` | POST | Pull a model |
| `/api/show` | POST | Show model info |
## GPU Detection
### vLLM API (Nanonets-OCR)
The GPU variant uses Ollama's automatic GPU detection. For CPU-only mode, we set:
```dockerfile
ENV CUDA_VISIBLE_DEVICES=""
```
This forces Ollama to use CPU inference even if GPU is available.
| Endpoint | Method | Description |
|----------|--------|-------------|
| `/health` | GET | Health check |
| `/v1/models` | GET | List available models |
| `/v1/chat/completions` | POST | OpenAI-compatible chat completions |
## Health Checks
Both variants include Docker health checks:
All containers include Docker health checks:
```dockerfile
HEALTHCHECK --interval=30s --timeout=10s --start-period=60s --retries=3 \
CMD curl -f http://localhost:11434/api/tags || exit 1
```
CPU variant has longer `start-period` (120s) due to slower startup.
---
## PaddleOCR-VL (Recommended)
## Nanonets-OCR-s
### Overview
PaddleOCR-VL is a 0.9B parameter Vision-Language Model specifically optimized for document parsing. It replaces the older PP-Structure approach with native VLM understanding.
Nanonets-OCR-s is a Qwen2.5-VL-3B model fine-tuned specifically for document OCR tasks. It outputs structured markdown with semantic tags.
**Key advantages over PP-Structure:**
- Native table understanding (no HTML parsing needed)
- 109 language support
- Better handling of complex multi-row tables
- Structured Markdown/JSON output
**Key features:**
- Based on Qwen2.5-VL-3B (~4B parameters)
- Fine-tuned for document OCR
- Outputs markdown with semantic HTML tags
- ~10GB VRAM
### Docker Images
| Tag | Description |
|-----|-------------|
| `paddleocr-vl` | GPU variant using vLLM (recommended) |
| `paddleocr-vl-cpu` | CPU variant using transformers |
| `nanonets-ocr` | GPU variant using vLLM (OpenAI-compatible API) |
### API Endpoints (OpenAI-compatible)
### API Endpoints (OpenAI-compatible via vLLM)
| Endpoint | Method | Description |
|----------|--------|-------------|
| `/health` | GET | Health check with model info |
| `/health` | GET | Health check |
| `/v1/models` | GET | List available models |
| `/v1/chat/completions` | POST | OpenAI-compatible chat completions |
| `/ocr` | POST | Legacy OCR endpoint |
### Request/Response Format
**POST /v1/chat/completions (OpenAI-compatible)**
```json
{
"model": "paddleocr-vl",
"model": "nanonets/Nanonets-OCR-s",
"messages": [
{
"role": "user",
"content": [
{"type": "image_url", "image_url": {"url": "data:image/png;base64,..."}},
{"type": "text", "text": "Table Recognition:"}
{"type": "text", "text": "Extract the text from the above document..."}
]
}
],
"temperature": 0.0,
"max_tokens": 8192
"max_tokens": 4096
}
```
**Task Prompts:**
- `"OCR:"` - Text recognition
- `"Table Recognition:"` - Table extraction (returns markdown)
- `"Formula Recognition:"` - Formula extraction
- `"Chart Recognition:"` - Chart extraction
### Nanonets OCR Prompt
**Response**
```json
{
"id": "chatcmpl-...",
"object": "chat.completion",
"choices": [
{
"index": 0,
"message": {
"role": "assistant",
"content": "| Date | Description | Amount |\n|---|---|---|\n| 2021-06-01 | GITLAB INC | -119.96 |"
},
"finish_reason": "stop"
}
]
}
The model is designed to work with a specific prompt format:
```
Extract the text from the above document as if you were reading it naturally.
Return the tables in html format.
Return the equations in LaTeX representation.
If there is an image in the document and image caption is not present, add a small description inside <img></img> tag.
Watermarks should be wrapped in brackets. Ex: <watermark>OFFICIAL COPY</watermark>.
Page numbers should be wrapped in brackets. Ex: <page_number>14</page_number>.
```
### Environment Variables
| Variable | Default | Description |
|----------|---------|-------------|
| `MODEL_NAME` | `PaddlePaddle/PaddleOCR-VL` | Model to load |
| `HOST` | `0.0.0.0` | Server host |
| `PORT` | `8000` | Server port |
| `MAX_BATCHED_TOKENS` | `16384` | vLLM max batch tokens |
| `GPU_MEMORY_UTILIZATION` | `0.9` | GPU memory usage (0-1) |
### Performance
- **GPU (vLLM)**: ~2-5 seconds per page
- **CPU**: ~30-60 seconds per page
- **GPU (vLLM)**: ~3-8 seconds per page
- **VRAM usage**: ~10GB
### Two-Stage Pipeline (Nanonets + Qwen3)
The Nanonets tests use a two-stage pipeline:
1. **Stage 1**: Nanonets-OCR-s converts images to markdown (via vLLM on port 8000)
2. **Stage 2**: Qwen3 8B extracts structured JSON from markdown (via Ollama on port 11434)
**GPU Limitation**: Both vLLM and Ollama require significant GPU memory. On a single GPU system:
- Running both simultaneously causes memory contention
- For single GPU: Run services sequentially (stop Nanonets before Qwen3)
- For multi-GPU: Assign each service to a different GPU
**Sequential Execution**:
```bash
# Step 1: Run Nanonets OCR (converts to markdown)
docker start nanonets-test
# ... perform OCR ...
docker stop nanonets-test
# Step 2: Run Qwen3 extraction (from markdown)
docker start minicpm-test
# ... extract JSON ...
```
---
## Multi-Pass Extraction Strategy
The bank statement extraction uses a dual-VLM consensus approach:
### Architecture: Dual-VLM Consensus
| VLM | Model | Purpose |
|-----|-------|---------|
| **MiniCPM-V 4.5** | 8B params | Primary visual extraction |
| **Nanonets-OCR-s** | ~4B params | Document OCR with semantic output |
### Extraction Strategy
1. **Pass 1**: MiniCPM-V visual extraction (images → JSON)
2. **Pass 2**: Nanonets-OCR semantic extraction (images → markdown → JSON)
3. **Consensus**: If Pass 1 == Pass 2 → Done (fast path)
4. **Pass 3+**: MiniCPM-V visual if no consensus
### Why Dual-VLM Works
- **Different architectures**: Two independent models cross-check each other
- **Specialized strengths**: Nanonets-OCR-s optimized for document structure, MiniCPM-V for general vision
- **No structure loss**: Both VLMs see the original images directly
- **Fast consensus**: Most documents complete in 2 passes when VLMs agree
---
@@ -170,7 +213,7 @@ PaddleOCR-VL is a 0.9B parameter Vision-Language Model specifically optimized fo
To add a new model variant:
1. Create `Dockerfile_<modelname>`
1. Create `Dockerfile_<modelname>_<runtime>_<hardware>_VRAM<size>`
2. Set `MODEL_NAME` environment variable
3. Update `build-images.sh` with new build target
4. Add documentation to `readme.md`
@@ -188,8 +231,8 @@ The model download is ~5GB and may take several minutes.
### Out of memory
- GPU: Use int4 quantized version or add more VRAM
- CPU: Increase container memory limit: `--memory=16g`
- GPU: Use a lighter model variant or upgrade VRAM
- Add more GPU memory: Consider multi-GPU setup
### API not responding
@@ -207,41 +250,6 @@ npmci docker build
npmci docker push code.foss.global
```
## Multi-Pass Extraction Strategy
The bank statement extraction uses a dual-VLM consensus approach:
### Architecture: Dual-VLM Consensus
| VLM | Model | Purpose |
|-----|-------|---------|
| **MiniCPM-V 4.5** | 8B params | Primary visual extraction |
| **PaddleOCR-VL** | 0.9B params | Table-specialized extraction |
### Extraction Strategy
1. **Pass 1**: MiniCPM-V visual extraction (images → JSON)
2. **Pass 2**: PaddleOCR-VL table recognition (images → markdown → JSON)
3. **Consensus**: If Pass 1 == Pass 2 → Done (fast path)
4. **Pass 3+**: MiniCPM-V visual if no consensus
### Why Dual-VLM Works
- **Different architectures**: Two independent models cross-check each other
- **Specialized strengths**: PaddleOCR-VL optimized for tables, MiniCPM-V for general vision
- **No structure loss**: Both VLMs see the original images directly
- **Fast consensus**: Most documents complete in 2 passes when VLMs agree
### Comparison vs Old PP-Structure Approach
| Approach | Bank Statement Result | Issue |
|----------|----------------------|-------|
| MiniCPM-V Visual | 28 transactions ✓ | - |
| PP-Structure HTML + Visual | 13 transactions ✗ | HTML merged rows incorrectly |
| PaddleOCR-VL Table | 28 transactions ✓ | Native table understanding |
**Key insight**: PP-Structure's HTML output loses structure for complex tables. PaddleOCR-VL's native VLM approach maintains table integrity.
---
## Related Resources
@@ -249,3 +257,4 @@ The bank statement extraction uses a dual-VLM consensus approach:
- [Ollama Documentation](https://ollama.ai/docs)
- [MiniCPM-V GitHub](https://github.com/OpenBMB/MiniCPM-V)
- [Ollama API Reference](https://github.com/ollama/ollama/blob/main/docs/api.md)
- [Nanonets-OCR-s on HuggingFace](https://huggingface.co/nanonets/Nanonets-OCR-s)

271
readme.md
View File

@@ -1,40 +1,45 @@
# @host.today/ht-docker-ai 🚀
Production-ready Docker images for state-of-the-art AI Vision-Language Models. Run powerful multimodal AI locally with GPU acceleration or CPU fallback—no cloud API keys required.
Production-ready Docker images for state-of-the-art AI Vision-Language Models. Run powerful multimodal AI locally with GPU acceleration—**no cloud API keys required**.
> 🔥 **Three VLMs, one registry.** From lightweight document OCR to GPT-4o-level vision understanding—pick the right tool for your task.
## Issue Reporting and Security
For reporting bugs, issues, or security vulnerabilities, please visit [community.foss.global/](https://community.foss.global/). This is the central community hub for all issue reporting. Developers who sign and comply with our contribution agreement and go through identification can also get a [code.foss.global/](https://code.foss.global/) account to submit Pull Requests directly.
---
## 🎯 What's Included
| Model | Parameters | Best For | API |
|-------|-----------|----------|-----|
| **MiniCPM-V 4.5** | 8B | General vision understanding, image analysis, multi-image | Ollama-compatible |
| **PaddleOCR-VL** | 0.9B | Document parsing, table extraction, OCR | OpenAI-compatible |
| Model | Parameters | Best For | API | Port | VRAM |
|-------|-----------|----------|-----|------|------|
| **MiniCPM-V 4.5** | 8B | General vision understanding, multi-image analysis | Ollama-compatible | 11434 | ~9GB |
| **Nanonets-OCR-s** | ~4B | Document OCR with semantic markdown output | OpenAI-compatible | 8000 | ~10GB |
| **Qwen3-VL-30B** | 30B (A3B) | Advanced visual agents, code generation from images | Ollama-compatible | 11434 | ~20GB |
## 📦 Available Images
---
## 📦 Quick Reference: All Available Images
```
code.foss.global/host.today/ht-docker-ai:<tag>
```
| Tag | Model | Hardware | Port |
|-----|-------|----------|------|
| `minicpm45v` / `latest` | MiniCPM-V 4.5 | NVIDIA GPU (9-18GB VRAM) | 11434 |
| `minicpm45v-cpu` | MiniCPM-V 4.5 | CPU only (8GB+ RAM) | 11434 |
| `paddleocr-vl` / `paddleocr-vl-gpu` | PaddleOCR-VL | NVIDIA GPU | 8000 |
| `paddleocr-vl-cpu` | PaddleOCR-VL | CPU only | 8000 |
| Tag | Model | Runtime | Port | VRAM |
|-----|-------|---------|------|------|
| `minicpm45v` / `latest` | MiniCPM-V 4.5 | Ollama | 11434 | ~9GB |
| `nanonets-ocr` | Nanonets-OCR-s | vLLM | 8000 | ~10GB |
| `qwen3vl` | Qwen3-VL-30B-A3B | Ollama | 11434 | ~20GB |
---
## 🖼️ MiniCPM-V 4.5
A GPT-4o level multimodal LLM from OpenBMB—handles image understanding, OCR, multi-image analysis, and visual reasoning across 30+ languages.
A GPT-4o level multimodal LLM from OpenBMB—handles image understanding, OCR, multi-image analysis, and visual reasoning across **30+ languages**.
### Quick Start
**GPU (Recommended):**
```bash
docker run -d \
--name minicpm \
@@ -44,15 +49,6 @@ docker run -d \
code.foss.global/host.today/ht-docker-ai:minicpm45v
```
**CPU Only:**
```bash
docker run -d \
--name minicpm \
-p 11434:11434 \
-v ollama-data:/root/.ollama \
code.foss.global/host.today/ht-docker-ai:minicpm45v-cpu
```
> 💡 **Pro tip:** Mount the volume to persist downloaded models (~5GB). Without it, models re-download on every container start.
### API Examples
@@ -85,108 +81,128 @@ curl http://localhost:11434/api/chat -d '{
### Hardware Requirements
| Variant | VRAM/RAM | Notes |
|---------|----------|-------|
| GPU (int4 quantized) | 9GB VRAM | Recommended for most use cases |
| GPU (full precision) | 18GB VRAM | Maximum quality |
| CPU (GGUF) | 8GB+ RAM | Slower but accessible |
| Mode | VRAM Required |
|------|---------------|
| int4 quantized | 9GB |
| Full precision (bf16) | 18GB |
---
## 📄 PaddleOCR-VL
## 🔍 Nanonets-OCR-s
A specialized 0.9B Vision-Language Model optimized for document parsing. Native support for tables, formulas, charts, and text extraction in 109 languages.
A **Qwen2.5-VL-3B** model fine-tuned specifically for document OCR. Outputs structured markdown with semantic HTML tags—perfect for preserving document structure.
### Key Features
- 📝 **Semantic output:** Tables → HTML, equations → LaTeX, watermarks/page numbers → tagged
- 🌍 **Multilingual:** Inherits Qwen's broad language support
-**Efficient:** ~10GB VRAM, runs great on consumer GPUs
- 🔌 **OpenAI-compatible:** Drop-in replacement for existing pipelines
### Quick Start
**GPU:**
```bash
docker run -d \
--name paddleocr \
--name nanonets \
--gpus all \
-p 8000:8000 \
-v hf-cache:/root/.cache/huggingface \
code.foss.global/host.today/ht-docker-ai:paddleocr-vl
code.foss.global/host.today/ht-docker-ai:nanonets-ocr
```
**CPU:**
```bash
docker run -d \
--name paddleocr \
-p 8000:8000 \
-v hf-cache:/root/.cache/huggingface \
code.foss.global/host.today/ht-docker-ai:paddleocr-vl-cpu
```
### OpenAI-Compatible API
PaddleOCR-VL exposes a fully OpenAI-compatible `/v1/chat/completions` endpoint:
### API Usage
```bash
curl http://localhost:8000/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "paddleocr-vl",
"model": "nanonets/Nanonets-OCR-s",
"messages": [{
"role": "user",
"content": [
{"type": "image_url", "image_url": {"url": "data:image/png;base64,<base64>"}},
{"type": "text", "text": "Table Recognition:"}
{"type": "text", "text": "Extract the text from the above document as if you were reading it naturally. Return the tables in html format. Return the equations in LaTeX representation."}
]
}],
"max_tokens": 8192
"temperature": 0.0,
"max_tokens": 4096
}'
```
### Task Prompts
### Output Format
| Prompt | Output | Use Case |
|--------|--------|----------|
| `OCR:` | Plain text | General text extraction |
| `Table Recognition:` | Markdown table | Invoices, bank statements, spreadsheets |
| `Formula Recognition:` | LaTeX | Math equations, scientific notation |
| `Chart Recognition:` | Description | Graphs and visualizations |
Nanonets-OCR-s returns markdown with semantic tags:
### API Endpoints
| Endpoint | Method | Description |
|----------|--------|-------------|
| `/health` | GET | Health check with model/device info |
| `/formats` | GET | Supported image formats and input methods |
| `/v1/models` | GET | List available models |
| `/v1/chat/completions` | POST | OpenAI-compatible chat completions |
| `/ocr` | POST | Legacy OCR endpoint |
### Image Input Methods
PaddleOCR-VL accepts images in multiple formats:
```javascript
// Base64 data URL
"..."
// HTTP URL
"https://example.com/document.png"
// Raw base64
"iVBORw0KGgo..."
```
**Supported formats:** PNG, JPEG, WebP, BMP, GIF, TIFF
**Optimal resolution:** 1080p2K. Images are automatically scaled for best results.
| Element | Output Format |
|---------|---------------|
| Tables | `<table>...</table>` (HTML) |
| Equations | `$...$` (LaTeX) |
| Images | `<img>description</img>` |
| Watermarks | `<watermark>OFFICIAL COPY</watermark>` |
| Page numbers | `<page_number>14</page_number>` |
### Performance
| Mode | Speed per Page |
|------|----------------|
| GPU (CUDA) | 25 seconds |
| CPU | 3060 seconds |
| Metric | Value |
|--------|-------|
| Speed | 38 seconds per page |
| VRAM | ~10GB |
---
## 🧠 Qwen3-VL-30B-A3B
The **most powerful** Qwen vision model—30B parameters with 3B active (MoE architecture). Handles complex visual reasoning, code generation from screenshots, and visual agent capabilities.
### Key Features
- 🚀 **256K context** (expandable to 1M tokens!)
- 🤖 **Visual agent capabilities** — can plan and execute multi-step tasks
- 💻 **Code generation from images** — screenshot → working code
- 🎯 **State-of-the-art** visual reasoning
### Quick Start
```bash
docker run -d \
--name qwen3vl \
--gpus all \
-p 11434:11434 \
-v ollama-data:/root/.ollama \
code.foss.global/host.today/ht-docker-ai:qwen3vl
```
Then pull the model (one-time, ~20GB):
```bash
docker exec qwen3vl ollama pull qwen3-vl:30b-a3b
```
### API Usage
```bash
curl http://localhost:11434/api/chat -d '{
"model": "qwen3-vl:30b-a3b",
"messages": [{
"role": "user",
"content": "Analyze this screenshot and write the code to recreate this UI",
"images": ["<base64-encoded-image>"]
}]
}'
```
### Hardware Requirements
| Requirement | Value |
|-------------|-------|
| VRAM | ~20GB (Q4_K_M quantization) |
| Context | 256K tokens default |
---
## 🐳 Docker Compose
Run multiple VLMs together for maximum flexibility:
```yaml
version: '3.8'
services:
@@ -206,9 +222,9 @@ services:
capabilities: [gpu]
restart: unless-stopped
# Document parsing / OCR
paddleocr:
image: code.foss.global/host.today/ht-docker-ai:paddleocr-vl
# Document OCR with semantic output
nanonets:
image: code.foss.global/host.today/ht-docker-ai:nanonets-ocr
ports:
- "8000:8000"
volumes:
@@ -231,7 +247,7 @@ volumes:
## ⚙️ Environment Variables
### MiniCPM-V 4.5
### MiniCPM-V 4.5 & Qwen3-VL (Ollama-based)
| Variable | Default | Description |
|----------|---------|-------------|
@@ -239,13 +255,46 @@ volumes:
| `OLLAMA_HOST` | `0.0.0.0` | API bind address |
| `OLLAMA_ORIGINS` | `*` | Allowed CORS origins |
### PaddleOCR-VL
### Nanonets-OCR (vLLM-based)
| Variable | Default | Description |
|----------|---------|-------------|
| `MODEL_NAME` | `PaddlePaddle/PaddleOCR-VL` | HuggingFace model ID |
| `SERVER_HOST` | `0.0.0.0` | API bind address |
| `SERVER_PORT` | `8000` | API port |
| `MODEL_NAME` | `nanonets/Nanonets-OCR-s` | HuggingFace model ID |
| `HOST` | `0.0.0.0` | API bind address |
| `PORT` | `8000` | API port |
| `MAX_MODEL_LEN` | `8192` | Maximum sequence length |
| `GPU_MEMORY_UTILIZATION` | `0.9` | GPU memory usage (0-1) |
---
## 🏗️ Architecture Notes
### Dual-VLM Consensus Strategy
For production document extraction, consider using multiple models together:
1. **Pass 1:** MiniCPM-V visual extraction (images → JSON)
2. **Pass 2:** Nanonets-OCR semantic extraction (images → markdown → JSON)
3. **Consensus:** If results match → Done (fast path)
4. **Pass 3+:** Additional visual passes if needed
This dual-VLM approach catches extraction errors that single models miss.
### Why Multi-Model Works
- **Different architectures:** Independent models cross-validate each other
- **Specialized strengths:** Nanonets-OCR-s excels at document structure; MiniCPM-V handles general vision
- **Native processing:** All VLMs see original images—no intermediate structure loss
### Model Selection Guide
| Task | Recommended Model |
|------|-------------------|
| General image understanding | MiniCPM-V 4.5 |
| Document OCR with structure preservation | Nanonets-OCR-s |
| Complex visual reasoning / code generation | Qwen3-VL-30B |
| Multi-image analysis | MiniCPM-V 4.5 |
| Visual agent tasks | Qwen3-VL-30B |
---
@@ -265,37 +314,16 @@ cd ht-docker-ai
---
## 🏗️ Architecture Notes
### Dual-VLM Consensus Strategy
For production document extraction, consider using both models together:
1. **Pass 1:** MiniCPM-V visual extraction (images → JSON)
2. **Pass 2:** PaddleOCR-VL table recognition (images → markdown → JSON)
3. **Consensus:** If results match → Done (fast path)
4. **Pass 3+:** Additional visual passes if needed
This dual-VLM approach catches extraction errors that single models miss.
### Why This Works
- **Different architectures:** Two independent models cross-validate each other
- **Specialized strengths:** PaddleOCR-VL excels at tables; MiniCPM-V handles general vision
- **Native processing:** Both VLMs see original images—no intermediate HTML/structure loss
---
## 🔍 Troubleshooting
### Model download hangs
```bash
docker logs -f <container-name>
```
Model downloads can take several minutes (~5GB for MiniCPM-V).
Model downloads can take several minutes (~5GB for MiniCPM-V, ~20GB for Qwen3-VL).
### Out of memory
- **GPU:** Use the CPU variant or upgrade VRAM
- **GPU:** Use a lighter model variant or upgrade VRAM
- **CPU:** Increase container memory: `--memory=16g`
### API not responding
@@ -315,6 +343,13 @@ sudo nvidia-ctk runtime configure --runtime=docker
sudo systemctl restart docker
```
### GPU Memory Contention (Multi-Model)
When running multiple VLMs on a single GPU:
- vLLM and Ollama both need significant GPU memory
- **Single GPU:** Run services sequentially (stop one before starting another)
- **Multi-GPU:** Assign each service to a different GPU via `CUDA_VISIBLE_DEVICES`
---
## License and Legal Information

View File

@@ -2,11 +2,8 @@ import { execSync } from 'child_process';
// Project container names (only manage these)
const PROJECT_CONTAINERS = [
'paddleocr-vl-test',
'paddleocr-vl-gpu-test',
'paddleocr-vl-cpu-test',
'paddleocr-vl-full-test',
'minicpm-test',
'nanonets-test',
];
// Image configurations
@@ -23,30 +20,6 @@ export interface IImageConfig {
}
export const IMAGES = {
paddleocrVlGpu: {
name: 'paddleocr-vl-gpu',
dockerfile: 'Dockerfile_paddleocr_vl_gpu',
buildContext: '.',
containerName: 'paddleocr-vl-test',
ports: ['8000:8000'],
volumes: ['ht-huggingface-cache:/root/.cache/huggingface'],
gpus: true,
healthEndpoint: 'http://localhost:8000/health',
healthTimeout: 300000, // 5 minutes for model loading
} as IImageConfig,
paddleocrVlCpu: {
name: 'paddleocr-vl-cpu',
dockerfile: 'Dockerfile_paddleocr_vl_cpu',
buildContext: '.',
containerName: 'paddleocr-vl-test',
ports: ['8000:8000'],
volumes: ['ht-huggingface-cache:/root/.cache/huggingface'],
gpus: false,
healthEndpoint: 'http://localhost:8000/health',
healthTimeout: 300000,
} as IImageConfig,
minicpm: {
name: 'minicpm45v',
dockerfile: 'Dockerfile_minicpm45v_gpu',
@@ -59,20 +32,17 @@ export const IMAGES = {
healthTimeout: 120000,
} as IImageConfig,
// Full PaddleOCR-VL pipeline with PP-DocLayoutV2 + structured JSON output
paddleocrVlFull: {
name: 'paddleocr-vl-full',
dockerfile: 'Dockerfile_paddleocr_vl_full',
// Nanonets-OCR2-3B - Document OCR optimized VLM (Qwen2.5-VL-3B fine-tuned, Oct 2025)
nanonetsOcr: {
name: 'nanonets-ocr',
dockerfile: 'Dockerfile_nanonets_vllm_gpu_VRAM10GB',
buildContext: '.',
containerName: 'paddleocr-vl-full-test',
containerName: 'nanonets-test',
ports: ['8000:8000'],
volumes: [
'ht-huggingface-cache:/root/.cache/huggingface',
'ht-paddleocr-cache:/root/.paddleocr',
],
volumes: ['ht-huggingface-cache:/root/.cache/huggingface'],
gpus: true,
healthEndpoint: 'http://localhost:8000/health',
healthTimeout: 600000, // 10 minutes for model loading (vLLM + PP-DocLayoutV2)
healthTimeout: 300000, // 5 minutes for model loading
} as IImageConfig,
};
@@ -126,7 +96,7 @@ export function removeContainer(containerName: string): void {
}
/**
* Stop all project containers that conflict with the required one
* Stop all project containers that conflict with the required one (port-based)
*/
export function stopConflictingContainers(requiredContainer: string, requiredPort: string): void {
// Stop project containers using the same port
@@ -144,6 +114,24 @@ export function stopConflictingContainers(requiredContainer: string, requiredPor
}
}
/**
* Stop all GPU-consuming project containers (for GPU memory management)
* This ensures GPU memory is freed before starting a new GPU service
*/
export function stopAllGpuContainers(exceptContainer?: string): void {
for (const container of PROJECT_CONTAINERS) {
if (container === exceptContainer) continue;
if (isContainerRunning(container)) {
console.log(`[Docker] Stopping GPU container: ${container}`);
exec(`docker stop ${container}`, true);
// Give the GPU a moment to free memory
}
}
// Brief pause to allow GPU memory to be released
execSync('sleep 2');
}
/**
* Build a Docker image
*/
@@ -220,6 +208,11 @@ export async function ensureService(config: IImageConfig): Promise<boolean> {
buildImage(config);
}
// For GPU services, stop ALL other GPU containers to free GPU memory
if (config.gpus) {
stopAllGpuContainers(config.containerName);
}
// Stop conflicting containers on the same port
const mainPort = config.ports[0];
stopConflictingContainers(config.containerName, mainPort);
@@ -240,21 +233,7 @@ export async function ensureService(config: IImageConfig): Promise<boolean> {
}
/**
* Ensure PaddleOCR-VL GPU service is running
*/
export async function ensurePaddleOcrVlGpu(): Promise<boolean> {
return ensureService(IMAGES.paddleocrVlGpu);
}
/**
* Ensure PaddleOCR-VL CPU service is running
*/
export async function ensurePaddleOcrVlCpu(): Promise<boolean> {
return ensureService(IMAGES.paddleocrVlCpu);
}
/**
* Ensure MiniCPM service is running
* Ensure MiniCPM service is running (Ollama with GPU)
*/
export async function ensureMiniCpm(): Promise<boolean> {
return ensureService(IMAGES.minicpm);
@@ -272,30 +251,6 @@ export function isGpuAvailable(): boolean {
}
}
/**
* Ensure PaddleOCR-VL service (auto-detect GPU/CPU)
*/
export async function ensurePaddleOcrVl(): Promise<boolean> {
if (isGpuAvailable()) {
console.log('[Docker] GPU detected, using GPU image');
return ensurePaddleOcrVlGpu();
} else {
console.log('[Docker] No GPU detected, using CPU image');
return ensurePaddleOcrVlCpu();
}
}
/**
* Ensure PaddleOCR-VL Full Pipeline service (PP-DocLayoutV2 + structured output)
* This is the recommended service for production use - outputs structured JSON/Markdown
*/
export async function ensurePaddleOcrVlFull(): Promise<boolean> {
if (!isGpuAvailable()) {
console.log('[Docker] WARNING: Full pipeline requires GPU, but none detected');
}
return ensureService(IMAGES.paddleocrVlFull);
}
/**
* Ensure an Ollama model is pulled and available
* Uses the MiniCPM container (which runs Ollama) to pull the model
@@ -383,3 +338,14 @@ export async function ensureQwen3Vl(): Promise<boolean> {
// Then ensure Qwen3-VL 8B is pulled
return ensureOllamaModel('qwen3-vl:8b');
}
/**
* Ensure Nanonets-OCR2-3B service is running (via vLLM)
* Document OCR optimized VLM based on Qwen2.5-VL-3B (Oct 2025 release)
*/
export async function ensureNanonetsOcr(): Promise<boolean> {
if (!isGpuAvailable()) {
console.log('[Docker] WARNING: Nanonets-OCR2-3B requires GPU, but none detected');
}
return ensureService(IMAGES.nanonetsOcr);
}

View File

@@ -1,549 +0,0 @@
/**
* Bank statement extraction test using MiniCPM-V (visual) + PaddleOCR-VL (table recognition)
*
* This is the combined/dual-VLM approach that uses both models for consensus:
* - MiniCPM-V for visual extraction
* - PaddleOCR-VL for table recognition
*/
import { tap, expect } from '@git.zone/tstest/tapbundle';
import * as fs from 'fs';
import * as path from 'path';
import { execSync } from 'child_process';
import * as os from 'os';
import { ensurePaddleOcrVl, ensureMiniCpm } from './helpers/docker.js';
// Service URLs
const OLLAMA_URL = 'http://localhost:11434';
const PADDLEOCR_VL_URL = 'http://localhost:8000';
// Models
const MINICPM_MODEL = 'minicpm-v:latest';
const PADDLEOCR_VL_MODEL = 'paddleocr-vl';
// Prompt for MiniCPM-V visual extraction
const MINICPM_EXTRACT_PROMPT = `/nothink
You are a bank statement parser. Extract EVERY transaction from the table.
Read the Amount column carefully:
- "- 21,47 €" means DEBIT, output as: -21.47
- "+ 1.000,00 €" means CREDIT, output as: 1000.00
- European format: comma = decimal point
For each row output: {"date":"YYYY-MM-DD","counterparty":"NAME","amount":-21.47}
Do not skip any rows. Return ONLY the JSON array, no explanation.`;
// Prompt for PaddleOCR-VL table extraction
const PADDLEOCR_VL_TABLE_PROMPT = `Table Recognition:`;
// Post-processing prompt to convert PaddleOCR-VL output to JSON
const PADDLEOCR_VL_CONVERT_PROMPT = `/nothink
Convert the following bank statement table data to JSON.
Read the Amount values carefully:
- "- 21,47 €" means DEBIT, output as: -21.47
- "+ 1.000,00 €" means CREDIT, output as: 1000.00
- European format: comma = decimal point
For each transaction output: {"date":"YYYY-MM-DD","counterparty":"NAME","amount":-21.47}
Return ONLY the JSON array, no explanation.
Table data:
---
{TABLE_DATA}
---`;
interface ITransaction {
date: string;
counterparty: string;
amount: number;
}
/**
* Convert PDF to PNG images using ImageMagick
*/
function convertPdfToImages(pdfPath: string): string[] {
const tempDir = fs.mkdtempSync(path.join(os.tmpdir(), 'pdf-convert-'));
const outputPattern = path.join(tempDir, 'page-%d.png');
try {
execSync(
`convert -density 300 -quality 100 "${pdfPath}" -background white -alpha remove "${outputPattern}"`,
{ stdio: 'pipe' }
);
const files = fs.readdirSync(tempDir).filter((f: string) => f.endsWith('.png')).sort();
const images: string[] = [];
for (const file of files) {
const imagePath = path.join(tempDir, file);
const imageData = fs.readFileSync(imagePath);
images.push(imageData.toString('base64'));
}
return images;
} finally {
fs.rmSync(tempDir, { recursive: true, force: true });
}
}
/**
* Extract using MiniCPM-V via Ollama
*/
async function extractWithMiniCPM(images: string[], passLabel: string): Promise<ITransaction[]> {
const payload = {
model: MINICPM_MODEL,
prompt: MINICPM_EXTRACT_PROMPT,
images,
stream: true,
options: {
num_predict: 16384,
temperature: 0.1,
},
};
const response = await fetch(`${OLLAMA_URL}/api/generate`, {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify(payload),
});
if (!response.ok) {
throw new Error(`Ollama API error: ${response.status}`);
}
const reader = response.body?.getReader();
if (!reader) {
throw new Error('No response body');
}
const decoder = new TextDecoder();
let fullText = '';
let lineBuffer = '';
console.log(`[${passLabel}] Extracting with MiniCPM-V...`);
while (true) {
const { done, value } = await reader.read();
if (done) break;
const chunk = decoder.decode(value, { stream: true });
const lines = chunk.split('\n').filter((l) => l.trim());
for (const line of lines) {
try {
const json = JSON.parse(line);
if (json.response) {
fullText += json.response;
lineBuffer += json.response;
if (lineBuffer.includes('\n')) {
const parts = lineBuffer.split('\n');
for (let i = 0; i < parts.length - 1; i++) {
console.log(parts[i]);
}
lineBuffer = parts[parts.length - 1];
}
}
} catch {
// Skip invalid JSON lines
}
}
}
if (lineBuffer) {
console.log(lineBuffer);
}
console.log('');
const startIdx = fullText.indexOf('[');
const endIdx = fullText.lastIndexOf(']') + 1;
if (startIdx < 0 || endIdx <= startIdx) {
throw new Error('No JSON array found in response');
}
return JSON.parse(fullText.substring(startIdx, endIdx));
}
/**
* Extract table using PaddleOCR-VL via OpenAI-compatible API
*/
async function extractTableWithPaddleOCRVL(imageBase64: string): Promise<string> {
const payload = {
model: PADDLEOCR_VL_MODEL,
messages: [
{
role: 'user',
content: [
{
type: 'image_url',
image_url: { url: `data:image/png;base64,${imageBase64}` },
},
{
type: 'text',
text: PADDLEOCR_VL_TABLE_PROMPT,
},
],
},
],
temperature: 0.0,
max_tokens: 8192,
};
const response = await fetch(`${PADDLEOCR_VL_URL}/v1/chat/completions`, {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify(payload),
});
if (!response.ok) {
const text = await response.text();
throw new Error(`PaddleOCR-VL API error: ${response.status} - ${text}`);
}
const data = await response.json();
return data.choices?.[0]?.message?.content || '';
}
/**
* Convert PaddleOCR-VL table output to transactions using MiniCPM-V
*/
async function convertTableToTransactions(
tableData: string,
passLabel: string
): Promise<ITransaction[]> {
const prompt = PADDLEOCR_VL_CONVERT_PROMPT.replace('{TABLE_DATA}', tableData);
const payload = {
model: MINICPM_MODEL,
prompt,
stream: true,
options: {
num_predict: 16384,
temperature: 0.1,
},
};
const response = await fetch(`${OLLAMA_URL}/api/generate`, {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify(payload),
});
if (!response.ok) {
throw new Error(`Ollama API error: ${response.status}`);
}
const reader = response.body?.getReader();
if (!reader) {
throw new Error('No response body');
}
const decoder = new TextDecoder();
let fullText = '';
console.log(`[${passLabel}] Converting table data to JSON...`);
while (true) {
const { done, value } = await reader.read();
if (done) break;
const chunk = decoder.decode(value, { stream: true });
const lines = chunk.split('\n').filter((l) => l.trim());
for (const line of lines) {
try {
const json = JSON.parse(line);
if (json.response) {
fullText += json.response;
}
} catch {
// Skip invalid JSON lines
}
}
}
const startIdx = fullText.indexOf('[');
const endIdx = fullText.lastIndexOf(']') + 1;
if (startIdx < 0 || endIdx <= startIdx) {
throw new Error('No JSON array found in response');
}
return JSON.parse(fullText.substring(startIdx, endIdx));
}
/**
* Extract using PaddleOCR-VL (table recognition) + conversion
*/
async function extractWithPaddleOCRVL(
images: string[],
passLabel: string
): Promise<ITransaction[]> {
console.log(`[${passLabel}] Extracting tables with PaddleOCR-VL...`);
// Extract table data from each page
const tableDataParts: string[] = [];
for (let i = 0; i < images.length; i++) {
console.log(`[${passLabel}] Processing page ${i + 1}/${images.length}...`);
const tableData = await extractTableWithPaddleOCRVL(images[i]);
if (tableData.trim()) {
tableDataParts.push(`--- Page ${i + 1} ---\n${tableData}`);
}
}
const combinedTableData = tableDataParts.join('\n\n');
console.log(`[${passLabel}] Got ${combinedTableData.length} chars of table data`);
// Convert to transactions
return convertTableToTransactions(combinedTableData, passLabel);
}
/**
* Create a hash of transactions for comparison
*/
function hashTransactions(transactions: ITransaction[]): string {
return transactions
.map((t) => `${t.date}|${t.amount.toFixed(2)}`)
.sort()
.join(';');
}
/**
* Check if PaddleOCR-VL service is available
*/
async function isPaddleOCRVLAvailable(): Promise<boolean> {
try {
const response = await fetch(`${PADDLEOCR_VL_URL}/health`, {
method: 'GET',
signal: AbortSignal.timeout(5000),
});
return response.ok;
} catch {
return false;
}
}
/**
* Extract with dual-VLM consensus
* Strategy:
* Pass 1 = MiniCPM-V visual extraction
* Pass 2 = PaddleOCR-VL table recognition (if available)
* Pass 3+ = MiniCPM-V visual (fallback)
*/
async function extractWithConsensus(
images: string[],
maxPasses: number = 5
): Promise<ITransaction[]> {
const results: Array<{ transactions: ITransaction[]; hash: string }> = [];
const hashCounts: Map<string, number> = new Map();
const addResult = (transactions: ITransaction[], passLabel: string): number => {
const hash = hashTransactions(transactions);
results.push({ transactions, hash });
hashCounts.set(hash, (hashCounts.get(hash) || 0) + 1);
console.log(
`[${passLabel}] Got ${transactions.length} transactions (hash: ${hash.substring(0, 20)}...)`
);
return hashCounts.get(hash)!;
};
// Check if PaddleOCR-VL is available
const paddleOCRVLAvailable = await isPaddleOCRVLAvailable();
if (paddleOCRVLAvailable) {
console.log('[Setup] PaddleOCR-VL service available - using dual-VLM consensus');
} else {
console.log('[Setup] PaddleOCR-VL not available - using MiniCPM-V only');
}
// Pass 1: MiniCPM-V visual extraction
try {
const pass1Result = await extractWithMiniCPM(images, 'Pass 1 MiniCPM-V');
addResult(pass1Result, 'Pass 1 MiniCPM-V');
} catch (err) {
console.log(`[Pass 1] Error: ${err}`);
}
// Pass 2: PaddleOCR-VL table recognition (if available)
if (paddleOCRVLAvailable) {
try {
const pass2Result = await extractWithPaddleOCRVL(images, 'Pass 2 PaddleOCR-VL');
const count = addResult(pass2Result, 'Pass 2 PaddleOCR-VL');
if (count >= 2) {
console.log('[Consensus] MiniCPM-V and PaddleOCR-VL extractions match!');
return pass2Result;
}
} catch (err) {
console.log(`[Pass 2 PaddleOCR-VL] Error: ${err}`);
}
}
// Pass 3+: Continue with MiniCPM-V visual passes
const startPass = paddleOCRVLAvailable ? 3 : 2;
for (let pass = startPass; pass <= maxPasses; pass++) {
try {
const transactions = await extractWithMiniCPM(images, `Pass ${pass} MiniCPM-V`);
const count = addResult(transactions, `Pass ${pass} MiniCPM-V`);
if (count >= 2) {
console.log(`[Consensus] Reached after ${pass} passes`);
return transactions;
}
console.log(`[Pass ${pass}] No consensus yet, trying again...`);
} catch (err) {
console.log(`[Pass ${pass}] Error: ${err}`);
}
}
// No consensus reached - return the most common result
let bestHash = '';
let bestCount = 0;
for (const [hash, count] of hashCounts) {
if (count > bestCount) {
bestCount = count;
bestHash = hash;
}
}
if (!bestHash) {
throw new Error('No valid results obtained');
}
const best = results.find((r) => r.hash === bestHash)!;
console.log(`[No consensus] Using most common result (${bestCount}/${maxPasses} passes)`);
return best.transactions;
}
/**
* Compare extracted transactions against expected
*/
function compareTransactions(
extracted: ITransaction[],
expected: ITransaction[]
): { matches: number; total: number; errors: string[] } {
const errors: string[] = [];
let matches = 0;
for (let i = 0; i < expected.length; i++) {
const exp = expected[i];
const ext = extracted[i];
if (!ext) {
errors.push(`Missing transaction ${i}: ${exp.date} ${exp.counterparty}`);
continue;
}
const dateMatch = ext.date === exp.date;
const amountMatch = Math.abs(ext.amount - exp.amount) < 0.01;
if (dateMatch && amountMatch) {
matches++;
} else {
errors.push(
`Mismatch at ${i}: expected ${exp.date}/${exp.amount}, got ${ext.date}/${ext.amount}`
);
}
}
if (extracted.length > expected.length) {
errors.push(`Extra transactions: ${extracted.length - expected.length}`);
}
return { matches, total: expected.length, errors };
}
/**
* Find all test cases (PDF + JSON pairs) in .nogit/
*/
function findTestCases(): Array<{ name: string; pdfPath: string; jsonPath: string }> {
const testDir = path.join(process.cwd(), '.nogit');
if (!fs.existsSync(testDir)) {
return [];
}
const files = fs.readdirSync(testDir);
const pdfFiles = files.filter((f: string) => f.endsWith('.pdf'));
const testCases: Array<{ name: string; pdfPath: string; jsonPath: string }> = [];
for (const pdf of pdfFiles) {
const baseName = pdf.replace('.pdf', '');
const jsonFile = `${baseName}.json`;
if (files.includes(jsonFile)) {
testCases.push({
name: baseName,
pdfPath: path.join(testDir, pdf),
jsonPath: path.join(testDir, jsonFile),
});
}
}
return testCases;
}
// Tests
tap.test('setup: ensure Docker containers are running', async () => {
console.log('\n[Setup] Checking Docker containers...\n');
// Ensure PaddleOCR-VL is running (auto-detects GPU/CPU)
const paddleOk = await ensurePaddleOcrVl();
expect(paddleOk).toBeTrue();
// Ensure MiniCPM is running
const minicpmOk = await ensureMiniCpm();
expect(minicpmOk).toBeTrue();
console.log('\n[Setup] All containers ready!\n');
});
tap.test('should have MiniCPM-V 4.5 model loaded', async () => {
const response = await fetch(`${OLLAMA_URL}/api/tags`);
const data = await response.json();
const modelNames = data.models.map((m: { name: string }) => m.name);
expect(modelNames.some((name: string) => name.includes('minicpm-v4.5'))).toBeTrue();
});
tap.test('should check PaddleOCR-VL availability', async () => {
const available = await isPaddleOCRVLAvailable();
console.log(`PaddleOCR-VL available: ${available}`);
expect(available).toBeTrue();
});
// Dynamic test for each PDF/JSON pair
const testCases = findTestCases();
for (const testCase of testCases) {
tap.test(`should extract transactions from ${testCase.name}`, async () => {
// Load expected transactions
const expected: ITransaction[] = JSON.parse(fs.readFileSync(testCase.jsonPath, 'utf-8'));
console.log(`\n=== ${testCase.name} ===`);
console.log(`Expected: ${expected.length} transactions`);
// Convert PDF to images
console.log('Converting PDF to images...');
const images = convertPdfToImages(testCase.pdfPath);
console.log(`Converted: ${images.length} pages\n`);
// Extract with dual-VLM consensus
const extracted = await extractWithConsensus(images);
console.log(`\nFinal: ${extracted.length} transactions`);
// Compare results
const result = compareTransactions(extracted, expected);
console.log(`Accuracy: ${result.matches}/${result.total}`);
if (result.errors.length > 0) {
console.log('Errors:');
result.errors.forEach((e) => console.log(` - ${e}`));
}
// Assert high accuracy
const accuracy = result.matches / result.total;
expect(accuracy).toBeGreaterThan(0.95);
expect(extracted.length).toEqual(expected.length);
});
}
export default tap.start();

View File

@@ -1,8 +1,9 @@
/**
* Bank statement extraction test using MiniCPM-V only (visual extraction)
* Bank statement extraction using MiniCPM-V (visual extraction)
*
* This tests MiniCPM-V's ability to extract bank transactions directly from images
* without any OCR augmentation.
* JSON per-page approach:
* 1. Ask for structured JSON of all transactions per page
* 2. Consensus: extract twice, compare, retry if mismatch
*/
import { tap, expect } from '@git.zone/tstest/tapbundle';
import * as fs from 'fs';
@@ -11,24 +12,8 @@ import { execSync } from 'child_process';
import * as os from 'os';
import { ensureMiniCpm } from './helpers/docker.js';
// Service URL
const OLLAMA_URL = 'http://localhost:11434';
// Model
const MINICPM_MODEL = 'minicpm-v:latest';
// Prompt for MiniCPM-V visual extraction
const MINICPM_EXTRACT_PROMPT = `/nothink
You are a bank statement parser. Extract EVERY transaction from the table.
Read the Amount column carefully:
- "- 21,47 €" means DEBIT, output as: -21.47
- "+ 1.000,00 €" means CREDIT, output as: 1000.00
- European format: comma = decimal point
For each row output: {"date":"YYYY-MM-DD","counterparty":"NAME","amount":-21.47}
Do not skip any rows. Return ONLY the JSON array, no explanation.`;
const MODEL = 'openbmb/minicpm-v4.5:q8_0';
interface ITransaction {
date: string;
@@ -36,6 +21,22 @@ interface ITransaction {
amount: number;
}
const JSON_PROMPT = `Extract ALL transactions from this bank statement page as a JSON array.
IMPORTANT RULES:
1. Each transaction has: date, description/counterparty, and an amount
2. Amount is NEGATIVE for money going OUT (debits, payments, withdrawals)
3. Amount is POSITIVE for money coming IN (credits, deposits, refunds)
4. Date format: YYYY-MM-DD
5. Do NOT include: opening balance, closing balance, subtotals, headers, or summary rows
6. Only include actual transactions with a specific date and amount
Return ONLY this JSON format, no explanation:
[
{"date": "2021-06-01", "counterparty": "COMPANY NAME", "amount": -25.99},
{"date": "2021-06-02", "counterparty": "DEPOSIT FROM", "amount": 100.00}
]`;
/**
* Convert PDF to PNG images using ImageMagick
*/
@@ -65,149 +66,330 @@ function convertPdfToImages(pdfPath: string): string[] {
}
/**
* Extract using MiniCPM-V via Ollama
* Query for JSON extraction
*/
async function extractWithMiniCPM(images: string[], passLabel: string): Promise<ITransaction[]> {
const payload = {
model: MINICPM_MODEL,
prompt: MINICPM_EXTRACT_PROMPT,
images,
stream: true,
options: {
num_predict: 16384,
temperature: 0.1,
},
};
async function queryJson(image: string, queryId: string): Promise<string> {
console.log(` [${queryId}] Sending request to ${MODEL}...`);
const startTime = Date.now();
const response = await fetch(`${OLLAMA_URL}/api/generate`, {
const response = await fetch(`${OLLAMA_URL}/api/chat`, {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify(payload),
body: JSON.stringify({
model: MODEL,
messages: [{
role: 'user',
content: JSON_PROMPT,
images: [image],
}],
stream: false,
options: {
num_predict: 4000,
temperature: 0.1,
},
}),
});
const elapsed = ((Date.now() - startTime) / 1000).toFixed(1);
if (!response.ok) {
console.log(` [${queryId}] ERROR: ${response.status} (${elapsed}s)`);
throw new Error(`Ollama API error: ${response.status}`);
}
const reader = response.body?.getReader();
if (!reader) {
throw new Error('No response body');
const data = await response.json();
const content = (data.message?.content || '').trim();
console.log(` [${queryId}] Response received (${elapsed}s, ${content.length} chars)`);
return content;
}
/**
* Sanitize JSON string - fix common issues from vision model output
*/
function sanitizeJson(jsonStr: string): string {
let s = jsonStr;
// Fix +number (e.g., +93.80 -> 93.80) - JSON doesn't allow + prefix
// Handle various whitespace patterns
s = s.replace(/"amount"\s*:\s*\+/g, '"amount": ');
s = s.replace(/:\s*\+(\d)/g, ': $1');
// Fix European number format with thousands separator (e.g., 1.000.00 -> 1000.00)
// Pattern: "amount": X.XXX.XX where X.XXX is thousands and .XX is decimal
s = s.replace(/"amount"\s*:\s*(-?)(\d{1,3})\.(\d{3})\.(\d{2})\b/g, '"amount": $1$2$3.$4');
// Also handle larger numbers like 10.000.00
s = s.replace(/"amount"\s*:\s*(-?)(\d{1,3})\.(\d{3})\.(\d{3})\.(\d{2})\b/g, '"amount": $1$2$3$4.$5');
// Fix trailing commas before ] or }
s = s.replace(/,\s*([}\]])/g, '$1');
// Fix unescaped newlines inside strings (replace with space)
s = s.replace(/"([^"\\]*)\n([^"]*)"/g, '"$1 $2"');
// Fix unescaped tabs inside strings
s = s.replace(/"([^"\\]*)\t([^"]*)"/g, '"$1 $2"');
// Fix unescaped backslashes (but not already escaped ones)
s = s.replace(/\\(?!["\\/bfnrtu])/g, '\\\\');
// Fix common issues with counterparty names containing special chars
s = s.replace(/"counterparty":\s*"([^"]*)'([^"]*)"/g, '"counterparty": "$1$2"');
// Remove control characters except newlines (which we handle above)
s = s.replace(/[\x00-\x08\x0B\x0C\x0E-\x1F]/g, ' ');
return s;
}
/**
* Parse JSON response into transactions
*/
function parseJsonResponse(response: string, queryId: string): ITransaction[] {
console.log(` [${queryId}] Parsing response...`);
// Try to find JSON in markdown code block
const codeBlockMatch = response.match(/```(?:json)?\s*([\s\S]*?)```/);
let jsonStr = codeBlockMatch ? codeBlockMatch[1].trim() : response.trim();
if (codeBlockMatch) {
console.log(` [${queryId}] Found JSON in code block`);
}
const decoder = new TextDecoder();
let fullText = '';
let lineBuffer = '';
// Sanitize JSON (fix +number issue)
jsonStr = sanitizeJson(jsonStr);
console.log(`[${passLabel}] Extracting with MiniCPM-V...`);
try {
const parsed = JSON.parse(jsonStr);
if (Array.isArray(parsed)) {
const txs = parsed.map(tx => ({
date: String(tx.date || ''),
counterparty: String(tx.counterparty || tx.description || ''),
amount: parseAmount(tx.amount),
}));
console.log(` [${queryId}] Parsed ${txs.length} transactions (direct)`);
return txs;
}
console.log(` [${queryId}] Parsed JSON is not an array`);
} catch (e) {
const errMsg = (e as Error).message;
console.log(` [${queryId}] Direct parse failed: ${errMsg}`);
while (true) {
const { done, value } = await reader.read();
if (done) break;
// Log problematic section with context
const posMatch = errMsg.match(/position (\d+)/);
if (posMatch) {
const pos = parseInt(posMatch[1]);
const start = Math.max(0, pos - 40);
const end = Math.min(jsonStr.length, pos + 40);
const context = jsonStr.substring(start, end);
const marker = ' '.repeat(pos - start) + '^';
console.log(` [${queryId}] Context around error position ${pos}:`);
console.log(` [${queryId}] ...${context}...`);
console.log(` [${queryId}] ${marker}`);
}
const chunk = decoder.decode(value, { stream: true });
const lines = chunk.split('\n').filter((l) => l.trim());
for (const line of lines) {
// Try to find JSON array pattern
const arrayMatch = jsonStr.match(/\[[\s\S]*\]/);
if (arrayMatch) {
console.log(` [${queryId}] Found array pattern, trying to parse...`);
const sanitizedArray = sanitizeJson(arrayMatch[0]);
try {
const json = JSON.parse(line);
if (json.response) {
fullText += json.response;
lineBuffer += json.response;
if (lineBuffer.includes('\n')) {
const parts = lineBuffer.split('\n');
for (let i = 0; i < parts.length - 1; i++) {
console.log(parts[i]);
}
lineBuffer = parts[parts.length - 1];
}
const parsed = JSON.parse(sanitizedArray);
if (Array.isArray(parsed)) {
const txs = parsed.map(tx => ({
date: String(tx.date || ''),
counterparty: String(tx.counterparty || tx.description || ''),
amount: parseAmount(tx.amount),
}));
console.log(` [${queryId}] Parsed ${txs.length} transactions (array match)`);
return txs;
}
} catch (e2) {
const errMsg2 = (e2 as Error).message;
console.log(` [${queryId}] Array parse failed: ${errMsg2}`);
const posMatch2 = errMsg2.match(/position (\d+)/);
if (posMatch2) {
const pos2 = parseInt(posMatch2[1]);
console.log(` [${queryId}] Context around error: ...${sanitizedArray.substring(Math.max(0, pos2 - 30), pos2 + 30)}...`);
}
// Try to extract individual objects from the malformed array
console.log(` [${queryId}] Attempting object-by-object extraction...`);
const extracted = extractTransactionsFromMalformedJson(sanitizedArray, queryId);
if (extracted.length > 0) {
console.log(` [${queryId}] Recovered ${extracted.length} transactions via object extraction`);
return extracted;
}
} catch {
// Skip invalid JSON lines
}
} else {
console.log(` [${queryId}] No array pattern found in response`);
console.log(` [${queryId}] Raw response preview: ${response.substring(0, 200)}...`);
}
}
if (lineBuffer) {
console.log(lineBuffer);
}
console.log('');
const startIdx = fullText.indexOf('[');
const endIdx = fullText.lastIndexOf(']') + 1;
if (startIdx < 0 || endIdx <= startIdx) {
throw new Error('No JSON array found in response');
}
return JSON.parse(fullText.substring(startIdx, endIdx));
console.log(` [${queryId}] PARSE FAILED - returning empty array`);
return [];
}
/**
* Create a hash of transactions for comparison
* Extract transactions from malformed JSON by parsing objects individually
*/
function hashTransactions(transactions: ITransaction[]): string {
return transactions
.map((t) => `${t.date}|${t.amount.toFixed(2)}`)
.sort()
.join(';');
function extractTransactionsFromMalformedJson(jsonStr: string, queryId: string): ITransaction[] {
const transactions: ITransaction[] = [];
// Match individual transaction objects
const objectPattern = /\{\s*"date"\s*:\s*"([^"]+)"\s*,\s*"counterparty"\s*:\s*"([^"]+)"\s*,\s*"amount"\s*:\s*([+-]?\d+\.?\d*)\s*\}/g;
let match;
while ((match = objectPattern.exec(jsonStr)) !== null) {
transactions.push({
date: match[1],
counterparty: match[2],
amount: parseFloat(match[3]),
});
}
// Also try with different field orders (amount before counterparty, etc.)
if (transactions.length === 0) {
const altPattern = /\{\s*"date"\s*:\s*"([^"]+)"[^}]*"amount"\s*:\s*([+-]?\d+\.?\d*)[^}]*\}/g;
while ((match = altPattern.exec(jsonStr)) !== null) {
// Try to extract counterparty from the match
const counterpartyMatch = match[0].match(/"counterparty"\s*:\s*"([^"]+)"/);
const descMatch = match[0].match(/"description"\s*:\s*"([^"]+)"/);
transactions.push({
date: match[1],
counterparty: counterpartyMatch?.[1] || descMatch?.[1] || 'UNKNOWN',
amount: parseFloat(match[2]),
});
}
}
return transactions;
}
/**
* Extract with consensus voting using MiniCPM-V only
* Parse amount from various formats
*/
async function extractWithConsensus(
images: string[],
maxPasses: number = 5
): Promise<ITransaction[]> {
const results: Array<{ transactions: ITransaction[]; hash: string }> = [];
const hashCounts: Map<string, number> = new Map();
function parseAmount(value: unknown): number {
if (typeof value === 'number') return value;
if (typeof value !== 'string') return 0;
const addResult = (transactions: ITransaction[], passLabel: string): number => {
const hash = hashTransactions(transactions);
results.push({ transactions, hash });
hashCounts.set(hash, (hashCounts.get(hash) || 0) + 1);
console.log(
`[${passLabel}] Got ${transactions.length} transactions (hash: ${hash.substring(0, 20)}...)`
);
return hashCounts.get(hash)!;
};
let s = value.replace(/[€$£\s]/g, '').replace('', '-').replace('', '-');
// European format: comma is decimal
if (s.includes(',') && s.indexOf(',') > s.lastIndexOf('.')) {
s = s.replace(/\./g, '').replace(',', '.');
} else {
s = s.replace(/,/g, '');
}
return parseFloat(s) || 0;
}
console.log('[Setup] Using MiniCPM-V only');
/**
* Compare two transaction arrays for consensus
*/
function transactionArraysMatch(a: ITransaction[], b: ITransaction[]): boolean {
if (a.length !== b.length) return false;
for (let pass = 1; pass <= maxPasses; pass++) {
try {
const transactions = await extractWithMiniCPM(images, `Pass ${pass} MiniCPM-V`);
const count = addResult(transactions, `Pass ${pass} MiniCPM-V`);
for (let i = 0; i < a.length; i++) {
const dateMatch = a[i].date === b[i].date;
const amountMatch = Math.abs(a[i].amount - b[i].amount) < 0.01;
if (!dateMatch || !amountMatch) return false;
}
if (count >= 2) {
console.log(`[Consensus] Reached after ${pass} passes`);
return transactions;
return true;
}
/**
* Compare two transaction arrays and log differences
*/
function compareAndLogDifferences(txs1: ITransaction[], txs2: ITransaction[], pageNum: number): void {
if (txs1.length !== txs2.length) {
console.log(` [Page ${pageNum}] Length mismatch: Q1=${txs1.length}, Q2=${txs2.length}`);
return;
}
for (let i = 0; i < txs1.length; i++) {
const dateMatch = txs1[i].date === txs2[i].date;
const amountMatch = Math.abs(txs1[i].amount - txs2[i].amount) < 0.01;
if (!dateMatch || !amountMatch) {
console.log(` [Page ${pageNum}] Tx ${i + 1} differs:`);
console.log(` Q1: ${txs1[i].date} | ${txs1[i].amount}`);
console.log(` Q2: ${txs2[i].date} | ${txs2[i].amount}`);
}
}
}
/**
* Extract transactions from a single page with consensus
*/
async function extractTransactionsFromPage(image: string, pageNum: number): Promise<ITransaction[]> {
const MAX_ATTEMPTS = 5;
console.log(`\n ======== Page ${pageNum} ========`);
console.log(` [Page ${pageNum}] Starting JSON extraction...`);
for (let attempt = 1; attempt <= MAX_ATTEMPTS; attempt++) {
console.log(`\n [Page ${pageNum}] --- Attempt ${attempt}/${MAX_ATTEMPTS} ---`);
// Extract twice in parallel
const q1Id = `P${pageNum}A${attempt}Q1`;
const q2Id = `P${pageNum}A${attempt}Q2`;
const [response1, response2] = await Promise.all([
queryJson(image, q1Id),
queryJson(image, q2Id),
]);
const txs1 = parseJsonResponse(response1, q1Id);
const txs2 = parseJsonResponse(response2, q2Id);
console.log(` [Page ${pageNum}] Results: Q1=${txs1.length} txs, Q2=${txs2.length} txs`);
if (txs1.length > 0 && transactionArraysMatch(txs1, txs2)) {
console.log(` [Page ${pageNum}] ✓ CONSENSUS REACHED: ${txs1.length} transactions`);
console.log(` [Page ${pageNum}] Transactions:`);
for (let i = 0; i < txs1.length; i++) {
const tx = txs1[i];
console.log(` ${(i + 1).toString().padStart(2)}. ${tx.date} | ${tx.counterparty.substring(0, 30).padEnd(30)} | ${tx.amount >= 0 ? '+' : ''}${tx.amount.toFixed(2)}`);
}
return txs1;
}
console.log(`[Pass ${pass}] No consensus yet, trying again...`);
} catch (err) {
console.log(`[Pass ${pass}] Error: ${err}`);
console.log(` [Page ${pageNum}] ✗ NO CONSENSUS`);
compareAndLogDifferences(txs1, txs2, pageNum);
if (attempt < MAX_ATTEMPTS) {
console.log(` [Page ${pageNum}] Retrying...`);
}
}
// No consensus reached - return the most common result
let bestHash = '';
let bestCount = 0;
for (const [hash, count] of hashCounts) {
if (count > bestCount) {
bestCount = count;
bestHash = hash;
}
// Fallback: use last response
console.log(`\n [Page ${pageNum}] === FALLBACK (no consensus after ${MAX_ATTEMPTS} attempts) ===`);
const fallbackId = `P${pageNum}FALLBACK`;
const fallbackResponse = await queryJson(image, fallbackId);
const fallback = parseJsonResponse(fallbackResponse, fallbackId);
console.log(` [Page ${pageNum}] ~ FALLBACK RESULT: ${fallback.length} transactions`);
for (let i = 0; i < fallback.length; i++) {
const tx = fallback[i];
console.log(` ${(i + 1).toString().padStart(2)}. ${tx.date} | ${tx.counterparty.substring(0, 30).padEnd(30)} | ${tx.amount >= 0 ? '+' : ''}${tx.amount.toFixed(2)}`);
}
return fallback;
}
/**
* Extract all transactions from bank statement
*/
async function extractTransactions(images: string[]): Promise<ITransaction[]> {
console.log(` [Vision] Processing ${images.length} page(s) with ${MODEL} (JSON consensus)`);
const allTransactions: ITransaction[] = [];
for (let i = 0; i < images.length; i++) {
const pageTransactions = await extractTransactionsFromPage(images[i], i + 1);
allTransactions.push(...pageTransactions);
}
if (!bestHash) {
throw new Error('No valid results obtained');
}
const best = results.find((r) => r.hash === bestHash)!;
console.log(`[No consensus] Using most common result (${bestCount}/${maxPasses} passes)`);
return best.transactions;
console.log(` [Vision] Total: ${allTransactions.length} transactions`);
return allTransactions;
}
/**
@@ -216,8 +398,9 @@ async function extractWithConsensus(
function compareTransactions(
extracted: ITransaction[],
expected: ITransaction[]
): { matches: number; total: number; errors: string[] } {
): { matches: number; total: number; errors: string[]; variations: string[] } {
const errors: string[] = [];
const variations: string[] = [];
let matches = 0;
for (let i = 0; i < expected.length; i++) {
@@ -234,6 +417,12 @@ function compareTransactions(
if (dateMatch && amountMatch) {
matches++;
// Track counterparty variations (date and amount match but name differs)
if (ext.counterparty !== exp.counterparty) {
variations.push(
`[${i}] "${exp.counterparty}" → "${ext.counterparty}"`
);
}
} else {
errors.push(
`Mismatch at ${i}: expected ${exp.date}/${exp.amount}, got ${ext.date}/${ext.amount}`
@@ -245,7 +434,7 @@ function compareTransactions(
errors.push(`Extra transactions: ${extracted.length - expected.length}`);
}
return { matches, total: expected.length, errors };
return { matches, total: expected.length, errors, variations };
}
/**
@@ -273,62 +462,75 @@ function findTestCases(): Array<{ name: string; pdfPath: string; jsonPath: strin
}
}
return testCases;
return testCases.sort((a, b) => a.name.localeCompare(b.name));
}
// Tests
tap.test('setup: ensure Docker containers are running', async () => {
console.log('\n[Setup] Checking Docker containers...\n');
// Ensure MiniCPM is running
const minicpmOk = await ensureMiniCpm();
expect(minicpmOk).toBeTrue();
console.log('\n[Setup] All containers ready!\n');
});
tap.test('should have MiniCPM-V 4.5 model loaded', async () => {
tap.test('should have MiniCPM-V model loaded', async () => {
const response = await fetch(`${OLLAMA_URL}/api/tags`);
const data = await response.json();
const modelNames = data.models.map((m: { name: string }) => m.name);
expect(modelNames.some((name: string) => name.includes('minicpm-v4.5'))).toBeTrue();
expect(modelNames.some((name: string) => name.includes('minicpm'))).toBeTrue();
});
// Dynamic test for each PDF/JSON pair
const testCases = findTestCases();
console.log(`\nFound ${testCases.length} bank statement test cases (MiniCPM-V only)\n`);
console.log(`\nFound ${testCases.length} bank statement test cases (MiniCPM-V)\n`);
let passedCount = 0;
let failedCount = 0;
for (const testCase of testCases) {
tap.test(`should extract transactions from ${testCase.name}`, async () => {
// Load expected transactions
tap.test(`should extract: ${testCase.name}`, async () => {
const expected: ITransaction[] = JSON.parse(fs.readFileSync(testCase.jsonPath, 'utf-8'));
console.log(`\n=== ${testCase.name} ===`);
console.log(`Expected: ${expected.length} transactions`);
// Convert PDF to images
console.log('Converting PDF to images...');
const images = convertPdfToImages(testCase.pdfPath);
console.log(`Converted: ${images.length} pages\n`);
console.log(` Pages: ${images.length}`);
// Extract with consensus (MiniCPM-V only)
const extracted = await extractWithConsensus(images);
console.log(`\nFinal: ${extracted.length} transactions`);
const extracted = await extractTransactions(images);
console.log(` Extracted: ${extracted.length} transactions`);
// Compare results
const result = compareTransactions(extracted, expected);
console.log(`Accuracy: ${result.matches}/${result.total}`);
const perfectMatch = result.matches === result.total && extracted.length === expected.length;
if (result.errors.length > 0) {
console.log('Errors:');
result.errors.forEach((e) => console.log(` - ${e}`));
if (perfectMatch) {
passedCount++;
console.log(` Result: PASS (${result.matches}/${result.total})`);
} else {
failedCount++;
console.log(` Result: FAIL (${result.matches}/${result.total})`);
result.errors.slice(0, 10).forEach((e) => console.log(` - ${e}`));
}
// Assert high accuracy
const accuracy = result.matches / result.total;
expect(accuracy).toBeGreaterThan(0.95);
// Log counterparty variations (names that differ but date/amount matched)
if (result.variations.length > 0) {
console.log(` Counterparty variations (${result.variations.length}):`);
result.variations.forEach((v) => console.log(` ${v}`));
}
expect(result.matches).toEqual(result.total);
expect(extracted.length).toEqual(expected.length);
});
}
tap.test('summary', async () => {
const total = testCases.length;
console.log(`\n======================================================`);
console.log(` Bank Statement Summary (${MODEL})`);
console.log(`======================================================`);
console.log(` Method: JSON per-page + consensus`);
console.log(` Passed: ${passedCount}/${total}`);
console.log(` Failed: ${failedCount}/${total}`);
console.log(`======================================================\n`);
});
export default tap.start();

View File

@@ -1,348 +0,0 @@
/**
* Bank Statement extraction using Ministral 3 Vision (Direct)
*
* NO OCR pipeline needed - Ministral 3 has built-in vision encoder:
* 1. Convert PDF to images
* 2. Send images directly to Ministral 3 via Ollama
* 3. Extract transactions as structured JSON
*/
import { tap, expect } from '@git.zone/tstest/tapbundle';
import * as fs from 'fs';
import * as path from 'path';
import { execSync } from 'child_process';
import * as os from 'os';
import { ensureMinistral3 } from './helpers/docker.js';
const OLLAMA_URL = 'http://localhost:11434';
const VISION_MODEL = 'ministral-3:8b';
interface ITransaction {
date: string;
counterparty: string;
amount: number;
}
/**
* Convert PDF to PNG images using ImageMagick
*/
function convertPdfToImages(pdfPath: string): string[] {
const tempDir = fs.mkdtempSync(path.join(os.tmpdir(), 'pdf-convert-'));
const outputPattern = path.join(tempDir, 'page-%d.png');
try {
execSync(
`convert -density 200 -quality 90 "${pdfPath}" -background white -alpha remove "${outputPattern}"`,
{ stdio: 'pipe' }
);
const files = fs.readdirSync(tempDir).filter((f) => f.endsWith('.png')).sort();
const images: string[] = [];
for (const file of files) {
const imagePath = path.join(tempDir, file);
const imageData = fs.readFileSync(imagePath);
images.push(imageData.toString('base64'));
}
return images;
} finally {
fs.rmSync(tempDir, { recursive: true, force: true });
}
}
/**
* Extract transactions from a single page image using Ministral 3 Vision
*/
async function extractTransactionsFromPage(image: string, pageNum: number): Promise<ITransaction[]> {
console.log(` [Vision] Processing page ${pageNum}`);
// JSON schema for array of transactions
const transactionSchema = {
type: 'array',
items: {
type: 'object',
properties: {
date: { type: 'string', description: 'Transaction date in YYYY-MM-DD format' },
counterparty: { type: 'string', description: 'Name of the other party' },
amount: { type: 'number', description: 'Amount (negative for debits, positive for credits)' },
},
required: ['date', 'counterparty', 'amount'],
},
};
const prompt = `Extract ALL bank transactions from this bank statement page.
For each transaction, extract:
- date: Transaction date in YYYY-MM-DD format
- counterparty: The name/description of the other party (merchant, payee, etc.)
- amount: The amount as a number (NEGATIVE for debits/expenses, POSITIVE for credits/income)
Return a JSON array of transactions. If no transactions visible, return empty array [].
Example: [{"date":"2021-06-01","counterparty":"AMAZON","amount":-50.00}]`;
const response = await fetch(`${OLLAMA_URL}/api/chat`, {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({
model: VISION_MODEL,
messages: [
{
role: 'user',
content: prompt,
images: [image],
},
],
format: transactionSchema,
stream: true,
options: {
num_predict: 4096, // Bank statements can have many transactions
temperature: 0.0,
},
}),
});
if (!response.ok) {
throw new Error(`Ollama API error: ${response.status}`);
}
const reader = response.body?.getReader();
if (!reader) {
throw new Error('No response body');
}
const decoder = new TextDecoder();
let fullText = '';
while (true) {
const { done, value } = await reader.read();
if (done) break;
const chunk = decoder.decode(value, { stream: true });
const lines = chunk.split('\n').filter((l) => l.trim());
for (const line of lines) {
try {
const json = JSON.parse(line);
if (json.message?.content) {
fullText += json.message.content;
}
} catch {
// Skip invalid JSON lines
}
}
}
// Parse JSON response
let jsonStr = fullText.trim();
if (jsonStr.startsWith('```json')) jsonStr = jsonStr.slice(7);
else if (jsonStr.startsWith('```')) jsonStr = jsonStr.slice(3);
if (jsonStr.endsWith('```')) jsonStr = jsonStr.slice(0, -3);
jsonStr = jsonStr.trim();
// Find array boundaries
const startIdx = jsonStr.indexOf('[');
const endIdx = jsonStr.lastIndexOf(']') + 1;
if (startIdx < 0 || endIdx <= startIdx) {
console.log(` [Page ${pageNum}] No transactions found`);
return [];
}
try {
const parsed = JSON.parse(jsonStr.substring(startIdx, endIdx));
console.log(` [Page ${pageNum}] Found ${parsed.length} transactions`);
return parsed.map((t: { date?: string; counterparty?: string; amount?: number }) => ({
date: t.date || '',
counterparty: t.counterparty || '',
amount: parseFloat(String(t.amount)) || 0,
}));
} catch (e) {
console.log(` [Page ${pageNum}] Parse error: ${e}`);
return [];
}
}
/**
* Extract all transactions from all pages
*/
async function extractAllTransactions(images: string[]): Promise<ITransaction[]> {
const allTransactions: ITransaction[] = [];
for (let i = 0; i < images.length; i++) {
const pageTransactions = await extractTransactionsFromPage(images[i], i + 1);
allTransactions.push(...pageTransactions);
}
return allTransactions;
}
/**
* Normalize date to YYYY-MM-DD
*/
function normalizeDate(dateStr: string): string {
if (!dateStr) return '';
if (/^\d{4}-\d{2}-\d{2}$/.test(dateStr)) return dateStr;
// Handle DD/MM/YYYY or DD.MM.YYYY
const match = dateStr.match(/^(\d{1,2})[\/.](\d{1,2})[\/.](\d{4})$/);
if (match) {
return `${match[3]}-${match[2].padStart(2, '0')}-${match[1].padStart(2, '0')}`;
}
return dateStr;
}
/**
* Compare extracted transactions vs expected
*/
function compareTransactions(
extracted: ITransaction[],
expected: ITransaction[]
): { matchRate: number; matched: number; missed: number; extra: number; errors: string[] } {
const errors: string[] = [];
let matched = 0;
// Normalize all dates
const normalizedExtracted = extracted.map((t) => ({
...t,
date: normalizeDate(t.date),
counterparty: t.counterparty.toUpperCase().trim(),
}));
const normalizedExpected = expected.map((t) => ({
...t,
date: normalizeDate(t.date),
counterparty: t.counterparty.toUpperCase().trim(),
}));
// Try to match each expected transaction
const matchedIndices = new Set<number>();
for (const exp of normalizedExpected) {
let found = false;
for (let i = 0; i < normalizedExtracted.length; i++) {
if (matchedIndices.has(i)) continue;
const ext = normalizedExtracted[i];
// Match by date + amount (counterparty names can vary)
if (ext.date === exp.date && Math.abs(ext.amount - exp.amount) < 0.02) {
matched++;
matchedIndices.add(i);
found = true;
break;
}
}
if (!found) {
errors.push(`Missing: ${exp.date} | ${exp.counterparty} | ${exp.amount}`);
}
}
const missed = expected.length - matched;
const extra = extracted.length - matched;
const matchRate = expected.length > 0 ? (matched / expected.length) * 100 : 0;
return { matchRate, matched, missed, extra, errors };
}
/**
* Find test cases (PDF + JSON pairs in .nogit/)
*/
function findTestCases(): Array<{ name: string; pdfPath: string; jsonPath: string }> {
const testDir = path.join(process.cwd(), '.nogit');
if (!fs.existsSync(testDir)) return [];
const files = fs.readdirSync(testDir);
const testCases: Array<{ name: string; pdfPath: string; jsonPath: string }> = [];
for (const pdf of files.filter((f) => f.endsWith('.pdf'))) {
const baseName = pdf.replace('.pdf', '');
const jsonFile = `${baseName}.json`;
if (files.includes(jsonFile)) {
// Skip invoice files - only bank statements
if (!baseName.includes('invoice')) {
testCases.push({
name: baseName,
pdfPath: path.join(testDir, pdf),
jsonPath: path.join(testDir, jsonFile),
});
}
}
}
return testCases.sort((a, b) => a.name.localeCompare(b.name));
}
// Tests
tap.test('setup: ensure Ministral 3 is running', async () => {
console.log('\n[Setup] Checking Ministral 3...\n');
const ok = await ensureMinistral3();
expect(ok).toBeTrue();
console.log('\n[Setup] Ready!\n');
});
const testCases = findTestCases();
console.log(`\nFound ${testCases.length} bank statement test cases (Ministral 3 Vision)\n`);
let totalMatched = 0;
let totalExpected = 0;
const times: number[] = [];
for (const testCase of testCases) {
tap.test(`should extract bank statement: ${testCase.name}`, async () => {
const expected: ITransaction[] = JSON.parse(fs.readFileSync(testCase.jsonPath, 'utf-8'));
console.log(`\n=== ${testCase.name} ===`);
console.log(`Expected: ${expected.length} transactions`);
const start = Date.now();
const images = convertPdfToImages(testCase.pdfPath);
console.log(` Pages: ${images.length}`);
const extracted = await extractAllTransactions(images);
const elapsed = Date.now() - start;
times.push(elapsed);
console.log(` Extracted: ${extracted.length} transactions`);
const result = compareTransactions(extracted, expected);
totalMatched += result.matched;
totalExpected += expected.length;
console.log(` Match rate: ${result.matchRate.toFixed(1)}% (${result.matched}/${expected.length})`);
console.log(` Missed: ${result.missed}, Extra: ${result.extra}`);
console.log(` Time: ${(elapsed / 1000).toFixed(1)}s`);
if (result.errors.length > 0 && result.errors.length <= 5) {
result.errors.forEach((e) => console.log(` - ${e}`));
} else if (result.errors.length > 5) {
console.log(` (${result.errors.length} missing transactions)`);
}
// Consider it a pass if we match at least 70% of transactions
expect(result.matchRate).toBeGreaterThan(70);
});
}
tap.test('summary', async () => {
const overallMatchRate = totalExpected > 0 ? (totalMatched / totalExpected) * 100 : 0;
const totalTime = times.reduce((a, b) => a + b, 0) / 1000;
const avgTime = times.length > 0 ? totalTime / times.length : 0;
console.log(`\n======================================================`);
console.log(` Bank Statement Extraction Summary (Ministral 3)`);
console.log(`======================================================`);
console.log(` Method: Ministral 3 8B Vision (Direct)`);
console.log(` Statements: ${testCases.length}`);
console.log(` Matched: ${totalMatched}/${totalExpected} transactions`);
console.log(` Match rate: ${overallMatchRate.toFixed(1)}%`);
console.log(`------------------------------------------------------`);
console.log(` Total time: ${totalTime.toFixed(1)}s`);
console.log(` Avg per stmt: ${avgTime.toFixed(1)}s`);
console.log(`======================================================\n`);
});
export default tap.start();

View File

@@ -0,0 +1,667 @@
/**
* Bank statement extraction using Nanonets-OCR2-3B + GPT-OSS 20B (sequential two-stage pipeline)
*
* Stage 1: Nanonets-OCR2-3B converts ALL document pages to markdown (stop after completion)
* Stage 2: GPT-OSS 20B extracts structured JSON from saved markdown (after Nanonets stops)
*
* This approach avoids GPU contention by running services sequentially.
*/
import { tap, expect } from '@git.zone/tstest/tapbundle';
import * as fs from 'fs';
import * as path from 'path';
import { execSync } from 'child_process';
import * as os from 'os';
import { ensureNanonetsOcr, ensureMiniCpm, removeContainer, isContainerRunning } from './helpers/docker.js';
const NANONETS_URL = 'http://localhost:8000/v1';
const NANONETS_MODEL = 'nanonets/Nanonets-OCR2-3B';
const OLLAMA_URL = 'http://localhost:11434';
const EXTRACTION_MODEL = 'gpt-oss:20b';
// Temp directory for storing markdown between stages
const TEMP_MD_DIR = path.join(os.tmpdir(), 'nanonets-markdown');
interface ITransaction {
date: string;
counterparty: string;
amount: number;
}
interface IImageData {
base64: string;
width: number;
height: number;
pageNum: number;
}
interface ITestCase {
name: string;
pdfPath: string;
jsonPath: string;
markdownPath?: string;
images?: IImageData[];
}
// Nanonets-specific prompt for document OCR to markdown
const NANONETS_OCR_PROMPT = `Extract the text from the above document as if you were reading it naturally.
Return the tables in html format.
Return the equations in LaTeX representation.
If there is an image in the document and image caption is not present, add a small description inside <img></img> tag.
Watermarks should be wrapped in brackets. Ex: <watermark>OFFICIAL COPY</watermark>.
Page numbers should be wrapped in brackets. Ex: <page_number>14</page_number>.`;
// JSON extraction prompt for GPT-OSS 20B (sent AFTER the statement text is provided)
const JSON_EXTRACTION_PROMPT = `Extract ALL transactions from the bank statement. Return ONLY valid JSON array.
WHERE TO FIND DATA:
- Transactions are typically in TABLES with columns: Date, Description/Counterparty, Debit, Credit, Balance
- Look for rows with actual money movements, NOT header rows or summary totals
RULES:
1. date: Convert to YYYY-MM-DD format
2. counterparty: The name/description of who the money went to/from
3. amount: NEGATIVE for debits/withdrawals, POSITIVE for credits/deposits
4. Only include actual transactions, NOT opening/closing balances
JSON array only:
[{"date":"YYYY-MM-DD","counterparty":"NAME","amount":-25.99}]`;
// Constants for smart batching
const MAX_VISUAL_TOKENS = 28000; // ~32K context minus prompt/output headroom
const PATCH_SIZE = 14; // Qwen2.5-VL uses 14x14 patches
/**
* Estimate visual tokens for an image based on dimensions
*/
function estimateVisualTokens(width: number, height: number): number {
return Math.ceil((width * height) / (PATCH_SIZE * PATCH_SIZE));
}
/**
* Process images one page at a time for reliability
*/
function batchImages(images: IImageData[]): IImageData[][] {
// One page per batch for reliable processing
return images.map(img => [img]);
}
/**
* Convert PDF to JPEG images using ImageMagick with dimension tracking
*/
function convertPdfToImages(pdfPath: string): IImageData[] {
const tempDir = fs.mkdtempSync(path.join(os.tmpdir(), 'pdf-convert-'));
const outputPattern = path.join(tempDir, 'page-%d.jpg');
try {
execSync(
`convert -density 150 -quality 90 "${pdfPath}" -background white -alpha remove "${outputPattern}"`,
{ stdio: 'pipe' }
);
const files = fs.readdirSync(tempDir).filter((f: string) => f.endsWith('.jpg')).sort();
const images: IImageData[] = [];
for (let i = 0; i < files.length; i++) {
const file = files[i];
const imagePath = path.join(tempDir, file);
const imageData = fs.readFileSync(imagePath);
// Get image dimensions using identify command
const dimensions = execSync(`identify -format "%w %h" "${imagePath}"`, { encoding: 'utf-8' }).trim();
const [width, height] = dimensions.split(' ').map(Number);
images.push({
base64: imageData.toString('base64'),
width,
height,
pageNum: i + 1,
});
}
return images;
} finally {
fs.rmSync(tempDir, { recursive: true, force: true });
}
}
/**
* Convert a batch of pages to markdown using Nanonets-OCR-s
*/
async function convertBatchToMarkdown(batch: IImageData[]): Promise<string> {
const startTime = Date.now();
const pageNums = batch.map(img => img.pageNum).join(', ');
// Build content array with all images first, then the prompt
const content: Array<{ type: string; image_url?: { url: string }; text?: string }> = [];
for (const img of batch) {
content.push({
type: 'image_url',
image_url: { url: `data:image/jpeg;base64,${img.base64}` },
});
}
// Add prompt with page separator instruction if multiple pages
const promptText = batch.length > 1
? `${NANONETS_OCR_PROMPT}\n\nPlease clearly separate each page's content with "--- PAGE N ---" markers, where N is the page number starting from ${batch[0].pageNum}.`
: NANONETS_OCR_PROMPT;
content.push({ type: 'text', text: promptText });
const response = await fetch(`${NANONETS_URL}/chat/completions`, {
method: 'POST',
headers: {
'Content-Type': 'application/json',
'Authorization': 'Bearer dummy',
},
body: JSON.stringify({
model: NANONETS_MODEL,
messages: [{
role: 'user',
content,
}],
max_tokens: 4096 * batch.length, // Scale output tokens with batch size
temperature: 0.0,
}),
signal: AbortSignal.timeout(600000), // 10 minute timeout for OCR
});
const elapsed = ((Date.now() - startTime) / 1000).toFixed(1);
if (!response.ok) {
const errorText = await response.text();
throw new Error(`Nanonets API error: ${response.status} - ${errorText}`);
}
const data = await response.json();
let responseContent = (data.choices?.[0]?.message?.content || '').trim();
// For single-page batches, add page marker if not present
if (batch.length === 1 && !responseContent.includes('--- PAGE')) {
responseContent = `--- PAGE ${batch[0].pageNum} ---\n${responseContent}`;
}
console.log(` Pages [${pageNums}]: ${responseContent.length} chars (${elapsed}s)`);
return responseContent;
}
/**
* Convert all pages of a document to markdown using smart batching
*/
async function convertDocumentToMarkdown(images: IImageData[], docName: string): Promise<string> {
const batches = batchImages(images);
console.log(` [${docName}] Processing ${images.length} page(s) in ${batches.length} batch(es)...`);
const markdownParts: string[] = [];
for (let i = 0; i < batches.length; i++) {
const batch = batches[i];
const batchTokens = batch.reduce((sum, img) => sum + estimateVisualTokens(img.width, img.height), 0);
console.log(` Batch ${i + 1}: ${batch.length} page(s), ~${batchTokens} tokens`);
const markdown = await convertBatchToMarkdown(batch);
markdownParts.push(markdown);
}
const fullMarkdown = markdownParts.join('\n\n');
console.log(` [${docName}] Complete: ${fullMarkdown.length} chars total`);
return fullMarkdown;
}
/**
* Stop Nanonets container
*/
function stopNanonets(): void {
console.log(' [Docker] Stopping Nanonets container...');
try {
execSync('docker stop nanonets-test 2>/dev/null || true', { stdio: 'pipe' });
// Wait for GPU memory to be released
execSync('sleep 5', { stdio: 'pipe' });
console.log(' [Docker] Nanonets stopped');
} catch {
console.log(' [Docker] Nanonets was not running');
}
}
/**
* Ensure GPT-OSS 20B model is available and warmed up
*/
async function ensureExtractionModel(): Promise<boolean> {
try {
const response = await fetch(`${OLLAMA_URL}/api/tags`);
if (response.ok) {
const data = await response.json();
const models = data.models || [];
if (models.some((m: { name: string }) => m.name === EXTRACTION_MODEL)) {
console.log(` [Ollama] Model available: ${EXTRACTION_MODEL}`);
return true;
}
}
} catch {
return false;
}
console.log(` [Ollama] Pulling ${EXTRACTION_MODEL}...`);
const pullResponse = await fetch(`${OLLAMA_URL}/api/pull`, {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({ name: EXTRACTION_MODEL, stream: false }),
});
return pullResponse.ok;
}
/**
* Extract transactions from markdown using GPT-OSS 20B (streaming)
*/
async function extractTransactionsFromMarkdown(markdown: string, queryId: string): Promise<ITransaction[]> {
const startTime = Date.now();
console.log(` [${queryId}] Statement: ${markdown.length} chars, Prompt: ${JSON_EXTRACTION_PROMPT.length} chars`);
const response = await fetch(`${OLLAMA_URL}/api/chat`, {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({
model: EXTRACTION_MODEL,
messages: [
{ role: 'user', content: 'Hi there, how are you?' },
{ role: 'assistant', content: 'Good, how can I help you today?' },
{ role: 'user', content: `Here is a bank statement document:\n\n${markdown}` },
{ role: 'assistant', content: 'I have read the bank statement document you provided. I can see all the transaction data. What would you like me to do with it?' },
{ role: 'user', content: JSON_EXTRACTION_PROMPT },
],
stream: true,
options: {
num_ctx: 32768, // Larger context for long statements + thinking
temperature: 0, // Deterministic for JSON extraction
},
}),
signal: AbortSignal.timeout(600000), // 10 minute timeout
});
if (!response.ok) {
const elapsed = ((Date.now() - startTime) / 1000).toFixed(1);
console.log(` [${queryId}] ERROR: ${response.status} (${elapsed}s)`);
throw new Error(`Ollama API error: ${response.status}`);
}
// Stream the response
let content = '';
let thinkingContent = '';
let thinkingStarted = false;
let outputStarted = false;
const reader = response.body!.getReader();
const decoder = new TextDecoder();
try {
while (true) {
const { done, value } = await reader.read();
if (done) break;
const chunk = decoder.decode(value, { stream: true });
// Each line is a JSON object
for (const line of chunk.split('\n').filter(l => l.trim())) {
try {
const json = JSON.parse(line);
// Stream thinking tokens
const thinking = json.message?.thinking || '';
if (thinking) {
if (!thinkingStarted) {
process.stdout.write(` [${queryId}] THINKING: `);
thinkingStarted = true;
}
process.stdout.write(thinking);
thinkingContent += thinking;
}
// Stream content tokens
const token = json.message?.content || '';
if (token) {
if (!outputStarted) {
if (thinkingStarted) process.stdout.write('\n');
process.stdout.write(` [${queryId}] OUTPUT: `);
outputStarted = true;
}
process.stdout.write(token);
content += token;
}
} catch {
// Ignore parse errors for partial chunks
}
}
}
} finally {
if (thinkingStarted || outputStarted) process.stdout.write('\n');
}
const elapsed = ((Date.now() - startTime) / 1000).toFixed(1);
console.log(` [${queryId}] Done: ${thinkingContent.length} thinking chars, ${content.length} output chars (${elapsed}s)`);
return parseJsonResponse(content, queryId);
}
/**
* Sanitize JSON string
*/
function sanitizeJson(jsonStr: string): string {
let s = jsonStr;
s = s.replace(/"amount"\s*:\s*\+/g, '"amount": ');
s = s.replace(/:\s*\+(\d)/g, ': $1');
s = s.replace(/"amount"\s*:\s*(-?)(\d{1,3})\.(\d{3})\.(\d{2})\b/g, '"amount": $1$2$3.$4');
s = s.replace(/,\s*([}\]])/g, '$1');
s = s.replace(/"([^"\\]*)\n([^"]*)"/g, '"$1 $2"');
s = s.replace(/"([^"\\]*)\t([^"]*)"/g, '"$1 $2"');
s = s.replace(/[\x00-\x08\x0B\x0C\x0E-\x1F]/g, ' ');
return s;
}
/**
* Parse amount from various formats
*/
function parseAmount(value: unknown): number {
if (typeof value === 'number') return value;
if (typeof value !== 'string') return 0;
let s = value.replace(/[€$£\s]/g, '').replace('', '-').replace('', '-');
if (s.includes(',') && s.indexOf(',') > s.lastIndexOf('.')) {
s = s.replace(/\./g, '').replace(',', '.');
} else {
s = s.replace(/,/g, '');
}
return parseFloat(s) || 0;
}
/**
* Parse JSON response into transactions
*/
function parseJsonResponse(response: string, queryId: string): ITransaction[] {
// Remove thinking tags if present
let cleanResponse = response.replace(/<think>[\s\S]*?<\/think>/g, '').trim();
// Debug: show what we're working with
console.log(` [${queryId}] Response preview: ${cleanResponse.substring(0, 300)}...`);
const codeBlockMatch = cleanResponse.match(/```(?:json)?\s*([\s\S]*?)```/);
let jsonStr = codeBlockMatch ? codeBlockMatch[1].trim() : cleanResponse;
jsonStr = sanitizeJson(jsonStr);
try {
const parsed = JSON.parse(jsonStr);
if (Array.isArray(parsed)) {
const txs = parsed.map(tx => ({
date: String(tx.date || ''),
counterparty: String(tx.counterparty || tx.description || ''),
amount: parseAmount(tx.amount),
}));
console.log(` [${queryId}] Parsed ${txs.length} transactions`);
return txs;
}
} catch (e) {
// Try to find a JSON array in the text
const arrayMatch = jsonStr.match(/\[[\s\S]*\]/);
if (arrayMatch) {
console.log(` [${queryId}] Array match found: ${arrayMatch[0].length} chars`);
try {
const parsed = JSON.parse(sanitizeJson(arrayMatch[0]));
if (Array.isArray(parsed)) {
const txs = parsed.map(tx => ({
date: String(tx.date || ''),
counterparty: String(tx.counterparty || tx.description || ''),
amount: parseAmount(tx.amount),
}));
console.log(` [${queryId}] Parsed ${txs.length} transactions (array match)`);
return txs;
}
} catch (innerErr) {
console.log(` [${queryId}] Array parse error: ${(innerErr as Error).message}`);
}
} else {
console.log(` [${queryId}] No JSON array found in response`);
}
}
console.log(` [${queryId}] PARSE FAILED`);
return [];
}
/**
* Extract transactions (single pass)
*/
async function extractTransactions(markdown: string, docName: string): Promise<ITransaction[]> {
console.log(` [${docName}] Extracting...`);
const txs = await extractTransactionsFromMarkdown(markdown, docName);
console.log(` [${docName}] Extracted ${txs.length} transactions`);
return txs;
}
/**
* Compare transactions
*/
function compareTransactions(
extracted: ITransaction[],
expected: ITransaction[]
): { matches: number; total: number; errors: string[] } {
const errors: string[] = [];
let matches = 0;
for (let i = 0; i < expected.length; i++) {
const exp = expected[i];
const ext = extracted[i];
if (!ext) {
errors.push(`Missing tx ${i}: ${exp.date} ${exp.counterparty}`);
continue;
}
const dateMatch = ext.date === exp.date;
const amountMatch = Math.abs(ext.amount - exp.amount) < 0.01;
if (dateMatch && amountMatch) {
matches++;
} else {
errors.push(`Mismatch ${i}: exp ${exp.date}/${exp.amount}, got ${ext.date}/${ext.amount}`);
}
}
if (extracted.length > expected.length) {
errors.push(`Extra transactions: ${extracted.length - expected.length}`);
}
return { matches, total: expected.length, errors };
}
/**
* Find all test cases
*/
function findTestCases(): ITestCase[] {
const testDir = path.join(process.cwd(), '.nogit');
if (!fs.existsSync(testDir)) return [];
const files = fs.readdirSync(testDir);
const testCases: ITestCase[] = [];
for (const pdf of files.filter((f: string) => f.endsWith('.pdf'))) {
const baseName = pdf.replace('.pdf', '');
const jsonFile = `${baseName}.json`;
if (files.includes(jsonFile)) {
testCases.push({
name: baseName,
pdfPath: path.join(testDir, pdf),
jsonPath: path.join(testDir, jsonFile),
});
}
}
return testCases.sort((a, b) => a.name.localeCompare(b.name));
}
// ============ TESTS ============
const testCases = findTestCases();
console.log(`\nFound ${testCases.length} bank statement test cases\n`);
// Ensure temp directory exists
if (!fs.existsSync(TEMP_MD_DIR)) {
fs.mkdirSync(TEMP_MD_DIR, { recursive: true });
}
// -------- STAGE 1: OCR with Nanonets --------
// Check if all markdown files already exist
function allMarkdownFilesExist(): boolean {
for (const tc of testCases) {
const mdPath = path.join(TEMP_MD_DIR, `${tc.name}.md`);
if (!fs.existsSync(mdPath)) {
return false;
}
}
return true;
}
// Track whether we need to run Stage 1
let stage1Needed = !allMarkdownFilesExist();
tap.test('Stage 1: Setup Nanonets', async () => {
console.log('\n========== STAGE 1: Nanonets OCR ==========\n');
if (!stage1Needed) {
console.log(' [SKIP] All markdown files already exist, skipping Nanonets setup');
return;
}
const ok = await ensureNanonetsOcr();
expect(ok).toBeTrue();
});
tap.test('Stage 1: Convert all documents to markdown', async () => {
if (!stage1Needed) {
console.log(' [SKIP] Using existing markdown files from previous run\n');
// Load existing markdown paths
for (const tc of testCases) {
tc.markdownPath = path.join(TEMP_MD_DIR, `${tc.name}.md`);
console.log(` Loaded: ${tc.markdownPath}`);
}
return;
}
console.log('\n Converting all PDFs to markdown with Nanonets-OCR-s...\n');
for (const tc of testCases) {
console.log(`\n === ${tc.name} ===`);
// Convert PDF to images
const images = convertPdfToImages(tc.pdfPath);
console.log(` Pages: ${images.length}`);
// Convert to markdown
const markdown = await convertDocumentToMarkdown(images, tc.name);
// Save markdown to temp file
const mdPath = path.join(TEMP_MD_DIR, `${tc.name}.md`);
fs.writeFileSync(mdPath, markdown);
tc.markdownPath = mdPath;
console.log(` Saved: ${mdPath}`);
}
console.log('\n Stage 1 complete: All documents converted to markdown\n');
});
tap.test('Stage 1: Stop Nanonets', async () => {
if (!stage1Needed) {
console.log(' [SKIP] Nanonets was not started');
return;
}
stopNanonets();
// Verify it's stopped
await new Promise(resolve => setTimeout(resolve, 3000));
expect(isContainerRunning('nanonets-test')).toBeFalse();
});
// -------- STAGE 2: Extraction with GPT-OSS 20B --------
tap.test('Stage 2: Setup Ollama + GPT-OSS 20B', async () => {
console.log('\n========== STAGE 2: GPT-OSS 20B Extraction ==========\n');
const ollamaOk = await ensureMiniCpm();
expect(ollamaOk).toBeTrue();
const extractionOk = await ensureExtractionModel();
expect(extractionOk).toBeTrue();
});
let passedCount = 0;
let failedCount = 0;
for (const tc of testCases) {
tap.test(`Stage 2: Extract ${tc.name}`, async () => {
const expected: ITransaction[] = JSON.parse(fs.readFileSync(tc.jsonPath, 'utf-8'));
console.log(`\n === ${tc.name} ===`);
console.log(` Expected: ${expected.length} transactions`);
// Load saved markdown
const mdPath = path.join(TEMP_MD_DIR, `${tc.name}.md`);
if (!fs.existsSync(mdPath)) {
throw new Error(`Markdown not found: ${mdPath}. Run Stage 1 first.`);
}
const markdown = fs.readFileSync(mdPath, 'utf-8');
console.log(` Markdown: ${markdown.length} chars`);
// Extract transactions (single pass)
const extracted = await extractTransactions(markdown, tc.name);
// Log results
console.log(` Extracted: ${extracted.length} transactions`);
for (let i = 0; i < Math.min(extracted.length, 5); i++) {
const tx = extracted[i];
console.log(` ${i + 1}. ${tx.date} | ${tx.counterparty.substring(0, 25).padEnd(25)} | ${tx.amount >= 0 ? '+' : ''}${tx.amount.toFixed(2)}`);
}
if (extracted.length > 5) {
console.log(` ... and ${extracted.length - 5} more`);
}
// Compare
const result = compareTransactions(extracted, expected);
const pass = result.matches === result.total && extracted.length === expected.length;
if (pass) {
passedCount++;
console.log(` Result: PASS (${result.matches}/${result.total})`);
} else {
failedCount++;
console.log(` Result: FAIL (${result.matches}/${result.total})`);
result.errors.slice(0, 5).forEach(e => console.log(` - ${e}`));
}
expect(result.matches).toEqual(result.total);
expect(extracted.length).toEqual(expected.length);
});
}
tap.test('Summary', async () => {
console.log(`\n======================================================`);
console.log(` Bank Statement Summary (Nanonets + GPT-OSS 20B Sequential)`);
console.log(`======================================================`);
console.log(` Stage 1: Nanonets-OCR-s (document -> markdown)`);
console.log(` Stage 2: GPT-OSS 20B (markdown -> JSON)`);
console.log(` Passed: ${passedCount}/${testCases.length}`);
console.log(` Failed: ${failedCount}/${testCases.length}`);
console.log(`======================================================\n`);
// Only cleanup temp files if ALL tests passed
if (failedCount === 0 && passedCount === testCases.length) {
try {
fs.rmSync(TEMP_MD_DIR, { recursive: true, force: true });
console.log(` Cleaned up temp directory: ${TEMP_MD_DIR}\n`);
} catch {
// Ignore
}
} else {
console.log(` Keeping temp directory for debugging: ${TEMP_MD_DIR}\n`);
}
});
export default tap.start();

View File

@@ -1,346 +0,0 @@
/**
* Bank statement extraction test using PaddleOCR-VL Full Pipeline
*
* This tests the complete PaddleOCR-VL pipeline for bank statements:
* 1. PP-DocLayoutV2 for layout detection
* 2. PaddleOCR-VL for recognition (tables with proper structure)
* 3. Structured Markdown output with tables
* 4. MiniCPM extracts transactions from structured tables
*
* The structured Markdown has properly formatted tables,
* making it much easier for MiniCPM to extract transaction data.
*/
import { tap, expect } from '@git.zone/tstest/tapbundle';
import * as fs from 'fs';
import * as path from 'path';
import { execSync } from 'child_process';
import * as os from 'os';
import { ensurePaddleOcrVlFull, ensureMiniCpm } from './helpers/docker.js';
const PADDLEOCR_VL_URL = 'http://localhost:8000';
const OLLAMA_URL = 'http://localhost:11434';
const MINICPM_MODEL = 'minicpm-v:latest';
interface ITransaction {
date: string;
counterparty: string;
amount: number;
}
/**
* Convert PDF to PNG images using ImageMagick
*/
function convertPdfToImages(pdfPath: string): string[] {
const tempDir = fs.mkdtempSync(path.join(os.tmpdir(), 'pdf-convert-'));
const outputPattern = path.join(tempDir, 'page-%d.png');
try {
execSync(
`convert -density 300 -quality 100 "${pdfPath}" -background white -alpha remove "${outputPattern}"`,
{ stdio: 'pipe' }
);
const files = fs.readdirSync(tempDir).filter((f: string) => f.endsWith('.png')).sort();
const images: string[] = [];
for (const file of files) {
const imagePath = path.join(tempDir, file);
const imageData = fs.readFileSync(imagePath);
images.push(imageData.toString('base64'));
}
return images;
} finally {
fs.rmSync(tempDir, { recursive: true, force: true });
}
}
/**
* Parse document using PaddleOCR-VL Full Pipeline (returns structured Markdown)
*/
async function parseDocument(imageBase64: string): Promise<string> {
const response = await fetch(`${PADDLEOCR_VL_URL}/parse`, {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({
image: imageBase64,
output_format: 'markdown',
}),
});
if (!response.ok) {
const text = await response.text();
throw new Error(`PaddleOCR-VL API error: ${response.status} - ${text}`);
}
const data = await response.json();
if (!data.success) {
throw new Error(`PaddleOCR-VL error: ${data.error}`);
}
return data.result?.markdown || '';
}
/**
* Extract transactions from structured Markdown using MiniCPM
*/
async function extractTransactionsFromMarkdown(markdown: string): Promise<ITransaction[]> {
console.log(` [Extract] Processing ${markdown.length} chars of Markdown`);
const prompt = `/nothink
Convert this bank statement to a JSON array of transactions.
Read the Amount values carefully:
- "- 21,47 €" means DEBIT, output as: -21.47
- "+ 1.000,00 €" means CREDIT, output as: 1000.00
- European format: comma = decimal point, dot = thousands
For each transaction output: {"date":"YYYY-MM-DD","counterparty":"NAME","amount":-21.47}
Return ONLY the JSON array, no explanation.
Document:
${markdown}`;
const payload = {
model: MINICPM_MODEL,
prompt,
stream: true,
options: {
num_predict: 16384,
temperature: 0.1,
},
};
const response = await fetch(`${OLLAMA_URL}/api/generate`, {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify(payload),
});
if (!response.ok) {
throw new Error(`Ollama API error: ${response.status}`);
}
const reader = response.body?.getReader();
if (!reader) {
throw new Error('No response body');
}
const decoder = new TextDecoder();
let fullText = '';
while (true) {
const { done, value } = await reader.read();
if (done) break;
const chunk = decoder.decode(value, { stream: true });
const lines = chunk.split('\n').filter((l) => l.trim());
for (const line of lines) {
try {
const json = JSON.parse(line);
if (json.response) {
fullText += json.response;
}
} catch {
// Skip invalid JSON lines
}
}
}
// Extract JSON array from response
const startIdx = fullText.indexOf('[');
const endIdx = fullText.lastIndexOf(']') + 1;
if (startIdx < 0 || endIdx <= startIdx) {
throw new Error(`No JSON array found in response: ${fullText.substring(0, 200)}`);
}
const jsonStr = fullText.substring(startIdx, endIdx);
return JSON.parse(jsonStr);
}
/**
* Extract transactions from all pages of a bank statement
*/
async function extractAllTransactions(images: string[]): Promise<ITransaction[]> {
const allTransactions: ITransaction[] = [];
for (let i = 0; i < images.length; i++) {
console.log(` Processing page ${i + 1}/${images.length}...`);
// Parse with full pipeline
const markdown = await parseDocument(images[i]);
console.log(` [Parse] Got ${markdown.split('\n').length} lines of Markdown`);
// Extract transactions
try {
const transactions = await extractTransactionsFromMarkdown(markdown);
console.log(` [Extracted] ${transactions.length} transactions`);
allTransactions.push(...transactions);
} catch (err) {
console.log(` [Error] ${err}`);
}
}
return allTransactions;
}
/**
* Compare transactions - find matching transaction in expected list
*/
function findMatchingTransaction(
tx: ITransaction,
expectedList: ITransaction[]
): ITransaction | undefined {
return expectedList.find((exp) => {
const dateMatch = tx.date === exp.date;
const amountMatch = Math.abs(tx.amount - exp.amount) < 0.02;
const counterpartyMatch =
tx.counterparty?.toLowerCase().includes(exp.counterparty?.toLowerCase().slice(0, 10)) ||
exp.counterparty?.toLowerCase().includes(tx.counterparty?.toLowerCase().slice(0, 10));
return dateMatch && amountMatch && counterpartyMatch;
});
}
/**
* Calculate extraction accuracy
*/
function calculateAccuracy(
extracted: ITransaction[],
expected: ITransaction[]
): { matched: number; total: number; accuracy: number } {
let matched = 0;
const usedExpected = new Set<number>();
for (const tx of extracted) {
for (let i = 0; i < expected.length; i++) {
if (usedExpected.has(i)) continue;
const exp = expected[i];
const dateMatch = tx.date === exp.date;
const amountMatch = Math.abs(tx.amount - exp.amount) < 0.02;
if (dateMatch && amountMatch) {
matched++;
usedExpected.add(i);
break;
}
}
}
return {
matched,
total: expected.length,
accuracy: expected.length > 0 ? (matched / expected.length) * 100 : 0,
};
}
/**
* Find all test cases (PDF + JSON pairs) in .nogit/bankstatements/
*/
function findTestCases(): Array<{ name: string; pdfPath: string; jsonPath: string }> {
const testDir = path.join(process.cwd(), '.nogit/bankstatements');
if (!fs.existsSync(testDir)) {
return [];
}
const files = fs.readdirSync(testDir);
const pdfFiles = files.filter((f) => f.endsWith('.pdf'));
const testCases: Array<{ name: string; pdfPath: string; jsonPath: string }> = [];
for (const pdf of pdfFiles) {
const baseName = pdf.replace('.pdf', '');
const jsonFile = `${baseName}.json`;
if (files.includes(jsonFile)) {
testCases.push({
name: baseName,
pdfPath: path.join(testDir, pdf),
jsonPath: path.join(testDir, jsonFile),
});
}
}
testCases.sort((a, b) => a.name.localeCompare(b.name));
return testCases;
}
// Tests
tap.test('setup: ensure Docker containers are running', async () => {
console.log('\n[Setup] Checking Docker containers...\n');
// Ensure PaddleOCR-VL Full Pipeline is running
const paddleOk = await ensurePaddleOcrVlFull();
expect(paddleOk).toBeTrue();
// Ensure MiniCPM is running (for field extraction from Markdown)
const minicpmOk = await ensureMiniCpm();
expect(minicpmOk).toBeTrue();
console.log('\n[Setup] All containers ready!\n');
});
// Dynamic test for each PDF/JSON pair
const testCases = findTestCases();
console.log(`\nFound ${testCases.length} bank statement test cases (PaddleOCR-VL Full Pipeline)\n`);
const results: Array<{ name: string; accuracy: number; matched: number; total: number }> = [];
for (const testCase of testCases) {
tap.test(`should extract bank statement: ${testCase.name}`, async () => {
// Load expected data
const expected: ITransaction[] = JSON.parse(fs.readFileSync(testCase.jsonPath, 'utf-8'));
console.log(`\n=== ${testCase.name} ===`);
console.log(`Expected: ${expected.length} transactions`);
const startTime = Date.now();
// Convert PDF to images
const images = convertPdfToImages(testCase.pdfPath);
console.log(` Pages: ${images.length}`);
// Extract all transactions
const extracted = await extractAllTransactions(images);
const endTime = Date.now();
const elapsedMs = endTime - startTime;
// Calculate accuracy
const accuracy = calculateAccuracy(extracted, expected);
results.push({
name: testCase.name,
accuracy: accuracy.accuracy,
matched: accuracy.matched,
total: accuracy.total,
});
console.log(` Extracted: ${extracted.length} transactions`);
console.log(` Matched: ${accuracy.matched}/${accuracy.total} (${accuracy.accuracy.toFixed(1)}%)`);
console.log(` Time: ${(elapsedMs / 1000).toFixed(1)}s`);
// We expect at least 50% accuracy
expect(accuracy.accuracy).toBeGreaterThan(50);
});
}
tap.test('summary', async () => {
const totalStatements = results.length;
const avgAccuracy =
results.length > 0 ? results.reduce((a, b) => a + b.accuracy, 0) / results.length : 0;
const totalMatched = results.reduce((a, b) => a + b.matched, 0);
const totalExpected = results.reduce((a, b) => a + b.total, 0);
console.log(`\n======================================================`);
console.log(` Bank Statement Extraction Summary (PaddleOCR-VL Full)`);
console.log(`======================================================`);
console.log(` Method: PaddleOCR-VL Full Pipeline -> MiniCPM`);
console.log(` Statements: ${totalStatements}`);
console.log(` Transactions: ${totalMatched}/${totalExpected} matched`);
console.log(` Avg accuracy: ${avgAccuracy.toFixed(1)}%`);
console.log(`======================================================\n`);
});
export default tap.start();

View File

@@ -0,0 +1,345 @@
/**
* Bank statement extraction using Qwen3-VL 8B Vision (Direct)
*
* Multi-query approach:
* 1. First ask how many transactions on each page
* 2. Then query each transaction individually
* Single pass, no consensus voting.
*/
import { tap, expect } from '@git.zone/tstest/tapbundle';
import * as fs from 'fs';
import * as path from 'path';
import { execSync } from 'child_process';
import * as os from 'os';
import { ensureMiniCpm } from './helpers/docker.js';
const OLLAMA_URL = 'http://localhost:11434';
const VISION_MODEL = 'qwen3-vl:8b';
interface ITransaction {
date: string;
counterparty: string;
amount: number;
}
/**
* Convert PDF to PNG images
*/
function convertPdfToImages(pdfPath: string): string[] {
const tempDir = fs.mkdtempSync(path.join(os.tmpdir(), 'pdf-convert-'));
const outputPattern = path.join(tempDir, 'page-%d.png');
try {
execSync(
`convert -density 150 -quality 90 "${pdfPath}" -background white -alpha remove "${outputPattern}"`,
{ stdio: 'pipe' }
);
const files = fs.readdirSync(tempDir).filter((f: string) => f.endsWith('.png')).sort();
const images: string[] = [];
for (const file of files) {
const imagePath = path.join(tempDir, file);
const imageData = fs.readFileSync(imagePath);
images.push(imageData.toString('base64'));
}
return images;
} finally {
fs.rmSync(tempDir, { recursive: true, force: true });
}
}
/**
* Query Qwen3-VL with a simple prompt
*/
async function queryVision(image: string, prompt: string): Promise<string> {
const response = await fetch(`${OLLAMA_URL}/api/chat`, {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({
model: VISION_MODEL,
messages: [{
role: 'user',
content: prompt,
images: [image],
}],
stream: false,
options: {
num_predict: 500,
temperature: 0.1,
},
}),
});
if (!response.ok) {
throw new Error(`Ollama API error: ${response.status}`);
}
const data = await response.json();
return (data.message?.content || '').trim();
}
/**
* Count transactions on a page
*/
async function countTransactions(image: string, pageNum: number): Promise<number> {
const response = await queryVision(image,
`How many transaction rows are in this bank statement table?
Count only the data rows (with dates like "01.01.2024" and amounts like "- 50,00 €").
Do NOT count the header row or summary/total rows.
Answer with just the number, for example: 7`
);
console.log(` [Page ${pageNum}] Count query response: "${response}"`);
const match = response.match(/(\d+)/);
const count = match ? parseInt(match[1], 10) : 0;
console.log(` [Page ${pageNum}] Parsed count: ${count}`);
return count;
}
/**
* Get a single transaction by index (logs immediately when complete)
*/
async function getTransaction(image: string, index: number, pageNum: number): Promise<ITransaction | null> {
const response = await queryVision(image,
`This is a bank statement. Look at transaction row #${index} in the table (counting from top, excluding headers).
Extract this transaction's details:
- Date in YYYY-MM-DD format
- Counterparty/description name
- Amount as number (negative for debits like "- 21,47 €" = -21.47, positive for credits like "+ 100,00 €" = 100.00)
Answer in format: DATE|COUNTERPARTY|AMOUNT
Example: 2024-01-15|Amazon|25.99`
);
// Parse the response
const lines = response.split('\n').filter(l => l.includes('|'));
const line = lines[lines.length - 1] || response;
const parts = line.split('|').map(p => p.trim());
if (parts.length >= 3) {
// Parse amount - handle various formats
let amountStr = parts[2].replace(/[€$£\s]/g, '').replace('', '-').replace('', '-');
// European format: comma is decimal
if (amountStr.includes(',')) {
amountStr = amountStr.replace(/\./g, '').replace(',', '.');
}
const amount = parseFloat(amountStr) || 0;
const tx = {
date: parts[0],
counterparty: parts[1],
amount: amount,
};
// Log immediately as this transaction completes
console.log(` [P${pageNum} Tx${index.toString().padStart(2, ' ')}] ${tx.date} | ${tx.counterparty.substring(0, 25).padEnd(25)} | ${tx.amount >= 0 ? '+' : ''}${tx.amount.toFixed(2)}`);
return tx;
}
// Log raw response on parse failure
console.log(` [P${pageNum} Tx${index.toString().padStart(2, ' ')}] PARSE FAILED: "${response.replace(/\n/g, ' ').substring(0, 60)}..."`);
return null;
}
/**
* Extract transactions from a single page using multi-query approach
*/
async function extractTransactionsFromPage(image: string, pageNum: number): Promise<ITransaction[]> {
// Step 1: Count transactions
const count = await countTransactions(image, pageNum);
if (count === 0) {
return [];
}
// Step 2: Query each transaction (in batches to avoid overwhelming)
// Each transaction logs itself as it completes
const transactions: ITransaction[] = [];
const batchSize = 5;
for (let start = 1; start <= count; start += batchSize) {
const end = Math.min(start + batchSize - 1, count);
const indices = Array.from({ length: end - start + 1 }, (_, i) => start + i);
// Query batch in parallel - each logs as it completes
const results = await Promise.all(
indices.map(i => getTransaction(image, i, pageNum))
);
for (const tx of results) {
if (tx) {
transactions.push(tx);
}
}
}
console.log(` [Page ${pageNum}] Complete: ${transactions.length}/${count} extracted`);
return transactions;
}
/**
* Extract all transactions from bank statement
*/
async function extractTransactions(images: string[]): Promise<ITransaction[]> {
console.log(` [Vision] Processing ${images.length} page(s) with Qwen3-VL (multi-query)`);
const allTransactions: ITransaction[] = [];
for (let i = 0; i < images.length; i++) {
const pageTransactions = await extractTransactionsFromPage(images[i], i + 1);
allTransactions.push(...pageTransactions);
}
console.log(` [Vision] Total: ${allTransactions.length} transactions`);
return allTransactions;
}
/**
* Compare transactions
*/
function compareTransactions(
extracted: ITransaction[],
expected: ITransaction[]
): { matches: number; total: number; errors: string[] } {
const errors: string[] = [];
let matches = 0;
for (let i = 0; i < expected.length; i++) {
const exp = expected[i];
const ext = extracted[i];
if (!ext) {
errors.push(`Missing transaction ${i}: ${exp.date} ${exp.counterparty}`);
continue;
}
const dateMatch = ext.date === exp.date;
const amountMatch = Math.abs(ext.amount - exp.amount) < 0.01;
if (dateMatch && amountMatch) {
matches++;
} else {
errors.push(`Mismatch at ${i}: expected ${exp.date}/${exp.amount}, got ${ext.date}/${ext.amount}`);
}
}
if (extracted.length > expected.length) {
errors.push(`Extra transactions: ${extracted.length - expected.length}`);
}
return { matches, total: expected.length, errors };
}
/**
* Find test cases in .nogit/
*/
function findTestCases(): Array<{ name: string; pdfPath: string; jsonPath: string }> {
const testDir = path.join(process.cwd(), '.nogit');
if (!fs.existsSync(testDir)) return [];
const files = fs.readdirSync(testDir);
const testCases: Array<{ name: string; pdfPath: string; jsonPath: string }> = [];
for (const pdf of files.filter((f: string) => f.endsWith('.pdf'))) {
const baseName = pdf.replace('.pdf', '');
const jsonFile = `${baseName}.json`;
if (files.includes(jsonFile)) {
testCases.push({
name: baseName,
pdfPath: path.join(testDir, pdf),
jsonPath: path.join(testDir, jsonFile),
});
}
}
return testCases.sort((a, b) => a.name.localeCompare(b.name));
}
/**
* Ensure Qwen3-VL model is available
*/
async function ensureQwen3Vl(): Promise<boolean> {
try {
const response = await fetch(`${OLLAMA_URL}/api/tags`);
if (response.ok) {
const data = await response.json();
const models = data.models || [];
if (models.some((m: { name: string }) => m.name === VISION_MODEL)) {
console.log(`[Ollama] Model available: ${VISION_MODEL}`);
return true;
}
}
} catch {
return false;
}
console.log(`[Ollama] Pulling ${VISION_MODEL}...`);
const pullResponse = await fetch(`${OLLAMA_URL}/api/pull`, {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({ name: VISION_MODEL, stream: false }),
});
return pullResponse.ok;
}
// Tests
tap.test('setup: ensure Qwen3-VL is running', async () => {
console.log('\n[Setup] Checking Qwen3-VL 8B...\n');
const ollamaOk = await ensureMiniCpm();
expect(ollamaOk).toBeTrue();
const visionOk = await ensureQwen3Vl();
expect(visionOk).toBeTrue();
console.log('\n[Setup] Ready!\n');
});
const testCases = findTestCases();
console.log(`\nFound ${testCases.length} bank statement test cases (Qwen3-VL)\n`);
let passedCount = 0;
let failedCount = 0;
for (const testCase of testCases) {
tap.test(`should extract: ${testCase.name}`, async () => {
const expected: ITransaction[] = JSON.parse(fs.readFileSync(testCase.jsonPath, 'utf-8'));
console.log(`\n=== ${testCase.name} ===`);
console.log(`Expected: ${expected.length} transactions`);
const images = convertPdfToImages(testCase.pdfPath);
console.log(` Pages: ${images.length}`);
const extracted = await extractTransactions(images);
console.log(` Extracted: ${extracted.length} transactions`);
const result = compareTransactions(extracted, expected);
const accuracy = result.total > 0 ? result.matches / result.total : 0;
if (accuracy >= 0.95 && extracted.length === expected.length) {
passedCount++;
console.log(` Result: PASS (${result.matches}/${result.total})`);
} else {
failedCount++;
console.log(` Result: FAIL (${result.matches}/${result.total})`);
result.errors.slice(0, 5).forEach((e) => console.log(` - ${e}`));
}
expect(accuracy).toBeGreaterThan(0.95);
expect(extracted.length).toEqual(expected.length);
});
}
tap.test('summary', async () => {
const total = testCases.length;
console.log(`\n======================================================`);
console.log(` Bank Statement Summary (Qwen3-VL Vision)`);
console.log(`======================================================`);
console.log(` Method: Multi-query (count then extract each)`);
console.log(` Passed: ${passedCount}/${total}`);
console.log(` Failed: ${failedCount}/${total}`);
console.log(`======================================================\n`);
});
export default tap.start();

View File

@@ -1,455 +0,0 @@
/**
* Invoice extraction test using MiniCPM-V (visual) + PaddleOCR-VL (OCR augmentation)
*
* This is the combined approach that uses both models for best accuracy:
* - MiniCPM-V for visual understanding
* - PaddleOCR-VL for OCR text to augment prompts
*/
import { tap, expect } from '@git.zone/tstest/tapbundle';
import * as fs from 'fs';
import * as path from 'path';
import { execSync } from 'child_process';
import * as os from 'os';
import { ensurePaddleOcrVl, ensureMiniCpm } from './helpers/docker.js';
const OLLAMA_URL = 'http://localhost:11434';
const MODEL = 'minicpm-v:latest';
const PADDLEOCR_VL_URL = 'http://localhost:8000';
interface IInvoice {
invoice_number: string;
invoice_date: string;
vendor_name: string;
currency: string;
net_amount: number;
vat_amount: number;
total_amount: number;
}
/**
* Extract OCR text from an image using PaddleOCR-VL (OpenAI-compatible API)
*/
async function extractOcrText(imageBase64: string): Promise<string> {
try {
const response = await fetch(`${PADDLEOCR_VL_URL}/v1/chat/completions`, {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({
model: 'paddleocr-vl',
messages: [{
role: 'user',
content: [
{ type: 'image_url', image_url: { url: `data:image/png;base64,${imageBase64}` } },
{ type: 'text', text: 'OCR:' }
]
}],
temperature: 0.0,
max_tokens: 4096
}),
});
if (!response.ok) return '';
const data = await response.json();
return data.choices?.[0]?.message?.content || '';
} catch {
// PaddleOCR-VL unavailable
}
return '';
}
/**
* Build prompt with optional OCR text
*/
function buildPrompt(ocrText: string): string {
const base = `/nothink
You are an invoice parser. Extract the following fields from this invoice:
1. invoice_number: The invoice/receipt number
2. invoice_date: Date in YYYY-MM-DD format
3. vendor_name: Company that issued the invoice
4. currency: EUR, USD, etc.
5. net_amount: Amount before tax (if shown)
6. vat_amount: Tax/VAT amount (if shown, 0 if reverse charge or no tax)
7. total_amount: Final amount due
Return ONLY valid JSON in this exact format:
{"invoice_number":"XXX","invoice_date":"YYYY-MM-DD","vendor_name":"Company Name","currency":"EUR","net_amount":100.00,"vat_amount":19.00,"total_amount":119.00}
If a field is not visible, use null for strings or 0 for numbers.
No explanation, just the JSON object.`;
if (ocrText) {
// Limit OCR text to prevent context overflow
const maxOcrLength = 4000;
const truncatedOcr = ocrText.length > maxOcrLength
? ocrText.substring(0, maxOcrLength) + '\n... (truncated)'
: ocrText;
return `${base}
OCR text extracted from the invoice (use for reference):
---
${truncatedOcr}
---
Cross-reference the image with the OCR text above for accuracy.`;
}
return base;
}
/**
* Convert PDF to PNG images using ImageMagick
*/
function convertPdfToImages(pdfPath: string): string[] {
const tempDir = fs.mkdtempSync(path.join(os.tmpdir(), 'pdf-convert-'));
const outputPattern = path.join(tempDir, 'page-%d.png');
try {
execSync(
`convert -density 200 -quality 90 "${pdfPath}" -background white -alpha remove "${outputPattern}"`,
{ stdio: 'pipe' }
);
const files = fs.readdirSync(tempDir).filter((f) => f.endsWith('.png')).sort();
const images: string[] = [];
for (const file of files) {
const imagePath = path.join(tempDir, file);
const imageData = fs.readFileSync(imagePath);
images.push(imageData.toString('base64'));
}
return images;
} finally {
fs.rmSync(tempDir, { recursive: true, force: true });
}
}
/**
* Single extraction pass
*/
async function extractOnce(images: string[], passNum: number, ocrText: string = ''): Promise<IInvoice> {
const payload = {
model: MODEL,
prompt: buildPrompt(ocrText),
images,
stream: true,
options: {
num_predict: 2048,
temperature: 0.1,
},
};
const response = await fetch(`${OLLAMA_URL}/api/generate`, {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify(payload),
});
if (!response.ok) {
throw new Error(`Ollama API error: ${response.status}`);
}
const reader = response.body?.getReader();
if (!reader) {
throw new Error('No response body');
}
const decoder = new TextDecoder();
let fullText = '';
while (true) {
const { done, value } = await reader.read();
if (done) break;
const chunk = decoder.decode(value, { stream: true });
const lines = chunk.split('\n').filter((l) => l.trim());
for (const line of lines) {
try {
const json = JSON.parse(line);
if (json.response) {
fullText += json.response;
}
} catch {
// Skip invalid JSON lines
}
}
}
// Extract JSON from response
const startIdx = fullText.indexOf('{');
const endIdx = fullText.lastIndexOf('}') + 1;
if (startIdx < 0 || endIdx <= startIdx) {
throw new Error(`No JSON object found in response: ${fullText.substring(0, 200)}`);
}
const jsonStr = fullText.substring(startIdx, endIdx);
return JSON.parse(jsonStr);
}
/**
* Create a hash of invoice for comparison (using key fields)
*/
function hashInvoice(invoice: IInvoice): string {
return `${invoice.invoice_number}|${invoice.invoice_date}|${invoice.total_amount.toFixed(2)}`;
}
/**
* Extract with majority voting - run until 2 passes match
* Optimization: Run Pass 1, OCR, and Pass 2 (after OCR) in parallel
*/
async function extractWithConsensus(images: string[], invoiceName: string, maxPasses: number = 5): Promise<IInvoice> {
const results: Array<{ invoice: IInvoice; hash: string }> = [];
const hashCounts: Map<string, number> = new Map();
const addResult = (invoice: IInvoice, passLabel: string): number => {
const hash = hashInvoice(invoice);
results.push({ invoice, hash });
hashCounts.set(hash, (hashCounts.get(hash) || 0) + 1);
console.log(` [${passLabel}] ${invoice.invoice_number} | ${invoice.invoice_date} | ${invoice.total_amount} ${invoice.currency}`);
return hashCounts.get(hash)!;
};
// OPTIMIZATION: Run Pass 1 (no OCR) in parallel with OCR -> Pass 2 (with OCR)
let ocrText = '';
const pass1Promise = extractOnce(images, 1, '').catch((err) => ({ error: err }));
// OCR then immediately Pass 2
const ocrThenPass2Promise = (async () => {
ocrText = await extractOcrText(images[0]);
if (ocrText) {
console.log(` [OCR] Extracted ${ocrText.split('\n').length} text lines`);
}
return extractOnce(images, 2, ocrText).catch((err) => ({ error: err }));
})();
// Wait for both to complete
const [pass1Result, pass2Result] = await Promise.all([pass1Promise, ocrThenPass2Promise]);
// Process Pass 1 result
if ('error' in pass1Result) {
console.log(` [Pass 1] Error: ${(pass1Result as {error: unknown}).error}`);
} else {
const count = addResult(pass1Result as IInvoice, 'Pass 1');
if (count >= 2) {
console.log(` [Consensus] Reached after parallel passes`);
return pass1Result as IInvoice;
}
}
// Process Pass 2 result
if ('error' in pass2Result) {
console.log(` [Pass 2+OCR] Error: ${(pass2Result as {error: unknown}).error}`);
} else {
const count = addResult(pass2Result as IInvoice, 'Pass 2+OCR');
if (count >= 2) {
console.log(` [Consensus] Reached after parallel passes`);
return pass2Result as IInvoice;
}
}
// Continue with passes 3+ using OCR text if no consensus yet
for (let pass = 3; pass <= maxPasses; pass++) {
try {
const invoice = await extractOnce(images, pass, ocrText);
const count = addResult(invoice, `Pass ${pass}+OCR`);
if (count >= 2) {
console.log(` [Consensus] Reached after ${pass} passes`);
return invoice;
}
} catch (err) {
console.log(` [Pass ${pass}] Error: ${err}`);
}
}
// No consensus reached - return the most common result
let bestHash = '';
let bestCount = 0;
for (const [hash, count] of hashCounts) {
if (count > bestCount) {
bestCount = count;
bestHash = hash;
}
}
if (!bestHash) {
throw new Error(`No valid results for ${invoiceName}`);
}
const best = results.find((r) => r.hash === bestHash)!;
console.log(` [No consensus] Using most common result (${bestCount}/${maxPasses} passes)`);
return best.invoice;
}
/**
* Compare extracted invoice against expected
*/
function compareInvoice(
extracted: IInvoice,
expected: IInvoice
): { match: boolean; errors: string[] } {
const errors: string[] = [];
// Compare invoice number (normalize by removing spaces and case)
const extNum = extracted.invoice_number?.replace(/\s/g, '').toLowerCase() || '';
const expNum = expected.invoice_number?.replace(/\s/g, '').toLowerCase() || '';
if (extNum !== expNum) {
errors.push(`invoice_number: expected "${expected.invoice_number}", got "${extracted.invoice_number}"`);
}
// Compare date
if (extracted.invoice_date !== expected.invoice_date) {
errors.push(`invoice_date: expected "${expected.invoice_date}", got "${extracted.invoice_date}"`);
}
// Compare total amount (with tolerance)
if (Math.abs(extracted.total_amount - expected.total_amount) > 0.02) {
errors.push(`total_amount: expected ${expected.total_amount}, got ${extracted.total_amount}`);
}
// Compare currency
if (extracted.currency?.toUpperCase() !== expected.currency?.toUpperCase()) {
errors.push(`currency: expected "${expected.currency}", got "${extracted.currency}"`);
}
return { match: errors.length === 0, errors };
}
/**
* Find all test cases (PDF + JSON pairs) in .nogit/invoices/
* Priority invoices (like vodafone) run first for quick feedback
*/
function findTestCases(): Array<{ name: string; pdfPath: string; jsonPath: string }> {
const testDir = path.join(process.cwd(), '.nogit/invoices');
if (!fs.existsSync(testDir)) {
return [];
}
const files = fs.readdirSync(testDir);
const pdfFiles = files.filter((f) => f.endsWith('.pdf'));
const testCases: Array<{ name: string; pdfPath: string; jsonPath: string }> = [];
for (const pdf of pdfFiles) {
const baseName = pdf.replace('.pdf', '');
const jsonFile = `${baseName}.json`;
if (files.includes(jsonFile)) {
testCases.push({
name: baseName,
pdfPath: path.join(testDir, pdf),
jsonPath: path.join(testDir, jsonFile),
});
}
}
// Sort with priority invoices first, then alphabetically
const priorityPrefixes = ['vodafone'];
testCases.sort((a, b) => {
const aPriority = priorityPrefixes.findIndex((p) => a.name.startsWith(p));
const bPriority = priorityPrefixes.findIndex((p) => b.name.startsWith(p));
// Both have priority - sort by priority order
if (aPriority >= 0 && bPriority >= 0) return aPriority - bPriority;
// Only a has priority - a comes first
if (aPriority >= 0) return -1;
// Only b has priority - b comes first
if (bPriority >= 0) return 1;
// Neither has priority - alphabetical
return a.name.localeCompare(b.name);
});
return testCases;
}
// Tests
tap.test('setup: ensure Docker containers are running', async () => {
console.log('\n[Setup] Checking Docker containers...\n');
// Ensure PaddleOCR-VL is running (auto-detects GPU/CPU)
const paddleOk = await ensurePaddleOcrVl();
expect(paddleOk).toBeTrue();
// Ensure MiniCPM is running
const minicpmOk = await ensureMiniCpm();
expect(minicpmOk).toBeTrue();
console.log('\n[Setup] All containers ready!\n');
});
tap.test('should have MiniCPM-V 4.5 model loaded', async () => {
const response = await fetch(`${OLLAMA_URL}/api/tags`);
const data = await response.json();
const modelNames = data.models.map((m: { name: string }) => m.name);
expect(modelNames.some((name: string) => name.includes('minicpm-v4.5'))).toBeTrue();
});
// Dynamic test for each PDF/JSON pair
const testCases = findTestCases();
console.log(`\nFound ${testCases.length} invoice test cases\n`);
let passedCount = 0;
let failedCount = 0;
const processingTimes: number[] = [];
for (const testCase of testCases) {
tap.test(`should extract invoice: ${testCase.name}`, async () => {
// Load expected data
const expected: IInvoice = JSON.parse(fs.readFileSync(testCase.jsonPath, 'utf-8'));
console.log(`\n=== ${testCase.name} ===`);
console.log(`Expected: ${expected.invoice_number} | ${expected.invoice_date} | ${expected.total_amount} ${expected.currency}`);
const startTime = Date.now();
// Convert PDF to images
const images = convertPdfToImages(testCase.pdfPath);
console.log(` Pages: ${images.length}`);
// Extract with consensus voting
const extracted = await extractWithConsensus(images, testCase.name);
const endTime = Date.now();
const elapsedMs = endTime - startTime;
processingTimes.push(elapsedMs);
// Compare results
const result = compareInvoice(extracted, expected);
if (result.match) {
passedCount++;
console.log(` Result: MATCH (${(elapsedMs / 1000).toFixed(1)}s)`);
} else {
failedCount++;
console.log(` Result: MISMATCH (${(elapsedMs / 1000).toFixed(1)}s)`);
result.errors.forEach((e) => console.log(` - ${e}`));
}
// Assert match
expect(result.match).toBeTrue();
});
}
tap.test('summary', async () => {
const totalInvoices = testCases.length;
const accuracy = totalInvoices > 0 ? (passedCount / totalInvoices) * 100 : 0;
const totalTimeMs = processingTimes.reduce((a, b) => a + b, 0);
const avgTimeMs = processingTimes.length > 0 ? totalTimeMs / processingTimes.length : 0;
const avgTimeSec = avgTimeMs / 1000;
const totalTimeSec = totalTimeMs / 1000;
console.log(`\n========================================`);
console.log(` Invoice Extraction Summary`);
console.log(`========================================`);
console.log(` Passed: ${passedCount}/${totalInvoices}`);
console.log(` Failed: ${failedCount}/${totalInvoices}`);
console.log(` Accuracy: ${accuracy.toFixed(1)}%`);
console.log(`----------------------------------------`);
console.log(` Total time: ${totalTimeSec.toFixed(1)}s`);
console.log(` Avg per inv: ${avgTimeSec.toFixed(1)}s`);
console.log(`========================================\n`);
});
export default tap.start();

View File

@@ -0,0 +1,440 @@
/**
* Invoice extraction tuning - uses pre-generated markdown files
*
* Skips OCR stage, only runs GPT-OSS extraction on existing .debug.md files.
* Use this to quickly iterate on extraction prompts and logic.
*
* Run with: tstest test/test.invoices.extraction.ts --verbose
*/
import { tap, expect } from '@git.zone/tstest/tapbundle';
import * as fs from 'fs';
import * as path from 'path';
import { ensureMiniCpm } from './helpers/docker.js';
const OLLAMA_URL = 'http://localhost:11434';
const EXTRACTION_MODEL = 'gpt-oss:20b';
// Test these specific invoices (must have .debug.md files)
const TEST_INVOICES = [
'consensus_2021-09',
'hetzner_2022-04',
'qonto_2021-08',
'qonto_2021-09',
];
interface IInvoice {
invoice_number: string;
invoice_date: string;
vendor_name: string;
currency: string;
net_amount: number;
vat_amount: number;
total_amount: number;
}
interface ITestCase {
name: string;
markdownPath: string;
jsonPath: string;
}
// JSON extraction prompt for GPT-OSS 20B (sent AFTER the invoice text is provided)
const JSON_EXTRACTION_PROMPT = `Extract key fields from the invoice. Return ONLY valid JSON.
WHERE TO FIND DATA:
- invoice_number, invoice_date, vendor_name: Look in the HEADER section at the TOP of PAGE 1 (near "Invoice no.", "Invoice date:", "Rechnungsnummer")
- net_amount, vat_amount, total_amount: Look in the SUMMARY section at the BOTTOM (look for "Total", "Amount due", "Gesamtbetrag")
RULES:
1. invoice_number: Extract ONLY the value (e.g., "R0015632540"), NOT the label "Invoice no."
2. invoice_date: Convert to YYYY-MM-DD format (e.g., "14/04/2022" → "2022-04-14")
3. vendor_name: The company issuing the invoice
4. currency: EUR, USD, or GBP
5. net_amount: Total before tax
6. vat_amount: Tax amount
7. total_amount: Final total with tax
JSON only:
{"invoice_number":"X","invoice_date":"YYYY-MM-DD","vendor_name":"X","currency":"EUR","net_amount":0,"vat_amount":0,"total_amount":0}`;
/**
* Ensure GPT-OSS 20B model is available
*/
async function ensureExtractionModel(): Promise<boolean> {
try {
const response = await fetch(`${OLLAMA_URL}/api/tags`);
if (response.ok) {
const data = await response.json();
const models = data.models || [];
if (models.some((m: { name: string }) => m.name === EXTRACTION_MODEL)) {
console.log(` [Ollama] Model available: ${EXTRACTION_MODEL}`);
return true;
}
}
} catch {
return false;
}
console.log(` [Ollama] Pulling ${EXTRACTION_MODEL}...`);
const pullResponse = await fetch(`${OLLAMA_URL}/api/pull`, {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({ name: EXTRACTION_MODEL, stream: false }),
});
return pullResponse.ok;
}
/**
* Parse amount from string (handles European format)
*/
function parseAmount(s: string | number | undefined): number {
if (s === undefined || s === null) return 0;
if (typeof s === 'number') return s;
const match = s.match(/([\d.,]+)/);
if (!match) return 0;
const numStr = match[1];
const normalized = numStr.includes(',') && numStr.indexOf(',') > numStr.lastIndexOf('.')
? numStr.replace(/\./g, '').replace(',', '.')
: numStr.replace(/,/g, '');
return parseFloat(normalized) || 0;
}
/**
* Extract invoice number - minimal normalization
*/
function extractInvoiceNumber(s: string | undefined): string {
if (!s) return '';
return s.replace(/\*\*/g, '').replace(/`/g, '').trim();
}
/**
* Extract date (YYYY-MM-DD) from response
*/
function extractDate(s: string | undefined): string {
if (!s) return '';
let clean = s.replace(/\*\*/g, '').replace(/`/g, '').trim();
const isoMatch = clean.match(/(\d{4}-\d{2}-\d{2})/);
if (isoMatch) return isoMatch[1];
const dmyMatch = clean.match(/(\d{1,2})[\/.](\d{1,2})[\/.](\d{4})/);
if (dmyMatch) {
return `${dmyMatch[3]}-${dmyMatch[2].padStart(2, '0')}-${dmyMatch[1].padStart(2, '0')}`;
}
return clean.replace(/[^\d-]/g, '').trim();
}
/**
* Extract currency
*/
function extractCurrency(s: string | undefined): string {
if (!s) return 'EUR';
const upper = s.toUpperCase();
if (upper.includes('EUR') || upper.includes('€')) return 'EUR';
if (upper.includes('USD') || upper.includes('$')) return 'USD';
if (upper.includes('GBP') || upper.includes('£')) return 'GBP';
return 'EUR';
}
/**
* Extract JSON from response
*/
function extractJsonFromResponse(response: string): Record<string, unknown> | null {
let cleanResponse = response.replace(/<think>[\s\S]*?<\/think>/g, '').trim();
const codeBlockMatch = cleanResponse.match(/```(?:json)?\s*([\s\S]*?)```/);
const jsonStr = codeBlockMatch ? codeBlockMatch[1].trim() : cleanResponse;
try {
return JSON.parse(jsonStr);
} catch {
const jsonMatch = jsonStr.match(/\{[\s\S]*\}/);
if (jsonMatch) {
try {
return JSON.parse(jsonMatch[0]);
} catch {
return null;
}
}
return null;
}
}
/**
* Parse JSON response into IInvoice
*/
function parseJsonToInvoice(response: string): IInvoice | null {
const parsed = extractJsonFromResponse(response);
if (!parsed) return null;
return {
invoice_number: extractInvoiceNumber(String(parsed.invoice_number || '')),
invoice_date: extractDate(String(parsed.invoice_date || '')),
vendor_name: String(parsed.vendor_name || '').replace(/\*\*/g, '').replace(/`/g, '').trim(),
currency: extractCurrency(String(parsed.currency || '')),
net_amount: parseAmount(parsed.net_amount as string | number),
vat_amount: parseAmount(parsed.vat_amount as string | number),
total_amount: parseAmount(parsed.total_amount as string | number),
};
}
/**
* Extract invoice from markdown using GPT-OSS 20B (streaming)
*/
async function extractInvoiceFromMarkdown(markdown: string, queryId: string): Promise<IInvoice | null> {
const startTime = Date.now();
console.log(` [${queryId}] Invoice: ${markdown.length} chars, Prompt: ${JSON_EXTRACTION_PROMPT.length} chars`);
const response = await fetch(`${OLLAMA_URL}/api/chat`, {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({
model: EXTRACTION_MODEL,
messages: [
{ role: 'user', content: 'Hi there, how are you?' },
{ role: 'assistant', content: 'Good, how can I help you today?' },
{ role: 'user', content: `Here is an invoice document:\n\n${markdown}` },
{ role: 'assistant', content: 'I have read the invoice document you provided. I can see all the text content. What would you like me to do with it?' },
{ role: 'user', content: JSON_EXTRACTION_PROMPT },
],
stream: true,
options: {
num_ctx: 32768, // Larger context for long invoices + thinking
temperature: 0, // Deterministic for JSON extraction
},
}),
signal: AbortSignal.timeout(120000), // 2 min timeout
});
if (!response.ok) {
const elapsed = ((Date.now() - startTime) / 1000).toFixed(1);
console.log(` [${queryId}] ERROR: ${response.status} (${elapsed}s)`);
throw new Error(`Ollama API error: ${response.status}`);
}
// Stream the response
let content = '';
let thinkingContent = '';
let thinkingStarted = false;
let outputStarted = false;
const reader = response.body!.getReader();
const decoder = new TextDecoder();
try {
while (true) {
const { done, value } = await reader.read();
if (done) break;
const chunk = decoder.decode(value, { stream: true });
for (const line of chunk.split('\n').filter(l => l.trim())) {
try {
const json = JSON.parse(line);
const thinking = json.message?.thinking || '';
if (thinking) {
if (!thinkingStarted) {
process.stdout.write(` [${queryId}] THINKING: `);
thinkingStarted = true;
}
process.stdout.write(thinking);
thinkingContent += thinking;
}
const token = json.message?.content || '';
if (token) {
if (!outputStarted) {
if (thinkingStarted) process.stdout.write('\n');
process.stdout.write(` [${queryId}] OUTPUT: `);
outputStarted = true;
}
process.stdout.write(token);
content += token;
}
} catch {
// Ignore parse errors for partial chunks
}
}
}
} finally {
if (thinkingStarted || outputStarted) process.stdout.write('\n');
}
const elapsed = ((Date.now() - startTime) / 1000).toFixed(1);
console.log(` [${queryId}] Done: ${thinkingContent.length} thinking, ${content.length} output (${elapsed}s)`);
return parseJsonToInvoice(content);
}
/**
* Normalize date to YYYY-MM-DD
*/
function normalizeDate(dateStr: string | null): string {
if (!dateStr) return '';
if (/^\d{4}-\d{2}-\d{2}$/.test(dateStr)) return dateStr;
const monthMap: Record<string, string> = {
JAN: '01', FEB: '02', MAR: '03', APR: '04', MAY: '05', JUN: '06',
JUL: '07', AUG: '08', SEP: '09', OCT: '10', NOV: '11', DEC: '12',
};
let match = dateStr.match(/^(\d{1,2})-([A-Z]{3})-(\d{4})$/i);
if (match) {
return `${match[3]}-${monthMap[match[2].toUpperCase()] || '01'}-${match[1].padStart(2, '0')}`;
}
match = dateStr.match(/^(\d{1,2})[\/.](\d{1,2})[\/.](\d{4})$/);
if (match) {
return `${match[3]}-${match[2].padStart(2, '0')}-${match[1].padStart(2, '0')}`;
}
return dateStr;
}
/**
* Normalize invoice number for comparison (remove spaces, lowercase)
*/
function normalizeInvoiceNumber(s: string): string {
return s.replace(/\s+/g, '').toLowerCase();
}
/**
* Compare extracted invoice against expected
*/
function compareInvoice(
extracted: IInvoice,
expected: IInvoice
): { match: boolean; errors: string[] } {
const errors: string[] = [];
// Invoice number - normalize spaces for comparison
const extNum = normalizeInvoiceNumber(extracted.invoice_number || '');
const expNum = normalizeInvoiceNumber(expected.invoice_number || '');
if (extNum !== expNum) {
errors.push(`invoice_number: expected "${expected.invoice_number}", got "${extracted.invoice_number}"`);
}
if (normalizeDate(extracted.invoice_date) !== normalizeDate(expected.invoice_date)) {
errors.push(`invoice_date: expected "${expected.invoice_date}", got "${extracted.invoice_date}"`);
}
if (Math.abs(extracted.total_amount - expected.total_amount) > 0.02) {
errors.push(`total_amount: expected ${expected.total_amount}, got ${extracted.total_amount}`);
}
if (extracted.currency?.toUpperCase() !== expected.currency?.toUpperCase()) {
errors.push(`currency: expected "${expected.currency}", got "${extracted.currency}"`);
}
return { match: errors.length === 0, errors };
}
/**
* Find test cases with existing debug markdown
*/
function findTestCases(): ITestCase[] {
const invoicesDir = path.join(process.cwd(), '.nogit/invoices');
if (!fs.existsSync(invoicesDir)) return [];
const testCases: ITestCase[] = [];
for (const invoiceName of TEST_INVOICES) {
const markdownPath = path.join(invoicesDir, `${invoiceName}.debug.md`);
const jsonPath = path.join(invoicesDir, `${invoiceName}.json`);
if (fs.existsSync(markdownPath) && fs.existsSync(jsonPath)) {
testCases.push({
name: invoiceName,
markdownPath,
jsonPath,
});
} else {
if (!fs.existsSync(markdownPath)) {
console.warn(`Warning: Missing markdown: ${markdownPath}`);
}
if (!fs.existsSync(jsonPath)) {
console.warn(`Warning: Missing JSON: ${jsonPath}`);
}
}
}
return testCases;
}
// ============ TESTS ============
const testCases = findTestCases();
console.log(`\n========================================`);
console.log(` EXTRACTION TUNING TEST`);
console.log(` (Skips OCR, uses existing .debug.md)`);
console.log(`========================================`);
console.log(` Testing ${testCases.length} invoices:`);
for (const tc of testCases) {
console.log(` - ${tc.name}`);
}
console.log(`========================================\n`);
tap.test('Setup Ollama + GPT-OSS 20B', async () => {
const ollamaOk = await ensureMiniCpm();
expect(ollamaOk).toBeTrue();
const extractionOk = await ensureExtractionModel();
expect(extractionOk).toBeTrue();
});
let passedCount = 0;
let failedCount = 0;
for (const tc of testCases) {
tap.test(`Extract ${tc.name}`, async () => {
const expected: IInvoice = JSON.parse(fs.readFileSync(tc.jsonPath, 'utf-8'));
const markdown = fs.readFileSync(tc.markdownPath, 'utf-8');
console.log(`\n ========================================`);
console.log(` === ${tc.name} ===`);
console.log(` ========================================`);
console.log(` EXPECTED: ${expected.invoice_number} | ${expected.invoice_date} | ${expected.total_amount} ${expected.currency}`);
console.log(` Markdown: ${markdown.length} chars`);
const startTime = Date.now();
const extracted = await extractInvoiceFromMarkdown(markdown, tc.name);
if (!extracted) {
failedCount++;
console.log(`\n Result: ✗ FAILED TO PARSE (${((Date.now() - startTime) / 1000).toFixed(1)}s)`);
return;
}
const elapsedMs = Date.now() - startTime;
console.log(` EXTRACTED: ${extracted.invoice_number} | ${extracted.invoice_date} | ${extracted.total_amount} ${extracted.currency}`);
const result = compareInvoice(extracted, expected);
if (result.match) {
passedCount++;
console.log(`\n Result: ✓ MATCH (${(elapsedMs / 1000).toFixed(1)}s)`);
} else {
failedCount++;
console.log(`\n Result: ✗ MISMATCH (${(elapsedMs / 1000).toFixed(1)}s)`);
console.log(` ERRORS:`);
result.errors.forEach(e => console.log(` - ${e}`));
}
});
}
tap.test('Summary', async () => {
const totalInvoices = testCases.length;
const accuracy = totalInvoices > 0 ? (passedCount / totalInvoices) * 100 : 0;
console.log(`\n========================================`);
console.log(` Extraction Tuning Summary`);
console.log(`========================================`);
console.log(` Model: ${EXTRACTION_MODEL}`);
console.log(` Passed: ${passedCount}/${totalInvoices}`);
console.log(` Failed: ${failedCount}/${totalInvoices}`);
console.log(` Accuracy: ${accuracy.toFixed(1)}%`);
console.log(`========================================\n`);
});
export default tap.start();

View File

@@ -0,0 +1,695 @@
/**
* Focused test for failed invoice extractions
*
* Tests only the 4 invoices that failed in the main test:
* - consensus_2021-09: invoice_number "2021/1384" → "20211384" (slash stripped)
* - hetzner_2022-04: model hallucinated after 281s thinking
* - qonto_2021-08: invoice_number "08-21-INVOICE-410870" → "4108705" (prefix stripped)
* - qonto_2021-09: invoice_number "09-21-INVOICE-4303642" → "4303642" (prefix stripped)
*
* Run with: tstest test/test.invoices.failed.ts --verbose
*/
import { tap, expect } from '@git.zone/tstest/tapbundle';
import * as fs from 'fs';
import * as path from 'path';
import { execSync } from 'child_process';
import * as os from 'os';
import { ensureNanonetsOcr, ensureMiniCpm, isContainerRunning } from './helpers/docker.js';
const NANONETS_URL = 'http://localhost:8000/v1';
const NANONETS_MODEL = 'nanonets/Nanonets-OCR2-3B';
const OLLAMA_URL = 'http://localhost:11434';
const EXTRACTION_MODEL = 'gpt-oss:20b';
// Temp directory for storing markdown between stages
const TEMP_MD_DIR = path.join(os.tmpdir(), 'nanonets-invoices-failed-debug');
// Only test these specific invoices that failed
const FAILED_INVOICES = [
'consensus_2021-09',
'hetzner_2022-04',
'qonto_2021-08',
'qonto_2021-09',
];
interface IInvoice {
invoice_number: string;
invoice_date: string;
vendor_name: string;
currency: string;
net_amount: number;
vat_amount: number;
total_amount: number;
}
interface IImageData {
base64: string;
width: number;
height: number;
pageNum: number;
}
interface ITestCase {
name: string;
pdfPath: string;
jsonPath: string;
markdownPath?: string;
}
// Nanonets-specific prompt for document OCR to markdown
const NANONETS_OCR_PROMPT = `Extract the text from the above document as if you were reading it naturally.
Return the tables in html format.
Return the equations in LaTeX representation.
If there is an image in the document and image caption is not present, add a small description inside <img></img> tag.
Watermarks should be wrapped in brackets. Ex: <watermark>OFFICIAL COPY</watermark>.
Page numbers should be wrapped in brackets. Ex: <page_number>14</page_number>.`;
// JSON extraction prompt for GPT-OSS 20B
const JSON_EXTRACTION_PROMPT = `You are an invoice data extractor. Below is an invoice document converted to text/markdown. Extract the key invoice fields as JSON.
IMPORTANT RULES:
1. invoice_number: The unique invoice/document number (NOT VAT ID, NOT customer ID). PRESERVE ALL CHARACTERS including slashes, dashes, and prefixes.
2. invoice_date: Format as YYYY-MM-DD
3. vendor_name: The company that issued the invoice
4. currency: EUR, USD, or GBP
5. net_amount: Amount before tax
6. vat_amount: Tax/VAT amount
7. total_amount: Final total (gross amount)
Return ONLY this JSON format, no explanation:
{
"invoice_number": "INV-2024-001",
"invoice_date": "2024-01-15",
"vendor_name": "Company Name",
"currency": "EUR",
"net_amount": 100.00,
"vat_amount": 19.00,
"total_amount": 119.00
}
INVOICE TEXT:
`;
const PATCH_SIZE = 14;
/**
* Estimate visual tokens for an image based on dimensions
*/
function estimateVisualTokens(width: number, height: number): number {
return Math.ceil((width * height) / (PATCH_SIZE * PATCH_SIZE));
}
/**
* Process images one page at a time for reliability
*/
function batchImages(images: IImageData[]): IImageData[][] {
return images.map(img => [img]);
}
/**
* Convert PDF to JPEG images using ImageMagick with dimension tracking
*/
function convertPdfToImages(pdfPath: string): IImageData[] {
const tempDir = fs.mkdtempSync(path.join(os.tmpdir(), 'pdf-convert-'));
const outputPattern = path.join(tempDir, 'page-%d.jpg');
try {
execSync(
`convert -density 150 -quality 90 "${pdfPath}" -background white -alpha remove "${outputPattern}"`,
{ stdio: 'pipe' }
);
const files = fs.readdirSync(tempDir).filter((f: string) => f.endsWith('.jpg')).sort();
const images: IImageData[] = [];
for (let i = 0; i < files.length; i++) {
const file = files[i];
const imagePath = path.join(tempDir, file);
const imageData = fs.readFileSync(imagePath);
const dimensions = execSync(`identify -format "%w %h" "${imagePath}"`, { encoding: 'utf-8' }).trim();
const [width, height] = dimensions.split(' ').map(Number);
images.push({
base64: imageData.toString('base64'),
width,
height,
pageNum: i + 1,
});
}
return images;
} finally {
fs.rmSync(tempDir, { recursive: true, force: true });
}
}
/**
* Convert a batch of pages to markdown using Nanonets-OCR-s
*/
async function convertBatchToMarkdown(batch: IImageData[]): Promise<string> {
const startTime = Date.now();
const pageNums = batch.map(img => img.pageNum).join(', ');
const content: Array<{ type: string; image_url?: { url: string }; text?: string }> = [];
for (const img of batch) {
content.push({
type: 'image_url',
image_url: { url: `data:image/jpeg;base64,${img.base64}` },
});
}
const promptText = batch.length > 1
? `${NANONETS_OCR_PROMPT}\n\nPlease clearly separate each page's content with "--- PAGE N ---" markers, where N is the page number starting from ${batch[0].pageNum}.`
: NANONETS_OCR_PROMPT;
content.push({ type: 'text', text: promptText });
const response = await fetch(`${NANONETS_URL}/chat/completions`, {
method: 'POST',
headers: {
'Content-Type': 'application/json',
'Authorization': 'Bearer dummy',
},
body: JSON.stringify({
model: NANONETS_MODEL,
messages: [{
role: 'user',
content,
}],
max_tokens: 4096 * batch.length,
temperature: 0.0,
}),
signal: AbortSignal.timeout(600000),
});
const elapsed = ((Date.now() - startTime) / 1000).toFixed(1);
if (!response.ok) {
const errorText = await response.text();
throw new Error(`Nanonets API error: ${response.status} - ${errorText}`);
}
const data = await response.json();
let responseContent = (data.choices?.[0]?.message?.content || '').trim();
if (batch.length === 1 && !responseContent.includes('--- PAGE')) {
responseContent = `--- PAGE ${batch[0].pageNum} ---\n${responseContent}`;
}
console.log(` Pages [${pageNums}]: ${responseContent.length} chars (${elapsed}s)`);
return responseContent;
}
/**
* Convert all pages of a document to markdown using smart batching
*/
async function convertDocumentToMarkdown(images: IImageData[], docName: string): Promise<string> {
const batches = batchImages(images);
console.log(` [${docName}] Processing ${images.length} page(s) in ${batches.length} batch(es)...`);
const markdownParts: string[] = [];
for (let i = 0; i < batches.length; i++) {
const batch = batches[i];
const batchTokens = batch.reduce((sum, img) => sum + estimateVisualTokens(img.width, img.height), 0);
console.log(` Batch ${i + 1}: ${batch.length} page(s), ~${batchTokens} tokens`);
const markdown = await convertBatchToMarkdown(batch);
markdownParts.push(markdown);
}
const fullMarkdown = markdownParts.join('\n\n');
console.log(` [${docName}] Complete: ${fullMarkdown.length} chars total`);
return fullMarkdown;
}
/**
* Stop Nanonets container
*/
function stopNanonets(): void {
console.log(' [Docker] Stopping Nanonets container...');
try {
execSync('docker stop nanonets-test 2>/dev/null || true', { stdio: 'pipe' });
execSync('sleep 5', { stdio: 'pipe' });
console.log(' [Docker] Nanonets stopped');
} catch {
console.log(' [Docker] Nanonets was not running');
}
}
/**
* Ensure GPT-OSS 20B model is available
*/
async function ensureExtractionModel(): Promise<boolean> {
try {
const response = await fetch(`${OLLAMA_URL}/api/tags`);
if (response.ok) {
const data = await response.json();
const models = data.models || [];
if (models.some((m: { name: string }) => m.name === EXTRACTION_MODEL)) {
console.log(` [Ollama] Model available: ${EXTRACTION_MODEL}`);
return true;
}
}
} catch {
return false;
}
console.log(` [Ollama] Pulling ${EXTRACTION_MODEL}...`);
const pullResponse = await fetch(`${OLLAMA_URL}/api/pull`, {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({ name: EXTRACTION_MODEL, stream: false }),
});
return pullResponse.ok;
}
/**
* Parse amount from string (handles European format)
*/
function parseAmount(s: string | number | undefined): number {
if (s === undefined || s === null) return 0;
if (typeof s === 'number') return s;
const match = s.match(/([\d.,]+)/);
if (!match) return 0;
const numStr = match[1];
const normalized = numStr.includes(',') && numStr.indexOf(',') > numStr.lastIndexOf('.')
? numStr.replace(/\./g, '').replace(',', '.')
: numStr.replace(/,/g, '');
return parseFloat(normalized) || 0;
}
/**
* Extract invoice number - MINIMAL normalization for debugging
*/
function extractInvoiceNumber(s: string | undefined): string {
if (!s) return '';
// Only remove markdown formatting, preserve everything else
return s.replace(/\*\*/g, '').replace(/`/g, '').trim();
}
/**
* Extract date (YYYY-MM-DD) from response
*/
function extractDate(s: string | undefined): string {
if (!s) return '';
let clean = s.replace(/\*\*/g, '').replace(/`/g, '').trim();
const isoMatch = clean.match(/(\d{4}-\d{2}-\d{2})/);
if (isoMatch) return isoMatch[1];
const dmyMatch = clean.match(/(\d{1,2})[\/.](\d{1,2})[\/.](\d{4})/);
if (dmyMatch) {
return `${dmyMatch[3]}-${dmyMatch[2].padStart(2, '0')}-${dmyMatch[1].padStart(2, '0')}`;
}
return clean.replace(/[^\d-]/g, '').trim();
}
/**
* Extract currency
*/
function extractCurrency(s: string | undefined): string {
if (!s) return 'EUR';
const upper = s.toUpperCase();
if (upper.includes('EUR') || upper.includes('€')) return 'EUR';
if (upper.includes('USD') || upper.includes('$')) return 'USD';
if (upper.includes('GBP') || upper.includes('£')) return 'GBP';
return 'EUR';
}
/**
* Extract JSON from response
*/
function extractJsonFromResponse(response: string): Record<string, unknown> | null {
let cleanResponse = response.replace(/<think>[\s\S]*?<\/think>/g, '').trim();
const codeBlockMatch = cleanResponse.match(/```(?:json)?\s*([\s\S]*?)```/);
const jsonStr = codeBlockMatch ? codeBlockMatch[1].trim() : cleanResponse;
try {
return JSON.parse(jsonStr);
} catch {
const jsonMatch = jsonStr.match(/\{[\s\S]*\}/);
if (jsonMatch) {
try {
return JSON.parse(jsonMatch[0]);
} catch {
return null;
}
}
return null;
}
}
/**
* Parse JSON response into IInvoice
*/
function parseJsonToInvoice(response: string): IInvoice | null {
const parsed = extractJsonFromResponse(response);
if (!parsed) return null;
return {
invoice_number: extractInvoiceNumber(String(parsed.invoice_number || '')),
invoice_date: extractDate(String(parsed.invoice_date || '')),
vendor_name: String(parsed.vendor_name || '').replace(/\*\*/g, '').replace(/`/g, '').trim(),
currency: extractCurrency(String(parsed.currency || '')),
net_amount: parseAmount(parsed.net_amount as string | number),
vat_amount: parseAmount(parsed.vat_amount as string | number),
total_amount: parseAmount(parsed.total_amount as string | number),
};
}
/**
* Extract invoice from markdown using GPT-OSS 20B (streaming)
*/
async function extractInvoiceFromMarkdown(markdown: string, queryId: string): Promise<IInvoice | null> {
const startTime = Date.now();
const fullPrompt = JSON_EXTRACTION_PROMPT + markdown;
// Log exact prompt
console.log(`\n [${queryId}] ===== PROMPT =====`);
console.log(fullPrompt);
console.log(` [${queryId}] ===== END PROMPT (${fullPrompt.length} chars) =====\n`);
const response = await fetch(`${OLLAMA_URL}/api/chat`, {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({
model: EXTRACTION_MODEL,
messages: [
{ role: 'user', content: 'Hi there, how are you?' },
{ role: 'assistant', content: 'Good, how can I help you today?' },
{ role: 'user', content: fullPrompt },
],
stream: true,
}),
signal: AbortSignal.timeout(600000),
});
if (!response.ok) {
const elapsed = ((Date.now() - startTime) / 1000).toFixed(1);
console.log(` [${queryId}] ERROR: ${response.status} (${elapsed}s)`);
throw new Error(`Ollama API error: ${response.status}`);
}
// Stream the response
let content = '';
let thinkingContent = '';
let thinkingStarted = false;
let outputStarted = false;
const reader = response.body!.getReader();
const decoder = new TextDecoder();
try {
while (true) {
const { done, value } = await reader.read();
if (done) break;
const chunk = decoder.decode(value, { stream: true });
for (const line of chunk.split('\n').filter(l => l.trim())) {
try {
const json = JSON.parse(line);
const thinking = json.message?.thinking || '';
if (thinking) {
if (!thinkingStarted) {
process.stdout.write(` [${queryId}] THINKING: `);
thinkingStarted = true;
}
process.stdout.write(thinking);
thinkingContent += thinking;
}
const token = json.message?.content || '';
if (token) {
if (!outputStarted) {
if (thinkingStarted) process.stdout.write('\n');
process.stdout.write(` [${queryId}] OUTPUT: `);
outputStarted = true;
}
process.stdout.write(token);
content += token;
}
} catch {
// Ignore parse errors for partial chunks
}
}
}
} finally {
if (thinkingStarted || outputStarted) process.stdout.write('\n');
}
const elapsed = ((Date.now() - startTime) / 1000).toFixed(1);
console.log(` [${queryId}] Done: ${thinkingContent.length} thinking chars, ${content.length} output chars (${elapsed}s)`);
// Log raw response for debugging
console.log(` [${queryId}] RAW RESPONSE: ${content}`);
return parseJsonToInvoice(content);
}
/**
* Extract invoice (single pass)
*/
async function extractInvoice(markdown: string, docName: string): Promise<IInvoice> {
console.log(` [${docName}] Extracting...`);
const invoice = await extractInvoiceFromMarkdown(markdown, docName);
if (!invoice) {
return {
invoice_number: '',
invoice_date: '',
vendor_name: '',
currency: 'EUR',
net_amount: 0,
vat_amount: 0,
total_amount: 0,
};
}
console.log(` [${docName}] Extracted: ${JSON.stringify(invoice, null, 2)}`);
return invoice;
}
/**
* Normalize date to YYYY-MM-DD
*/
function normalizeDate(dateStr: string | null): string {
if (!dateStr) return '';
if (/^\d{4}-\d{2}-\d{2}$/.test(dateStr)) return dateStr;
const monthMap: Record<string, string> = {
JAN: '01', FEB: '02', MAR: '03', APR: '04', MAY: '05', JUN: '06',
JUL: '07', AUG: '08', SEP: '09', OCT: '10', NOV: '11', DEC: '12',
};
let match = dateStr.match(/^(\d{1,2})-([A-Z]{3})-(\d{4})$/i);
if (match) {
return `${match[3]}-${monthMap[match[2].toUpperCase()] || '01'}-${match[1].padStart(2, '0')}`;
}
match = dateStr.match(/^(\d{1,2})[\/.](\d{1,2})[\/.](\d{4})$/);
if (match) {
return `${match[3]}-${match[2].padStart(2, '0')}-${match[1].padStart(2, '0')}`;
}
return dateStr;
}
/**
* Compare extracted invoice against expected - detailed output
*/
function compareInvoice(
extracted: IInvoice,
expected: IInvoice
): { match: boolean; errors: string[] } {
const errors: string[] = [];
// Invoice number comparison - exact match after whitespace normalization
const extNum = extracted.invoice_number?.trim() || '';
const expNum = expected.invoice_number?.trim() || '';
if (extNum.toLowerCase() !== expNum.toLowerCase()) {
errors.push(`invoice_number: expected "${expected.invoice_number}", got "${extracted.invoice_number}"`);
}
if (normalizeDate(extracted.invoice_date) !== normalizeDate(expected.invoice_date)) {
errors.push(`invoice_date: expected "${expected.invoice_date}", got "${extracted.invoice_date}"`);
}
if (Math.abs(extracted.total_amount - expected.total_amount) > 0.02) {
errors.push(`total_amount: expected ${expected.total_amount}, got ${extracted.total_amount}`);
}
if (extracted.currency?.toUpperCase() !== expected.currency?.toUpperCase()) {
errors.push(`currency: expected "${expected.currency}", got "${extracted.currency}"`);
}
return { match: errors.length === 0, errors };
}
/**
* Find test cases for failed invoices only
*/
function findTestCases(): ITestCase[] {
const testDir = path.join(process.cwd(), '.nogit/invoices');
if (!fs.existsSync(testDir)) return [];
const files = fs.readdirSync(testDir);
const testCases: ITestCase[] = [];
for (const invoiceName of FAILED_INVOICES) {
const pdfFile = `${invoiceName}.pdf`;
const jsonFile = `${invoiceName}.json`;
if (files.includes(pdfFile) && files.includes(jsonFile)) {
testCases.push({
name: invoiceName,
pdfPath: path.join(testDir, pdfFile),
jsonPath: path.join(testDir, jsonFile),
});
} else {
console.warn(`Warning: Missing files for ${invoiceName}`);
}
}
return testCases;
}
// ============ TESTS ============
const testCases = findTestCases();
console.log(`\n========================================`);
console.log(` FAILED INVOICES DEBUG TEST`);
console.log(`========================================`);
console.log(` Testing ${testCases.length} failed invoices:`);
for (const tc of testCases) {
console.log(` - ${tc.name}`);
}
console.log(`========================================\n`);
// Ensure temp directory exists
if (!fs.existsSync(TEMP_MD_DIR)) {
fs.mkdirSync(TEMP_MD_DIR, { recursive: true });
}
// -------- STAGE 1: OCR with Nanonets --------
tap.test('Stage 1: Setup Nanonets', async () => {
console.log('\n========== STAGE 1: Nanonets OCR ==========\n');
const ok = await ensureNanonetsOcr();
expect(ok).toBeTrue();
});
tap.test('Stage 1: Convert failed invoices to markdown', async () => {
console.log('\n Converting failed invoice PDFs to markdown with Nanonets-OCR-s...\n');
for (const tc of testCases) {
console.log(`\n === ${tc.name} ===`);
const images = convertPdfToImages(tc.pdfPath);
console.log(` Pages: ${images.length}`);
const markdown = await convertDocumentToMarkdown(images, tc.name);
const mdPath = path.join(TEMP_MD_DIR, `${tc.name}.md`);
fs.writeFileSync(mdPath, markdown);
tc.markdownPath = mdPath;
console.log(` Saved: ${mdPath}`);
// Also save to .nogit for inspection
const debugMdPath = path.join(process.cwd(), '.nogit/invoices', `${tc.name}.debug.md`);
fs.writeFileSync(debugMdPath, markdown);
console.log(` Debug copy: ${debugMdPath}`);
}
console.log('\n Stage 1 complete: All failed invoices converted to markdown\n');
});
tap.test('Stage 1: Stop Nanonets', async () => {
stopNanonets();
await new Promise(resolve => setTimeout(resolve, 3000));
expect(isContainerRunning('nanonets-test')).toBeFalse();
});
// -------- STAGE 2: Extraction with GPT-OSS 20B --------
tap.test('Stage 2: Setup Ollama + GPT-OSS 20B', async () => {
console.log('\n========== STAGE 2: GPT-OSS 20B Extraction ==========\n');
const ollamaOk = await ensureMiniCpm();
expect(ollamaOk).toBeTrue();
const extractionOk = await ensureExtractionModel();
expect(extractionOk).toBeTrue();
});
let passedCount = 0;
let failedCount = 0;
for (const tc of testCases) {
tap.test(`Stage 2: Extract ${tc.name}`, async () => {
const expected: IInvoice = JSON.parse(fs.readFileSync(tc.jsonPath, 'utf-8'));
console.log(`\n ========================================`);
console.log(` === ${tc.name} ===`);
console.log(` ========================================`);
console.log(` EXPECTED:`);
console.log(` invoice_number: "${expected.invoice_number}"`);
console.log(` invoice_date: "${expected.invoice_date}"`);
console.log(` vendor_name: "${expected.vendor_name}"`);
console.log(` total_amount: ${expected.total_amount} ${expected.currency}`);
const startTime = Date.now();
const mdPath = path.join(TEMP_MD_DIR, `${tc.name}.md`);
if (!fs.existsSync(mdPath)) {
throw new Error(`Markdown not found: ${mdPath}. Run Stage 1 first.`);
}
const markdown = fs.readFileSync(mdPath, 'utf-8');
console.log(` Markdown: ${markdown.length} chars`);
const extracted = await extractInvoice(markdown, tc.name);
const elapsedMs = Date.now() - startTime;
console.log(`\n EXTRACTED:`);
console.log(` invoice_number: "${extracted.invoice_number}"`);
console.log(` invoice_date: "${extracted.invoice_date}"`);
console.log(` vendor_name: "${extracted.vendor_name}"`);
console.log(` total_amount: ${extracted.total_amount} ${extracted.currency}`);
const result = compareInvoice(extracted, expected);
if (result.match) {
passedCount++;
console.log(`\n Result: ✓ MATCH (${(elapsedMs / 1000).toFixed(1)}s)`);
} else {
failedCount++;
console.log(`\n Result: ✗ MISMATCH (${(elapsedMs / 1000).toFixed(1)}s)`);
console.log(` ERRORS:`);
result.errors.forEach(e => console.log(` - ${e}`));
}
// Don't fail the test - we're debugging
// expect(result.match).toBeTrue();
});
}
tap.test('Summary', async () => {
const totalInvoices = testCases.length;
const accuracy = totalInvoices > 0 ? (passedCount / totalInvoices) * 100 : 0;
console.log(`\n========================================`);
console.log(` Failed Invoices Debug Summary`);
console.log(`========================================`);
console.log(` Passed: ${passedCount}/${totalInvoices}`);
console.log(` Failed: ${failedCount}/${totalInvoices}`);
console.log(` Accuracy: ${accuracy.toFixed(1)}%`);
console.log(`========================================`);
console.log(` Markdown files saved to: ${TEMP_MD_DIR}`);
console.log(` Debug copies in: .nogit/invoices/*.debug.md`);
console.log(`========================================\n`);
// Don't cleanup temp files for debugging
console.log(` Keeping temp files for debugging.\n`);
});
export default tap.start();

View File

@@ -1,8 +1,10 @@
/**
* Invoice extraction test using MiniCPM-V only (visual extraction)
* Invoice extraction test using MiniCPM-V (visual extraction)
*
* This tests MiniCPM-V's ability to extract invoice data directly from images
* without any OCR augmentation.
* Consensus approach:
* 1. Pass 1: Fast JSON extraction
* 2. Pass 2: Confirm with thinking enabled
* 3. If mismatch: repeat until consensus or max attempts
*/
import { tap, expect } from '@git.zone/tstest/tapbundle';
import * as fs from 'fs';
@@ -12,7 +14,7 @@ import * as os from 'os';
import { ensureMiniCpm } from './helpers/docker.js';
const OLLAMA_URL = 'http://localhost:11434';
const MODEL = 'minicpm-v:latest';
const MODEL = 'openbmb/minicpm-v4.5:q8_0';
interface IInvoice {
invoice_number: string;
@@ -24,28 +26,6 @@ interface IInvoice {
total_amount: number;
}
/**
* Build extraction prompt (MiniCPM-V only, no OCR augmentation)
*/
function buildPrompt(): string {
return `/nothink
You are an invoice parser. Extract the following fields from this invoice:
1. invoice_number: The invoice/receipt number
2. invoice_date: Date in YYYY-MM-DD format
3. vendor_name: Company that issued the invoice
4. currency: EUR, USD, etc.
5. net_amount: Amount before tax (if shown)
6. vat_amount: Tax/VAT amount (if shown, 0 if reverse charge or no tax)
7. total_amount: Final amount due
Return ONLY valid JSON in this exact format:
{"invoice_number":"XXX","invoice_date":"YYYY-MM-DD","vendor_name":"Company Name","currency":"EUR","net_amount":100.00,"vat_amount":19.00,"total_amount":119.00}
If a field is not visible, use null for strings or 0 for numbers.
No explanation, just the JSON object.`;
}
/**
* Convert PDF to PNG images using ImageMagick
*/
@@ -55,7 +35,7 @@ function convertPdfToImages(pdfPath: string): string[] {
try {
execSync(
`convert -density 200 -quality 90 "${pdfPath}" -background white -alpha remove "${outputPattern}"`,
`convert -density 300 -quality 95 "${pdfPath}" -background white -alpha remove "${outputPattern}"`,
{ stdio: 'pipe' }
);
@@ -74,123 +54,288 @@ function convertPdfToImages(pdfPath: string): string[] {
}
}
/**
* Single extraction pass with MiniCPM-V
*/
async function extractOnce(images: string[], passNum: number): Promise<IInvoice> {
const payload = {
model: MODEL,
prompt: buildPrompt(),
images,
stream: true,
options: {
num_predict: 2048,
temperature: 0.1,
},
};
const JSON_PROMPT = `Extract invoice data from this image. Return ONLY a JSON object with these exact fields:
{
"invoice_number": "the invoice number (not VAT ID, not customer ID)",
"invoice_date": "YYYY-MM-DD format",
"vendor_name": "company that issued the invoice",
"currency": "EUR, USD, or GBP",
"net_amount": 0.00,
"vat_amount": 0.00,
"total_amount": 0.00
}
Return only the JSON, no explanation.`;
const response = await fetch(`${OLLAMA_URL}/api/generate`, {
/**
* Query MiniCPM-V for JSON output (fast, no thinking)
*/
async function queryJsonFast(images: string[]): Promise<string> {
const response = await fetch(`${OLLAMA_URL}/api/chat`, {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify(payload),
body: JSON.stringify({
model: MODEL,
messages: [{
role: 'user',
content: JSON_PROMPT,
images: images,
}],
stream: false,
options: {
num_predict: 1000,
temperature: 0.1,
},
}),
});
if (!response.ok) {
throw new Error(`Ollama API error: ${response.status}`);
}
const reader = response.body?.getReader();
if (!reader) {
throw new Error('No response body');
const data = await response.json();
return (data.message?.content || '').trim();
}
/**
* Query MiniCPM-V for JSON output with thinking enabled (slower, more accurate)
*/
async function queryJsonWithThinking(images: string[]): Promise<string> {
const response = await fetch(`${OLLAMA_URL}/api/chat`, {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({
model: MODEL,
messages: [{
role: 'user',
content: `Think carefully about this invoice image, then ${JSON_PROMPT}`,
images: images,
}],
stream: false,
options: {
num_predict: 2000,
temperature: 0.1,
},
}),
});
if (!response.ok) {
throw new Error(`Ollama API error: ${response.status}`);
}
const decoder = new TextDecoder();
let fullText = '';
const data = await response.json();
return (data.message?.content || '').trim();
}
while (true) {
const { done, value } = await reader.read();
if (done) break;
/**
* Parse amount from string (handles European format)
*/
function parseAmount(s: string | number | undefined): number {
if (s === undefined || s === null) return 0;
if (typeof s === 'number') return s;
const match = s.match(/([\d.,]+)/);
if (!match) return 0;
const numStr = match[1];
// Handle European format: 1.234,56 → 1234.56
const normalized = numStr.includes(',') && numStr.indexOf(',') > numStr.lastIndexOf('.')
? numStr.replace(/\./g, '').replace(',', '.')
: numStr.replace(/,/g, '');
return parseFloat(normalized) || 0;
}
const chunk = decoder.decode(value, { stream: true });
const lines = chunk.split('\n').filter((l) => l.trim());
/**
* Extract invoice number from potentially verbose response
*/
function extractInvoiceNumber(s: string | undefined): string {
if (!s) return '';
let clean = s.replace(/\*\*/g, '').replace(/`/g, '').trim();
const patterns = [
/\b([A-Z]{2,3}\d{10,})\b/i, // IEE2022006460244
/\b([A-Z]\d{8,})\b/i, // R0014359508
/\b(INV[-\s]?\d{4}[-\s]?\d+)\b/i, // INV-2024-001
/\b(\d{7,})\b/, // 1579087430
];
for (const pattern of patterns) {
const match = clean.match(pattern);
if (match) return match[1];
}
return clean.replace(/[^A-Z0-9-]/gi, '').trim() || clean;
}
for (const line of lines) {
/**
* Extract date (YYYY-MM-DD) from response
*/
function extractDate(s: string | undefined): string {
if (!s) return '';
let clean = s.replace(/\*\*/g, '').replace(/`/g, '').trim();
const isoMatch = clean.match(/(\d{4}-\d{2}-\d{2})/);
if (isoMatch) return isoMatch[1];
// Try DD/MM/YYYY or DD.MM.YYYY
const dmyMatch = clean.match(/(\d{1,2})[\/.](\d{1,2})[\/.](\d{4})/);
if (dmyMatch) {
return `${dmyMatch[3]}-${dmyMatch[2].padStart(2, '0')}-${dmyMatch[1].padStart(2, '0')}`;
}
return clean.replace(/[^\d-]/g, '').trim();
}
/**
* Extract currency
*/
function extractCurrency(s: string | undefined): string {
if (!s) return 'EUR';
const upper = s.toUpperCase();
if (upper.includes('EUR') || upper.includes('€')) return 'EUR';
if (upper.includes('USD') || upper.includes('$')) return 'USD';
if (upper.includes('GBP') || upper.includes('£')) return 'GBP';
return 'EUR';
}
/**
* Extract JSON from response (handles markdown code blocks)
*/
function extractJsonFromResponse(response: string): Record<string, unknown> | null {
// Try to find JSON in markdown code block
const codeBlockMatch = response.match(/```(?:json)?\s*([\s\S]*?)```/);
const jsonStr = codeBlockMatch ? codeBlockMatch[1].trim() : response.trim();
try {
return JSON.parse(jsonStr);
} catch {
// Try to find JSON object pattern
const jsonMatch = jsonStr.match(/\{[\s\S]*\}/);
if (jsonMatch) {
try {
const json = JSON.parse(line);
if (json.response) {
fullText += json.response;
}
return JSON.parse(jsonMatch[0]);
} catch {
// Skip invalid JSON lines
return null;
}
}
return null;
}
// Extract JSON from response
const startIdx = fullText.indexOf('{');
const endIdx = fullText.lastIndexOf('}') + 1;
if (startIdx < 0 || endIdx <= startIdx) {
throw new Error(`No JSON object found in response: ${fullText.substring(0, 200)}`);
}
const jsonStr = fullText.substring(startIdx, endIdx);
return JSON.parse(jsonStr);
}
/**
* Create a hash of invoice for comparison (using key fields)
* Parse JSON response into IInvoice
*/
function hashInvoice(invoice: IInvoice): string {
return `${invoice.invoice_number}|${invoice.invoice_date}|${invoice.total_amount.toFixed(2)}`;
function parseJsonToInvoice(response: string): IInvoice | null {
const parsed = extractJsonFromResponse(response);
if (!parsed) return null;
return {
invoice_number: extractInvoiceNumber(String(parsed.invoice_number || '')),
invoice_date: extractDate(String(parsed.invoice_date || '')),
vendor_name: String(parsed.vendor_name || '').replace(/\*\*/g, '').replace(/`/g, '').trim(),
currency: extractCurrency(String(parsed.currency || '')),
net_amount: parseAmount(parsed.net_amount as string | number),
vat_amount: parseAmount(parsed.vat_amount as string | number),
total_amount: parseAmount(parsed.total_amount as string | number),
};
}
/**
* Extract with consensus voting using MiniCPM-V only
* Compare two invoices for consensus (key fields must match)
*/
async function extractWithConsensus(images: string[], invoiceName: string, maxPasses: number = 5): Promise<IInvoice> {
const results: Array<{ invoice: IInvoice; hash: string }> = [];
const hashCounts: Map<string, number> = new Map();
function invoicesMatch(a: IInvoice, b: IInvoice): boolean {
const numMatch = a.invoice_number.toLowerCase() === b.invoice_number.toLowerCase();
const dateMatch = a.invoice_date === b.invoice_date;
const totalMatch = Math.abs(a.total_amount - b.total_amount) < 0.02;
return numMatch && dateMatch && totalMatch;
}
const addResult = (invoice: IInvoice, passLabel: string): number => {
const hash = hashInvoice(invoice);
results.push({ invoice, hash });
hashCounts.set(hash, (hashCounts.get(hash) || 0) + 1);
console.log(` [${passLabel}] ${invoice.invoice_number} | ${invoice.invoice_date} | ${invoice.total_amount} ${invoice.currency}`);
return hashCounts.get(hash)!;
/**
* Extract invoice data using consensus approach:
* 1. Pass 1: Fast JSON extraction
* 2. Pass 2: Confirm with thinking enabled
* 3. If mismatch: repeat until consensus or max 5 attempts
*/
async function extractInvoiceFromImages(images: string[]): Promise<IInvoice> {
console.log(` [Vision] Processing ${images.length} page(s) with ${MODEL} (consensus)`);
const MAX_ATTEMPTS = 5;
let attempt = 0;
while (attempt < MAX_ATTEMPTS) {
attempt++;
console.log(` [Attempt ${attempt}/${MAX_ATTEMPTS}]`);
// PASS 1: Fast JSON extraction
console.log(` [Pass 1] Fast extraction...`);
const fastResponse = await queryJsonFast(images);
const fastInvoice = parseJsonToInvoice(fastResponse);
if (!fastInvoice) {
console.log(` [Pass 1] JSON parsing failed, retrying...`);
continue;
}
console.log(` [Pass 1] Result: ${fastInvoice.invoice_number} | ${fastInvoice.invoice_date} | ${fastInvoice.total_amount} ${fastInvoice.currency}`);
// PASS 2: Confirm with thinking
console.log(` [Pass 2] Thinking confirmation...`);
const thinkResponse = await queryJsonWithThinking(images);
const thinkInvoice = parseJsonToInvoice(thinkResponse);
if (!thinkInvoice) {
console.log(` [Pass 2] JSON parsing failed, retrying...`);
continue;
}
console.log(` [Pass 2] Result: ${thinkInvoice.invoice_number} | ${thinkInvoice.invoice_date} | ${thinkInvoice.total_amount} ${thinkInvoice.currency}`);
// Check consensus
if (invoicesMatch(fastInvoice, thinkInvoice)) {
console.log(` [Consensus] MATCH - using result`);
return thinkInvoice; // Prefer thinking result
}
console.log(` [Consensus] MISMATCH - repeating...`);
console.log(` Fast: ${fastInvoice.invoice_number} | ${fastInvoice.invoice_date} | ${fastInvoice.total_amount}`);
console.log(` Think: ${thinkInvoice.invoice_number} | ${thinkInvoice.invoice_date} | ${thinkInvoice.total_amount}`);
}
// Max attempts reached - do one final thinking pass and use that
console.log(` [Final] Max attempts reached, using final thinking pass`);
const finalResponse = await queryJsonWithThinking(images);
const finalInvoice = parseJsonToInvoice(finalResponse);
if (finalInvoice) {
console.log(` [Final] Result: ${finalInvoice.invoice_number} | ${finalInvoice.invoice_date} | ${finalInvoice.total_amount} ${finalInvoice.currency}`);
return finalInvoice;
}
// Return empty invoice if all else fails
console.log(` [Final] All parsing failed, returning empty`);
return {
invoice_number: '',
invoice_date: '',
vendor_name: '',
currency: 'EUR',
net_amount: 0,
vat_amount: 0,
total_amount: 0,
};
}
/**
* Normalize date to YYYY-MM-DD
*/
function normalizeDate(dateStr: string | null): string {
if (!dateStr) return '';
if (/^\d{4}-\d{2}-\d{2}$/.test(dateStr)) return dateStr;
const monthMap: Record<string, string> = {
JAN: '01', FEB: '02', MAR: '03', APR: '04', MAY: '05', JUN: '06',
JUL: '07', AUG: '08', SEP: '09', OCT: '10', NOV: '11', DEC: '12',
};
for (let pass = 1; pass <= maxPasses; pass++) {
try {
const invoice = await extractOnce(images, pass);
const count = addResult(invoice, `Pass ${pass}`);
if (count >= 2) {
console.log(` [Consensus] Reached after ${pass} passes`);
return invoice;
}
} catch (err) {
console.log(` [Pass ${pass}] Error: ${err}`);
}
let match = dateStr.match(/^(\d{1,2})-([A-Z]{3})-(\d{4})$/i);
if (match) {
return `${match[3]}-${monthMap[match[2].toUpperCase()] || '01'}-${match[1].padStart(2, '0')}`;
}
// No consensus reached - return the most common result
let bestHash = '';
let bestCount = 0;
for (const [hash, count] of hashCounts) {
if (count > bestCount) {
bestCount = count;
bestHash = hash;
}
match = dateStr.match(/^(\d{1,2})[\/.](\d{1,2})[\/.](\d{4})$/);
if (match) {
return `${match[3]}-${match[2].padStart(2, '0')}-${match[1].padStart(2, '0')}`;
}
if (!bestHash) {
throw new Error(`No valid results for ${invoiceName}`);
}
const best = results.find((r) => r.hash === bestHash)!;
console.log(` [No consensus] Using most common result (${bestCount}/${maxPasses} passes)`);
return best.invoice;
return dateStr;
}
/**
@@ -210,7 +355,7 @@ function compareInvoice(
}
// Compare date
if (extracted.invoice_date !== expected.invoice_date) {
if (normalizeDate(extracted.invoice_date) !== normalizeDate(expected.invoice_date)) {
errors.push(`invoice_date: expected "${expected.invoice_date}", got "${extracted.invoice_date}"`);
}
@@ -252,9 +397,7 @@ function findTestCases(): Array<{ name: string; pdfPath: string; jsonPath: strin
}
}
// Sort alphabetically
testCases.sort((a, b) => a.name.localeCompare(b.name));
return testCases;
}
@@ -262,24 +405,20 @@ function findTestCases(): Array<{ name: string; pdfPath: string; jsonPath: strin
tap.test('setup: ensure Docker containers are running', async () => {
console.log('\n[Setup] Checking Docker containers...\n');
// Ensure MiniCPM is running
const minicpmOk = await ensureMiniCpm();
expect(minicpmOk).toBeTrue();
console.log('\n[Setup] All containers ready!\n');
});
tap.test('should have MiniCPM-V 4.5 model loaded', async () => {
tap.test('should have MiniCPM-V model loaded', async () => {
const response = await fetch(`${OLLAMA_URL}/api/tags`);
const data = await response.json();
const modelNames = data.models.map((m: { name: string }) => m.name);
expect(modelNames.some((name: string) => name.includes('minicpm-v4.5'))).toBeTrue();
expect(modelNames.some((name: string) => name.includes('minicpm'))).toBeTrue();
});
// Dynamic test for each PDF/JSON pair
const testCases = findTestCases();
console.log(`\nFound ${testCases.length} invoice test cases (MiniCPM-V only)\n`);
console.log(`\nFound ${testCases.length} invoice test cases (MiniCPM-V)\n`);
let passedCount = 0;
let failedCount = 0;
@@ -287,25 +426,20 @@ const processingTimes: number[] = [];
for (const testCase of testCases) {
tap.test(`should extract invoice: ${testCase.name}`, async () => {
// Load expected data
const expected: IInvoice = JSON.parse(fs.readFileSync(testCase.jsonPath, 'utf-8'));
console.log(`\n=== ${testCase.name} ===`);
console.log(`Expected: ${expected.invoice_number} | ${expected.invoice_date} | ${expected.total_amount} ${expected.currency}`);
const startTime = Date.now();
// Convert PDF to images
const images = convertPdfToImages(testCase.pdfPath);
console.log(` Pages: ${images.length}`);
// Extract with consensus voting (MiniCPM-V only)
const extracted = await extractWithConsensus(images, testCase.name);
const extracted = await extractInvoiceFromImages(images);
console.log(` Extracted: ${extracted.invoice_number} | ${extracted.invoice_date} | ${extracted.total_amount} ${extracted.currency}`);
const endTime = Date.now();
const elapsedMs = endTime - startTime;
const elapsedMs = Date.now() - startTime;
processingTimes.push(elapsedMs);
// Compare results
const result = compareInvoice(extracted, expected);
if (result.match) {
@@ -317,7 +451,6 @@ for (const testCase of testCases) {
result.errors.forEach((e) => console.log(` - ${e}`));
}
// Assert match
expect(result.match).toBeTrue();
});
}
@@ -326,18 +459,17 @@ tap.test('summary', async () => {
const totalInvoices = testCases.length;
const accuracy = totalInvoices > 0 ? (passedCount / totalInvoices) * 100 : 0;
const totalTimeMs = processingTimes.reduce((a, b) => a + b, 0);
const avgTimeMs = processingTimes.length > 0 ? totalTimeMs / processingTimes.length : 0;
const avgTimeSec = avgTimeMs / 1000;
const totalTimeSec = totalTimeMs / 1000;
const avgTimeSec = processingTimes.length > 0 ? totalTimeMs / processingTimes.length / 1000 : 0;
console.log(`\n========================================`);
console.log(` Invoice Extraction Summary (MiniCPM)`);
console.log(` Invoice Extraction Summary (${MODEL})`);
console.log(`========================================`);
console.log(` Method: Consensus (fast + thinking)`);
console.log(` Passed: ${passedCount}/${totalInvoices}`);
console.log(` Failed: ${failedCount}/${totalInvoices}`);
console.log(` Accuracy: ${accuracy.toFixed(1)}%`);
console.log(`----------------------------------------`);
console.log(` Total time: ${totalTimeSec.toFixed(1)}s`);
console.log(` Total time: ${(totalTimeMs / 1000).toFixed(1)}s`);
console.log(` Avg per inv: ${avgTimeSec.toFixed(1)}s`);
console.log(`========================================\n`);
});

View File

@@ -1,334 +0,0 @@
/**
* Invoice extraction using Ministral 3 Vision (Direct)
*
* NO PaddleOCR needed - Ministral 3 has built-in vision encoder:
* 1. Convert PDF to images
* 2. Send images directly to Ministral 3 via Ollama
* 3. Extract structured JSON with native schema support
*
* This is the simplest possible pipeline.
*/
import { tap, expect } from '@git.zone/tstest/tapbundle';
import * as fs from 'fs';
import * as path from 'path';
import { execSync } from 'child_process';
import * as os from 'os';
import { ensureMinistral3 } from './helpers/docker.js';
const OLLAMA_URL = 'http://localhost:11434';
const VISION_MODEL = 'ministral-3:8b';
interface IInvoice {
invoice_number: string;
invoice_date: string;
vendor_name: string;
currency: string;
net_amount: number;
vat_amount: number;
total_amount: number;
}
/**
* Convert PDF to PNG images using ImageMagick
*/
function convertPdfToImages(pdfPath: string): string[] {
const tempDir = fs.mkdtempSync(path.join(os.tmpdir(), 'pdf-convert-'));
const outputPattern = path.join(tempDir, 'page-%d.png');
try {
// High quality conversion: 300 DPI, max quality, sharpen for better OCR
execSync(
`convert -density 300 -quality 100 "${pdfPath}" -background white -alpha remove -sharpen 0x1 "${outputPattern}"`,
{ stdio: 'pipe' }
);
const files = fs.readdirSync(tempDir).filter((f) => f.endsWith('.png')).sort();
const images: string[] = [];
for (const file of files) {
const imagePath = path.join(tempDir, file);
const imageData = fs.readFileSync(imagePath);
images.push(imageData.toString('base64'));
}
return images;
} finally {
fs.rmSync(tempDir, { recursive: true, force: true });
}
}
/**
* Extract invoice data directly from images using Ministral 3 Vision
*/
async function extractInvoiceFromImages(images: string[]): Promise<IInvoice> {
console.log(` [Vision] Processing ${images.length} page(s) with Ministral 3`);
// JSON schema for structured output
const invoiceSchema = {
type: 'object',
properties: {
invoice_number: { type: 'string' },
invoice_date: { type: 'string' },
vendor_name: { type: 'string' },
currency: { type: 'string' },
net_amount: { type: 'number' },
vat_amount: { type: 'number' },
total_amount: { type: 'number' },
},
required: ['invoice_number', 'invoice_date', 'vendor_name', 'currency', 'net_amount', 'vat_amount', 'total_amount'],
};
const prompt = `You are an expert invoice data extraction system. Carefully analyze this invoice document and extract the following fields with high precision.
INVOICE NUMBER:
- Look for labels: "Invoice No", "Invoice #", "Invoice Number", "Rechnung Nr", "Rechnungsnummer", "Document No", "Bill No", "Reference"
- Usually alphanumeric, often starts with letters (e.g., R0014359508, INV-2024-001)
- Located near the top of the invoice
INVOICE DATE:
- Look for labels: "Invoice Date", "Date", "Datum", "Rechnungsdatum", "Issue Date", "Bill Date"
- Convert ANY date format to YYYY-MM-DD (e.g., 14/10/2021 → 2021-10-14, Oct 14, 2021 → 2021-10-14)
- Usually near the invoice number
VENDOR NAME:
- The company ISSUING the invoice (not the recipient)
- Found in letterhead, logo area, or header - typically the largest/most prominent company name
- Examples: "Hetzner Online GmbH", "Adobe Inc", "DigitalOcean LLC"
CURRENCY:
- Detect from symbols: € = EUR, $ = USD, £ = GBP
- Or from text: "EUR", "USD", "GBP"
- Default to EUR if unclear
AMOUNTS (Critical - read carefully!):
- total_amount: The FINAL amount due/payable - look for "Total", "Grand Total", "Amount Due", "Balance Due", "Gesamtbetrag", "Endbetrag"
- net_amount: Subtotal BEFORE tax - look for "Subtotal", "Net", "Netto", "excl. VAT"
- vat_amount: Tax amount - look for "VAT", "Tax", "MwSt", "USt", "19%", "20%"
- For multi-page invoices: the FINAL totals are usually on the LAST page
Return ONLY valid JSON with the extracted values.`;
const response = await fetch(`${OLLAMA_URL}/api/chat`, {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({
model: VISION_MODEL,
messages: [
{
role: 'user',
content: prompt,
images: images, // Send all page images
},
],
format: invoiceSchema,
stream: true,
options: {
num_predict: 1024,
temperature: 0.0,
},
}),
});
if (!response.ok) {
throw new Error(`Ollama API error: ${response.status}`);
}
const reader = response.body?.getReader();
if (!reader) {
throw new Error('No response body');
}
const decoder = new TextDecoder();
let fullText = '';
while (true) {
const { done, value } = await reader.read();
if (done) break;
const chunk = decoder.decode(value, { stream: true });
const lines = chunk.split('\n').filter((l) => l.trim());
for (const line of lines) {
try {
const json = JSON.parse(line);
if (json.message?.content) {
fullText += json.message.content;
}
} catch {
// Skip invalid JSON lines
}
}
}
// Parse JSON response
let jsonStr = fullText.trim();
if (jsonStr.startsWith('```json')) jsonStr = jsonStr.slice(7);
else if (jsonStr.startsWith('```')) jsonStr = jsonStr.slice(3);
if (jsonStr.endsWith('```')) jsonStr = jsonStr.slice(0, -3);
jsonStr = jsonStr.trim();
const startIdx = jsonStr.indexOf('{');
const endIdx = jsonStr.lastIndexOf('}') + 1;
if (startIdx < 0 || endIdx <= startIdx) {
throw new Error(`No JSON found: ${fullText.substring(0, 200)}`);
}
const parsed = JSON.parse(jsonStr.substring(startIdx, endIdx));
return {
invoice_number: parsed.invoice_number || null,
invoice_date: parsed.invoice_date || null,
vendor_name: parsed.vendor_name || null,
currency: parsed.currency || 'EUR',
net_amount: parseFloat(parsed.net_amount) || 0,
vat_amount: parseFloat(parsed.vat_amount) || 0,
total_amount: parseFloat(parsed.total_amount) || 0,
};
}
/**
* Normalize date to YYYY-MM-DD
*/
function normalizeDate(dateStr: string | null): string {
if (!dateStr) return '';
if (/^\d{4}-\d{2}-\d{2}$/.test(dateStr)) return dateStr;
const monthMap: Record<string, string> = {
JAN: '01', FEB: '02', MAR: '03', APR: '04', MAY: '05', JUN: '06',
JUL: '07', AUG: '08', SEP: '09', OCT: '10', NOV: '11', DEC: '12',
};
let match = dateStr.match(/^(\d{1,2})-([A-Z]{3})-(\d{4})$/i);
if (match) {
return `${match[3]}-${monthMap[match[2].toUpperCase()] || '01'}-${match[1].padStart(2, '0')}`;
}
match = dateStr.match(/^(\d{1,2})[\/.](\d{1,2})[\/.](\d{4})$/);
if (match) {
return `${match[3]}-${match[2].padStart(2, '0')}-${match[1].padStart(2, '0')}`;
}
return dateStr;
}
/**
* Compare extracted vs expected
*/
function compareInvoice(extracted: IInvoice, expected: IInvoice): { match: boolean; errors: string[] } {
const errors: string[] = [];
const extNum = extracted.invoice_number?.replace(/\s/g, '').toLowerCase() || '';
const expNum = expected.invoice_number?.replace(/\s/g, '').toLowerCase() || '';
if (extNum !== expNum) {
errors.push(`invoice_number: expected "${expected.invoice_number}", got "${extracted.invoice_number}"`);
}
if (normalizeDate(extracted.invoice_date) !== normalizeDate(expected.invoice_date)) {
errors.push(`invoice_date: expected "${expected.invoice_date}", got "${extracted.invoice_date}"`);
}
if (Math.abs(extracted.total_amount - expected.total_amount) > 0.02) {
errors.push(`total_amount: expected ${expected.total_amount}, got ${extracted.total_amount}`);
}
if (extracted.currency?.toUpperCase() !== expected.currency?.toUpperCase()) {
errors.push(`currency: expected "${expected.currency}", got "${extracted.currency}"`);
}
return { match: errors.length === 0, errors };
}
/**
* Find test cases
*/
function findTestCases(): Array<{ name: string; pdfPath: string; jsonPath: string }> {
const testDir = path.join(process.cwd(), '.nogit/invoices');
if (!fs.existsSync(testDir)) return [];
const files = fs.readdirSync(testDir);
const testCases: Array<{ name: string; pdfPath: string; jsonPath: string }> = [];
for (const pdf of files.filter((f) => f.endsWith('.pdf'))) {
const baseName = pdf.replace('.pdf', '');
const jsonFile = `${baseName}.json`;
if (files.includes(jsonFile)) {
testCases.push({
name: baseName,
pdfPath: path.join(testDir, pdf),
jsonPath: path.join(testDir, jsonFile),
});
}
}
return testCases.sort((a, b) => a.name.localeCompare(b.name));
}
// Tests
tap.test('setup: ensure Ministral 3 is running', async () => {
console.log('\n[Setup] Checking Ministral 3...\n');
const ok = await ensureMinistral3();
expect(ok).toBeTrue();
console.log('\n[Setup] Ready!\n');
});
const testCases = findTestCases();
console.log(`\nFound ${testCases.length} invoice test cases (Ministral 3 Vision Direct)\n`);
let passedCount = 0;
let failedCount = 0;
const times: number[] = [];
for (const testCase of testCases) {
tap.test(`should extract invoice: ${testCase.name}`, async () => {
const expected: IInvoice = JSON.parse(fs.readFileSync(testCase.jsonPath, 'utf-8'));
console.log(`\n=== ${testCase.name} ===`);
console.log(`Expected: ${expected.invoice_number} | ${expected.invoice_date} | ${expected.total_amount} ${expected.currency}`);
const start = Date.now();
const images = convertPdfToImages(testCase.pdfPath);
console.log(` Pages: ${images.length}`);
const extracted = await extractInvoiceFromImages(images);
console.log(` Extracted: ${extracted.invoice_number} | ${extracted.invoice_date} | ${extracted.total_amount} ${extracted.currency}`);
const elapsed = Date.now() - start;
times.push(elapsed);
const result = compareInvoice(extracted, expected);
if (result.match) {
passedCount++;
console.log(` Result: MATCH (${(elapsed / 1000).toFixed(1)}s)`);
} else {
failedCount++;
console.log(` Result: MISMATCH (${(elapsed / 1000).toFixed(1)}s)`);
result.errors.forEach((e) => console.log(` - ${e}`));
}
expect(result.match).toBeTrue();
});
}
tap.test('summary', async () => {
const total = testCases.length;
const accuracy = total > 0 ? (passedCount / total) * 100 : 0;
const totalTime = times.reduce((a, b) => a + b, 0) / 1000;
const avgTime = times.length > 0 ? totalTime / times.length : 0;
console.log(`\n======================================================`);
console.log(` Invoice Extraction Summary (Ministral 3 Vision)`);
console.log(`======================================================`);
console.log(` Method: Ministral 3 8B Vision (Direct)`);
console.log(` Passed: ${passedCount}/${total}`);
console.log(` Failed: ${failedCount}/${total}`);
console.log(` Accuracy: ${accuracy.toFixed(1)}%`);
console.log(`------------------------------------------------------`);
console.log(` Total time: ${totalTime.toFixed(1)}s`);
console.log(` Avg per inv: ${avgTime.toFixed(1)}s`);
console.log(`======================================================\n`);
});
export default tap.start();

View File

@@ -0,0 +1,679 @@
/**
* Invoice extraction using Nanonets-OCR2-3B + GPT-OSS 20B (sequential two-stage pipeline)
*
* Stage 1: Nanonets-OCR2-3B converts ALL document pages to markdown (stop after completion)
* Stage 2: GPT-OSS 20B extracts structured JSON from saved markdown (after Nanonets stops)
*
* This approach avoids GPU contention by running services sequentially.
*/
import { tap, expect } from '@git.zone/tstest/tapbundle';
import * as fs from 'fs';
import * as path from 'path';
import { execSync } from 'child_process';
import * as os from 'os';
import { ensureNanonetsOcr, ensureMiniCpm, isContainerRunning } from './helpers/docker.js';
const NANONETS_URL = 'http://localhost:8000/v1';
const NANONETS_MODEL = 'nanonets/Nanonets-OCR2-3B';
const OLLAMA_URL = 'http://localhost:11434';
const EXTRACTION_MODEL = 'gpt-oss:20b';
// Temp directory for storing markdown between stages
const TEMP_MD_DIR = path.join(os.tmpdir(), 'nanonets-invoices-markdown');
interface IInvoice {
invoice_number: string;
invoice_date: string;
vendor_name: string;
currency: string;
net_amount: number;
vat_amount: number;
total_amount: number;
}
interface IImageData {
base64: string;
width: number;
height: number;
pageNum: number;
}
interface ITestCase {
name: string;
pdfPath: string;
jsonPath: string;
markdownPath?: string;
}
// Nanonets-specific prompt for document OCR to markdown
const NANONETS_OCR_PROMPT = `Extract the text from the above document as if you were reading it naturally.
Return the tables in html format.
Return the equations in LaTeX representation.
If there is an image in the document and image caption is not present, add a small description inside <img></img> tag.
Watermarks should be wrapped in brackets. Ex: <watermark>OFFICIAL COPY</watermark>.
Page numbers should be wrapped in brackets. Ex: <page_number>14</page_number>.`;
// JSON extraction prompt for GPT-OSS 20B (sent AFTER the invoice text is provided)
const JSON_EXTRACTION_PROMPT = `Extract key fields from the invoice. Return ONLY valid JSON.
WHERE TO FIND DATA:
- invoice_number, invoice_date, vendor_name: Look in the HEADER section at the TOP of PAGE 1 (near "Invoice no.", "Invoice date:", "Rechnungsnummer")
- net_amount, vat_amount, total_amount: Look in the SUMMARY section at the BOTTOM (look for "Total", "Amount due", "Gesamtbetrag")
RULES:
1. invoice_number: Extract ONLY the value (e.g., "R0015632540"), NOT the label "Invoice no."
2. invoice_date: Convert to YYYY-MM-DD format (e.g., "14/04/2022" → "2022-04-14")
3. vendor_name: The company issuing the invoice
4. currency: EUR, USD, or GBP
5. net_amount: Total before tax
6. vat_amount: Tax amount
7. total_amount: Final total with tax
JSON only:
{"invoice_number":"X","invoice_date":"YYYY-MM-DD","vendor_name":"X","currency":"EUR","net_amount":0,"vat_amount":0,"total_amount":0}`;
// Constants for smart batching
const MAX_VISUAL_TOKENS = 28000; // ~32K context minus prompt/output headroom
const PATCH_SIZE = 14; // Qwen2.5-VL uses 14x14 patches
/**
* Estimate visual tokens for an image based on dimensions
*/
function estimateVisualTokens(width: number, height: number): number {
return Math.ceil((width * height) / (PATCH_SIZE * PATCH_SIZE));
}
/**
* Process images one page at a time for reliability
*/
function batchImages(images: IImageData[]): IImageData[][] {
// One page per batch for reliable processing
return images.map(img => [img]);
}
/**
* Convert PDF to JPEG images using ImageMagick with dimension tracking
*/
function convertPdfToImages(pdfPath: string): IImageData[] {
const tempDir = fs.mkdtempSync(path.join(os.tmpdir(), 'pdf-convert-'));
const outputPattern = path.join(tempDir, 'page-%d.jpg');
try {
execSync(
`convert -density 150 -quality 90 "${pdfPath}" -background white -alpha remove "${outputPattern}"`,
{ stdio: 'pipe' }
);
const files = fs.readdirSync(tempDir).filter((f: string) => f.endsWith('.jpg')).sort();
const images: IImageData[] = [];
for (let i = 0; i < files.length; i++) {
const file = files[i];
const imagePath = path.join(tempDir, file);
const imageData = fs.readFileSync(imagePath);
// Get image dimensions using identify command
const dimensions = execSync(`identify -format "%w %h" "${imagePath}"`, { encoding: 'utf-8' }).trim();
const [width, height] = dimensions.split(' ').map(Number);
images.push({
base64: imageData.toString('base64'),
width,
height,
pageNum: i + 1,
});
}
return images;
} finally {
fs.rmSync(tempDir, { recursive: true, force: true });
}
}
/**
* Convert a batch of pages to markdown using Nanonets-OCR-s
*/
async function convertBatchToMarkdown(batch: IImageData[]): Promise<string> {
const startTime = Date.now();
const pageNums = batch.map(img => img.pageNum).join(', ');
// Build content array with all images first, then the prompt
const content: Array<{ type: string; image_url?: { url: string }; text?: string }> = [];
for (const img of batch) {
content.push({
type: 'image_url',
image_url: { url: `data:image/jpeg;base64,${img.base64}` },
});
}
// Add prompt with page separator instruction if multiple pages
const promptText = batch.length > 1
? `${NANONETS_OCR_PROMPT}\n\nPlease clearly separate each page's content with "--- PAGE N ---" markers, where N is the page number starting from ${batch[0].pageNum}.`
: NANONETS_OCR_PROMPT;
content.push({ type: 'text', text: promptText });
const response = await fetch(`${NANONETS_URL}/chat/completions`, {
method: 'POST',
headers: {
'Content-Type': 'application/json',
'Authorization': 'Bearer dummy',
},
body: JSON.stringify({
model: NANONETS_MODEL,
messages: [{
role: 'user',
content,
}],
max_tokens: 4096 * batch.length, // Scale output tokens with batch size
temperature: 0.0,
}),
signal: AbortSignal.timeout(600000), // 10 minute timeout for OCR
});
const elapsed = ((Date.now() - startTime) / 1000).toFixed(1);
if (!response.ok) {
const errorText = await response.text();
throw new Error(`Nanonets API error: ${response.status} - ${errorText}`);
}
const data = await response.json();
let responseContent = (data.choices?.[0]?.message?.content || '').trim();
// For single-page batches, add page marker if not present
if (batch.length === 1 && !responseContent.includes('--- PAGE')) {
responseContent = `--- PAGE ${batch[0].pageNum} ---\n${responseContent}`;
}
console.log(` Pages [${pageNums}]: ${responseContent.length} chars (${elapsed}s)`);
return responseContent;
}
/**
* Convert all pages of a document to markdown using smart batching
*/
async function convertDocumentToMarkdown(images: IImageData[], docName: string): Promise<string> {
const batches = batchImages(images);
console.log(` [${docName}] Processing ${images.length} page(s) in ${batches.length} batch(es)...`);
const markdownParts: string[] = [];
for (let i = 0; i < batches.length; i++) {
const batch = batches[i];
const batchTokens = batch.reduce((sum, img) => sum + estimateVisualTokens(img.width, img.height), 0);
console.log(` Batch ${i + 1}: ${batch.length} page(s), ~${batchTokens} tokens`);
const markdown = await convertBatchToMarkdown(batch);
markdownParts.push(markdown);
}
const fullMarkdown = markdownParts.join('\n\n');
console.log(` [${docName}] Complete: ${fullMarkdown.length} chars total`);
return fullMarkdown;
}
/**
* Stop Nanonets container
*/
function stopNanonets(): void {
console.log(' [Docker] Stopping Nanonets container...');
try {
execSync('docker stop nanonets-test 2>/dev/null || true', { stdio: 'pipe' });
execSync('sleep 5', { stdio: 'pipe' });
console.log(' [Docker] Nanonets stopped');
} catch {
console.log(' [Docker] Nanonets was not running');
}
}
/**
* Ensure GPT-OSS 20B model is available
*/
async function ensureExtractionModel(): Promise<boolean> {
try {
const response = await fetch(`${OLLAMA_URL}/api/tags`);
if (response.ok) {
const data = await response.json();
const models = data.models || [];
if (models.some((m: { name: string }) => m.name === EXTRACTION_MODEL)) {
console.log(` [Ollama] Model available: ${EXTRACTION_MODEL}`);
return true;
}
}
} catch {
return false;
}
console.log(` [Ollama] Pulling ${EXTRACTION_MODEL}...`);
const pullResponse = await fetch(`${OLLAMA_URL}/api/pull`, {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({ name: EXTRACTION_MODEL, stream: false }),
});
return pullResponse.ok;
}
/**
* Parse amount from string (handles European format)
*/
function parseAmount(s: string | number | undefined): number {
if (s === undefined || s === null) return 0;
if (typeof s === 'number') return s;
const match = s.match(/([\d.,]+)/);
if (!match) return 0;
const numStr = match[1];
const normalized = numStr.includes(',') && numStr.indexOf(',') > numStr.lastIndexOf('.')
? numStr.replace(/\./g, '').replace(',', '.')
: numStr.replace(/,/g, '');
return parseFloat(normalized) || 0;
}
/**
* Extract invoice number from potentially verbose response
*/
function extractInvoiceNumber(s: string | undefined): string {
if (!s) return '';
let clean = s.replace(/\*\*/g, '').replace(/`/g, '').trim();
const patterns = [
/\b([A-Z]{2,3}\d{10,})\b/i,
/\b([A-Z]\d{8,})\b/i,
/\b(INV[-\s]?\d{4}[-\s]?\d+)\b/i,
/\b(\d{7,})\b/,
];
for (const pattern of patterns) {
const match = clean.match(pattern);
if (match) return match[1];
}
return clean.replace(/[^A-Z0-9-]/gi, '').trim() || clean;
}
/**
* Extract date (YYYY-MM-DD) from response
*/
function extractDate(s: string | undefined): string {
if (!s) return '';
let clean = s.replace(/\*\*/g, '').replace(/`/g, '').trim();
const isoMatch = clean.match(/(\d{4}-\d{2}-\d{2})/);
if (isoMatch) return isoMatch[1];
const dmyMatch = clean.match(/(\d{1,2})[\/.](\d{1,2})[\/.](\d{4})/);
if (dmyMatch) {
return `${dmyMatch[3]}-${dmyMatch[2].padStart(2, '0')}-${dmyMatch[1].padStart(2, '0')}`;
}
return clean.replace(/[^\d-]/g, '').trim();
}
/**
* Extract currency
*/
function extractCurrency(s: string | undefined): string {
if (!s) return 'EUR';
const upper = s.toUpperCase();
if (upper.includes('EUR') || upper.includes('€')) return 'EUR';
if (upper.includes('USD') || upper.includes('$')) return 'USD';
if (upper.includes('GBP') || upper.includes('£')) return 'GBP';
return 'EUR';
}
/**
* Extract JSON from response
*/
function extractJsonFromResponse(response: string): Record<string, unknown> | null {
let cleanResponse = response.replace(/<think>[\s\S]*?<\/think>/g, '').trim();
const codeBlockMatch = cleanResponse.match(/```(?:json)?\s*([\s\S]*?)```/);
const jsonStr = codeBlockMatch ? codeBlockMatch[1].trim() : cleanResponse;
try {
return JSON.parse(jsonStr);
} catch {
const jsonMatch = jsonStr.match(/\{[\s\S]*\}/);
if (jsonMatch) {
try {
return JSON.parse(jsonMatch[0]);
} catch {
return null;
}
}
return null;
}
}
/**
* Parse JSON response into IInvoice
*/
function parseJsonToInvoice(response: string): IInvoice | null {
const parsed = extractJsonFromResponse(response);
if (!parsed) return null;
return {
invoice_number: extractInvoiceNumber(String(parsed.invoice_number || '')),
invoice_date: extractDate(String(parsed.invoice_date || '')),
vendor_name: String(parsed.vendor_name || '').replace(/\*\*/g, '').replace(/`/g, '').trim(),
currency: extractCurrency(String(parsed.currency || '')),
net_amount: parseAmount(parsed.net_amount as string | number),
vat_amount: parseAmount(parsed.vat_amount as string | number),
total_amount: parseAmount(parsed.total_amount as string | number),
};
}
/**
* Extract invoice from markdown using GPT-OSS 20B (streaming)
*/
async function extractInvoiceFromMarkdown(markdown: string, queryId: string): Promise<IInvoice | null> {
const startTime = Date.now();
console.log(` [${queryId}] Invoice: ${markdown.length} chars, Prompt: ${JSON_EXTRACTION_PROMPT.length} chars`);
const response = await fetch(`${OLLAMA_URL}/api/chat`, {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({
model: EXTRACTION_MODEL,
messages: [
{ role: 'user', content: 'Hi there, how are you?' },
{ role: 'assistant', content: 'Good, how can I help you today?' },
{ role: 'user', content: `Here is an invoice document:\n\n${markdown}` },
{ role: 'assistant', content: 'I have read the invoice document you provided. I can see all the text content. What would you like me to do with it?' },
{ role: 'user', content: JSON_EXTRACTION_PROMPT },
],
stream: true,
options: {
num_ctx: 32768, // Larger context for long invoices + thinking
temperature: 0, // Deterministic for JSON extraction
},
}),
signal: AbortSignal.timeout(600000), // 10 minute timeout for large documents
});
if (!response.ok) {
const elapsed = ((Date.now() - startTime) / 1000).toFixed(1);
console.log(` [${queryId}] ERROR: ${response.status} (${elapsed}s)`);
throw new Error(`Ollama API error: ${response.status}`);
}
// Stream the response
let content = '';
let thinkingContent = '';
let thinkingStarted = false;
let outputStarted = false;
const reader = response.body!.getReader();
const decoder = new TextDecoder();
try {
while (true) {
const { done, value } = await reader.read();
if (done) break;
const chunk = decoder.decode(value, { stream: true });
// Each line is a JSON object
for (const line of chunk.split('\n').filter(l => l.trim())) {
try {
const json = JSON.parse(line);
// Stream thinking tokens
const thinking = json.message?.thinking || '';
if (thinking) {
if (!thinkingStarted) {
process.stdout.write(` [${queryId}] THINKING: `);
thinkingStarted = true;
}
process.stdout.write(thinking);
thinkingContent += thinking;
}
// Stream content tokens
const token = json.message?.content || '';
if (token) {
if (!outputStarted) {
if (thinkingStarted) process.stdout.write('\n');
process.stdout.write(` [${queryId}] OUTPUT: `);
outputStarted = true;
}
process.stdout.write(token);
content += token;
}
} catch {
// Ignore parse errors for partial chunks
}
}
}
} finally {
if (thinkingStarted || outputStarted) process.stdout.write('\n');
}
const elapsed = ((Date.now() - startTime) / 1000).toFixed(1);
console.log(` [${queryId}] Done: ${thinkingContent.length} thinking chars, ${content.length} output chars (${elapsed}s)`);
return parseJsonToInvoice(content);
}
/**
* Extract invoice (single pass - GPT-OSS is more reliable)
*/
async function extractInvoice(markdown: string, docName: string): Promise<IInvoice> {
console.log(` [${docName}] Extracting...`);
const invoice = await extractInvoiceFromMarkdown(markdown, docName);
if (!invoice) {
return {
invoice_number: '',
invoice_date: '',
vendor_name: '',
currency: 'EUR',
net_amount: 0,
vat_amount: 0,
total_amount: 0,
};
}
console.log(` [${docName}] Extracted: ${invoice.invoice_number}`);
return invoice;
}
/**
* Normalize date to YYYY-MM-DD
*/
function normalizeDate(dateStr: string | null): string {
if (!dateStr) return '';
if (/^\d{4}-\d{2}-\d{2}$/.test(dateStr)) return dateStr;
const monthMap: Record<string, string> = {
JAN: '01', FEB: '02', MAR: '03', APR: '04', MAY: '05', JUN: '06',
JUL: '07', AUG: '08', SEP: '09', OCT: '10', NOV: '11', DEC: '12',
};
let match = dateStr.match(/^(\d{1,2})-([A-Z]{3})-(\d{4})$/i);
if (match) {
return `${match[3]}-${monthMap[match[2].toUpperCase()] || '01'}-${match[1].padStart(2, '0')}`;
}
match = dateStr.match(/^(\d{1,2})[\/.](\d{1,2})[\/.](\d{4})$/);
if (match) {
return `${match[3]}-${match[2].padStart(2, '0')}-${match[1].padStart(2, '0')}`;
}
return dateStr;
}
/**
* Compare extracted invoice against expected
*/
function compareInvoice(
extracted: IInvoice,
expected: IInvoice
): { match: boolean; errors: string[] } {
const errors: string[] = [];
const extNum = extracted.invoice_number?.replace(/\s/g, '').toLowerCase() || '';
const expNum = expected.invoice_number?.replace(/\s/g, '').toLowerCase() || '';
if (extNum !== expNum) {
errors.push(`invoice_number: exp "${expected.invoice_number}", got "${extracted.invoice_number}"`);
}
if (normalizeDate(extracted.invoice_date) !== normalizeDate(expected.invoice_date)) {
errors.push(`invoice_date: exp "${expected.invoice_date}", got "${extracted.invoice_date}"`);
}
if (Math.abs(extracted.total_amount - expected.total_amount) > 0.02) {
errors.push(`total_amount: exp ${expected.total_amount}, got ${extracted.total_amount}`);
}
if (extracted.currency?.toUpperCase() !== expected.currency?.toUpperCase()) {
errors.push(`currency: exp "${expected.currency}", got "${extracted.currency}"`);
}
return { match: errors.length === 0, errors };
}
/**
* Find all test cases
*/
function findTestCases(): ITestCase[] {
const testDir = path.join(process.cwd(), '.nogit/invoices');
if (!fs.existsSync(testDir)) return [];
const files = fs.readdirSync(testDir);
const testCases: ITestCase[] = [];
for (const pdf of files.filter((f) => f.endsWith('.pdf'))) {
const baseName = pdf.replace('.pdf', '');
const jsonFile = `${baseName}.json`;
if (files.includes(jsonFile)) {
testCases.push({
name: baseName,
pdfPath: path.join(testDir, pdf),
jsonPath: path.join(testDir, jsonFile),
});
}
}
return testCases.sort((a, b) => a.name.localeCompare(b.name));
}
// ============ TESTS ============
const testCases = findTestCases();
console.log(`\nFound ${testCases.length} invoice test cases\n`);
// Ensure temp directory exists
if (!fs.existsSync(TEMP_MD_DIR)) {
fs.mkdirSync(TEMP_MD_DIR, { recursive: true });
}
// -------- STAGE 1: OCR with Nanonets --------
tap.test('Stage 1: Setup Nanonets', async () => {
console.log('\n========== STAGE 1: Nanonets OCR ==========\n');
const ok = await ensureNanonetsOcr();
expect(ok).toBeTrue();
});
tap.test('Stage 1: Convert all invoices to markdown', async () => {
console.log('\n Converting all invoice PDFs to markdown with Nanonets-OCR-s...\n');
for (const tc of testCases) {
console.log(`\n === ${tc.name} ===`);
const images = convertPdfToImages(tc.pdfPath);
console.log(` Pages: ${images.length}`);
const markdown = await convertDocumentToMarkdown(images, tc.name);
const mdPath = path.join(TEMP_MD_DIR, `${tc.name}.md`);
fs.writeFileSync(mdPath, markdown);
tc.markdownPath = mdPath;
console.log(` Saved: ${mdPath}`);
}
console.log('\n Stage 1 complete: All invoices converted to markdown\n');
});
tap.test('Stage 1: Stop Nanonets', async () => {
stopNanonets();
await new Promise(resolve => setTimeout(resolve, 3000));
expect(isContainerRunning('nanonets-test')).toBeFalse();
});
// -------- STAGE 2: Extraction with GPT-OSS 20B --------
tap.test('Stage 2: Setup Ollama + GPT-OSS 20B', async () => {
console.log('\n========== STAGE 2: GPT-OSS 20B Extraction ==========\n');
const ollamaOk = await ensureMiniCpm();
expect(ollamaOk).toBeTrue();
const extractionOk = await ensureExtractionModel();
expect(extractionOk).toBeTrue();
});
let passedCount = 0;
let failedCount = 0;
const processingTimes: number[] = [];
for (const tc of testCases) {
tap.test(`Stage 2: Extract ${tc.name}`, async () => {
const expected: IInvoice = JSON.parse(fs.readFileSync(tc.jsonPath, 'utf-8'));
console.log(`\n === ${tc.name} ===`);
console.log(` Expected: ${expected.invoice_number} | ${expected.invoice_date} | ${expected.total_amount} ${expected.currency}`);
const startTime = Date.now();
const mdPath = path.join(TEMP_MD_DIR, `${tc.name}.md`);
if (!fs.existsSync(mdPath)) {
throw new Error(`Markdown not found: ${mdPath}. Run Stage 1 first.`);
}
const markdown = fs.readFileSync(mdPath, 'utf-8');
console.log(` Markdown: ${markdown.length} chars`);
const extracted = await extractInvoice(markdown, tc.name);
const elapsedMs = Date.now() - startTime;
processingTimes.push(elapsedMs);
console.log(` Extracted: ${extracted.invoice_number} | ${extracted.invoice_date} | ${extracted.total_amount} ${extracted.currency}`);
const result = compareInvoice(extracted, expected);
if (result.match) {
passedCount++;
console.log(` Result: MATCH (${(elapsedMs / 1000).toFixed(1)}s)`);
} else {
failedCount++;
console.log(` Result: MISMATCH (${(elapsedMs / 1000).toFixed(1)}s)`);
result.errors.forEach(e => console.log(` - ${e}`));
}
expect(result.match).toBeTrue();
});
}
tap.test('Summary', async () => {
const totalInvoices = testCases.length;
const accuracy = totalInvoices > 0 ? (passedCount / totalInvoices) * 100 : 0;
const totalTimeMs = processingTimes.reduce((a, b) => a + b, 0);
const avgTimeSec = processingTimes.length > 0 ? totalTimeMs / processingTimes.length / 1000 : 0;
console.log(`\n========================================`);
console.log(` Invoice Summary (Nanonets + GPT-OSS 20B)`);
console.log(`========================================`);
console.log(` Stage 1: Nanonets-OCR-s (doc -> md)`);
console.log(` Stage 2: GPT-OSS 20B (md -> JSON)`);
console.log(` Passed: ${passedCount}/${totalInvoices}`);
console.log(` Failed: ${failedCount}/${totalInvoices}`);
console.log(` Accuracy: ${accuracy.toFixed(1)}%`);
console.log(`----------------------------------------`);
console.log(` Total time: ${(totalTimeMs / 1000).toFixed(1)}s`);
console.log(` Avg per inv: ${avgTimeSec.toFixed(1)}s`);
console.log(`========================================\n`);
// Cleanup temp files
try {
fs.rmSync(TEMP_MD_DIR, { recursive: true, force: true });
console.log(` Cleaned up temp directory: ${TEMP_MD_DIR}\n`);
} catch {
// Ignore
}
});
export default tap.start();

View File

@@ -1,490 +0,0 @@
/**
* Invoice extraction test using PaddleOCR-VL Full Pipeline
*
* This tests the complete PaddleOCR-VL pipeline:
* 1. PP-DocLayoutV2 for layout detection
* 2. PaddleOCR-VL for recognition
* 3. Structured HTML output (semantic tags with proper tables)
* 4. Qwen2.5 extracts invoice fields from structured HTML
*
* HTML output is used instead of Markdown because:
* - <table> tags are unambiguous (no parser variations)
* - LLMs are heavily trained on web/HTML data
* - Semantic tags (header, footer, section) provide clear structure
*/
import { tap, expect } from '@git.zone/tstest/tapbundle';
import * as fs from 'fs';
import * as path from 'path';
import { execSync } from 'child_process';
import * as os from 'os';
import { ensurePaddleOcrVlFull, ensureQwen25 } from './helpers/docker.js';
const PADDLEOCR_VL_URL = 'http://localhost:8000';
const OLLAMA_URL = 'http://localhost:11434';
// Use Qwen2.5 for text-only JSON extraction (not MiniCPM which is vision-focused)
const TEXT_MODEL = 'qwen2.5:7b';
interface IInvoice {
invoice_number: string;
invoice_date: string;
vendor_name: string;
currency: string;
net_amount: number;
vat_amount: number;
total_amount: number;
}
/**
* Convert PDF to PNG images using ImageMagick
*/
function convertPdfToImages(pdfPath: string): string[] {
const tempDir = fs.mkdtempSync(path.join(os.tmpdir(), 'pdf-convert-'));
const outputPattern = path.join(tempDir, 'page-%d.png');
try {
execSync(
`convert -density 200 -quality 90 "${pdfPath}" -background white -alpha remove "${outputPattern}"`,
{ stdio: 'pipe' }
);
const files = fs.readdirSync(tempDir).filter((f) => f.endsWith('.png')).sort();
const images: string[] = [];
for (const file of files) {
const imagePath = path.join(tempDir, file);
const imageData = fs.readFileSync(imagePath);
images.push(imageData.toString('base64'));
}
return images;
} finally {
fs.rmSync(tempDir, { recursive: true, force: true });
}
}
/**
* Parse document using PaddleOCR-VL Full Pipeline (returns structured HTML)
*/
async function parseDocument(imageBase64: string): Promise<string> {
const response = await fetch(`${PADDLEOCR_VL_URL}/parse`, {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({
image: imageBase64,
output_format: 'html',
}),
});
if (!response.ok) {
const text = await response.text();
throw new Error(`PaddleOCR-VL API error: ${response.status} - ${text}`);
}
const data = await response.json();
if (!data.success) {
throw new Error(`PaddleOCR-VL error: ${data.error}`);
}
return data.result?.html || '';
}
/**
* Extract invoice fields using simple direct prompt
* The OCR output has clearly labeled fields - just ask the LLM to read them
*/
async function extractInvoiceFromHtml(html: string): Promise<IInvoice> {
// OCR output is already good - just truncate if too long
const truncated = html.length > 32000 ? html.slice(0, 32000) : html;
console.log(` [Extract] ${truncated.length} chars of HTML`);
// JSON schema for structured output
const invoiceSchema = {
type: 'object',
properties: {
invoice_number: { type: 'string' },
invoice_date: { type: 'string' },
vendor_name: { type: 'string' },
currency: { type: 'string' },
net_amount: { type: 'number' },
vat_amount: { type: 'number' },
total_amount: { type: 'number' },
},
required: ['invoice_number', 'invoice_date', 'vendor_name', 'currency', 'net_amount', 'vat_amount', 'total_amount'],
};
// Simple, direct prompt - the OCR output already has labeled fields
const systemPrompt = `You read invoice HTML and extract labeled fields. Return JSON only.`;
const userPrompt = `Extract from this invoice HTML:
- invoice_number: Find "Invoice no.", "Invoice #", "Invoice", "Rechnung", "Document No" and extract the value
- invoice_date: Find "Invoice date", "Date", "Datum" and convert to YYYY-MM-DD format
- vendor_name: The company name issuing the invoice (in header/letterhead)
- currency: EUR, USD, or GBP (look for € $ £ symbols or text)
- total_amount: Find "Total", "Grand Total", "Amount Due", "Gesamtbetrag" - the FINAL total amount
- net_amount: Amount before VAT/tax (Subtotal, Net)
- vat_amount: VAT/tax amount
HTML:
${truncated}
Return ONLY valid JSON: {"invoice_number":"...", "invoice_date":"YYYY-MM-DD", "vendor_name":"...", "currency":"EUR", "net_amount":0, "vat_amount":0, "total_amount":0}`;
const response = await fetch(`${OLLAMA_URL}/api/chat`, {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({
model: TEXT_MODEL,
messages: [
{ role: 'system', content: systemPrompt },
{ role: 'user', content: userPrompt },
],
format: invoiceSchema,
stream: true,
options: { num_predict: 512, temperature: 0.0 },
}),
});
if (!response.ok) {
throw new Error(`Ollama API error: ${response.status}`);
}
const reader = response.body?.getReader();
if (!reader) {
throw new Error('No response body');
}
const decoder = new TextDecoder();
let fullText = '';
while (true) {
const { done, value } = await reader.read();
if (done) break;
const chunk = decoder.decode(value, { stream: true });
const lines = chunk.split('\n').filter((l) => l.trim());
for (const line of lines) {
try {
const json = JSON.parse(line);
if (json.message?.content) {
fullText += json.message.content;
} else if (json.response) {
fullText += json.response;
}
} catch {
// Skip invalid JSON lines
}
}
}
// Extract JSON from response
let jsonStr = fullText.trim();
// Remove markdown code block if present
if (jsonStr.startsWith('```json')) {
jsonStr = jsonStr.slice(7);
} else if (jsonStr.startsWith('```')) {
jsonStr = jsonStr.slice(3);
}
if (jsonStr.endsWith('```')) {
jsonStr = jsonStr.slice(0, -3);
}
jsonStr = jsonStr.trim();
// Find JSON object boundaries
const startIdx = jsonStr.indexOf('{');
const endIdx = jsonStr.lastIndexOf('}') + 1;
if (startIdx < 0 || endIdx <= startIdx) {
throw new Error(`No JSON object found in response: ${fullText.substring(0, 200)}`);
}
jsonStr = jsonStr.substring(startIdx, endIdx);
let parsed;
try {
parsed = JSON.parse(jsonStr);
} catch (e) {
throw new Error(`Invalid JSON: ${jsonStr.substring(0, 200)}`);
}
// Normalize response to expected format
return {
invoice_number: parsed.invoice_number || null,
invoice_date: parsed.invoice_date || null,
vendor_name: parsed.vendor_name || null,
currency: parsed.currency || 'EUR',
net_amount: parseFloat(parsed.net_amount) || 0,
vat_amount: parseFloat(parsed.vat_amount) || 0,
total_amount: parseFloat(parsed.total_amount) || 0,
};
}
/**
* Single extraction pass: Parse with PaddleOCR-VL Full, extract with Qwen2.5 (text-only)
* Processes ALL pages and concatenates HTML for multi-page invoice support
*/
async function extractOnce(images: string[], passNum: number): Promise<IInvoice> {
// Parse ALL pages and concatenate HTML with page markers
const htmlParts: string[] = [];
for (let i = 0; i < images.length; i++) {
const pageHtml = await parseDocument(images[i]);
// Add page marker for context
htmlParts.push(`<!-- Page ${i + 1} -->\n${pageHtml}`);
}
const fullHtml = htmlParts.join('\n\n');
console.log(` [Parse] Got ${fullHtml.split('\n').length} lines from ${images.length} page(s)`);
// Extract invoice fields from HTML using text-only model (no images)
return extractInvoiceFromHtml(fullHtml);
}
/**
* Create a hash of invoice for comparison (using key fields)
*/
function hashInvoice(invoice: IInvoice): string {
// Ensure total_amount is a number
const amount = typeof invoice.total_amount === 'number'
? invoice.total_amount.toFixed(2)
: String(invoice.total_amount || 0);
return `${invoice.invoice_number}|${invoice.invoice_date}|${amount}`;
}
/**
* Extract with consensus voting
*/
async function extractWithConsensus(images: string[], invoiceName: string, maxPasses: number = 5): Promise<IInvoice> {
const results: Array<{ invoice: IInvoice; hash: string }> = [];
const hashCounts: Map<string, number> = new Map();
const addResult = (invoice: IInvoice, passLabel: string): number => {
const hash = hashInvoice(invoice);
results.push({ invoice, hash });
hashCounts.set(hash, (hashCounts.get(hash) || 0) + 1);
console.log(` [${passLabel}] ${invoice.invoice_number} | ${invoice.invoice_date} | ${invoice.total_amount} ${invoice.currency}`);
return hashCounts.get(hash)!;
};
for (let pass = 1; pass <= maxPasses; pass++) {
try {
const invoice = await extractOnce(images, pass);
const count = addResult(invoice, `Pass ${pass}`);
if (count >= 2) {
console.log(` [Consensus] Reached after ${pass} passes`);
return invoice;
}
} catch (err) {
console.log(` [Pass ${pass}] Error: ${err}`);
}
}
// No consensus reached - return the most common result
let bestHash = '';
let bestCount = 0;
for (const [hash, count] of hashCounts) {
if (count > bestCount) {
bestCount = count;
bestHash = hash;
}
}
if (!bestHash) {
throw new Error(`No valid results for ${invoiceName}`);
}
const best = results.find((r) => r.hash === bestHash)!;
console.log(` [No consensus] Using most common result (${bestCount}/${maxPasses} passes)`);
return best.invoice;
}
/**
* Normalize date to YYYY-MM-DD format
*/
function normalizeDate(dateStr: string | null): string {
if (!dateStr) return '';
// Already in correct format
if (/^\d{4}-\d{2}-\d{2}$/.test(dateStr)) {
return dateStr;
}
// Handle DD-MMM-YYYY format (e.g., "28-JUN-2022")
const monthMap: Record<string, string> = {
JAN: '01', FEB: '02', MAR: '03', APR: '04', MAY: '05', JUN: '06',
JUL: '07', AUG: '08', SEP: '09', OCT: '10', NOV: '11', DEC: '12',
};
const match = dateStr.match(/^(\d{1,2})-([A-Z]{3})-(\d{4})$/i);
if (match) {
const day = match[1].padStart(2, '0');
const month = monthMap[match[2].toUpperCase()] || '01';
const year = match[3];
return `${year}-${month}-${day}`;
}
// Handle DD/MM/YYYY or DD.MM.YYYY
const match2 = dateStr.match(/^(\d{1,2})[\/.](\d{1,2})[\/.](\d{4})$/);
if (match2) {
const day = match2[1].padStart(2, '0');
const month = match2[2].padStart(2, '0');
const year = match2[3];
return `${year}-${month}-${day}`;
}
return dateStr;
}
/**
* Compare extracted invoice against expected
*/
function compareInvoice(
extracted: IInvoice,
expected: IInvoice
): { match: boolean; errors: string[] } {
const errors: string[] = [];
// Compare invoice number (normalize by removing spaces and case)
const extNum = extracted.invoice_number?.replace(/\s/g, '').toLowerCase() || '';
const expNum = expected.invoice_number?.replace(/\s/g, '').toLowerCase() || '';
if (extNum !== expNum) {
errors.push(`invoice_number: expected "${expected.invoice_number}", got "${extracted.invoice_number}"`);
}
// Compare date (normalize format first)
const extDate = normalizeDate(extracted.invoice_date);
const expDate = normalizeDate(expected.invoice_date);
if (extDate !== expDate) {
errors.push(`invoice_date: expected "${expected.invoice_date}", got "${extracted.invoice_date}"`);
}
// Compare total amount (with tolerance)
if (Math.abs(extracted.total_amount - expected.total_amount) > 0.02) {
errors.push(`total_amount: expected ${expected.total_amount}, got ${extracted.total_amount}`);
}
// Compare currency
if (extracted.currency?.toUpperCase() !== expected.currency?.toUpperCase()) {
errors.push(`currency: expected "${expected.currency}", got "${extracted.currency}"`);
}
return { match: errors.length === 0, errors };
}
/**
* Find all test cases (PDF + JSON pairs) in .nogit/invoices/
*/
function findTestCases(): Array<{ name: string; pdfPath: string; jsonPath: string }> {
const testDir = path.join(process.cwd(), '.nogit/invoices');
if (!fs.existsSync(testDir)) {
return [];
}
const files = fs.readdirSync(testDir);
const pdfFiles = files.filter((f) => f.endsWith('.pdf'));
const testCases: Array<{ name: string; pdfPath: string; jsonPath: string }> = [];
for (const pdf of pdfFiles) {
const baseName = pdf.replace('.pdf', '');
const jsonFile = `${baseName}.json`;
if (files.includes(jsonFile)) {
testCases.push({
name: baseName,
pdfPath: path.join(testDir, pdf),
jsonPath: path.join(testDir, jsonFile),
});
}
}
// Sort alphabetically
testCases.sort((a, b) => a.name.localeCompare(b.name));
return testCases;
}
// Tests
tap.test('setup: ensure Docker containers are running', async () => {
console.log('\n[Setup] Checking Docker containers...\n');
// Ensure PaddleOCR-VL Full Pipeline is running
const paddleOk = await ensurePaddleOcrVlFull();
expect(paddleOk).toBeTrue();
// Ensure Qwen2.5 is available (for text-only JSON extraction)
const qwenOk = await ensureQwen25();
expect(qwenOk).toBeTrue();
console.log('\n[Setup] All containers ready!\n');
});
// Dynamic test for each PDF/JSON pair
const testCases = findTestCases();
console.log(`\nFound ${testCases.length} invoice test cases (PaddleOCR-VL Full Pipeline)\n`);
let passedCount = 0;
let failedCount = 0;
const processingTimes: number[] = [];
for (const testCase of testCases) {
tap.test(`should extract invoice: ${testCase.name}`, async () => {
// Load expected data
const expected: IInvoice = JSON.parse(fs.readFileSync(testCase.jsonPath, 'utf-8'));
console.log(`\n=== ${testCase.name} ===`);
console.log(`Expected: ${expected.invoice_number} | ${expected.invoice_date} | ${expected.total_amount} ${expected.currency}`);
const startTime = Date.now();
// Convert PDF to images
const images = convertPdfToImages(testCase.pdfPath);
console.log(` Pages: ${images.length}`);
// Extract with consensus voting (PaddleOCR-VL Full -> MiniCPM)
const extracted = await extractWithConsensus(images, testCase.name);
const endTime = Date.now();
const elapsedMs = endTime - startTime;
processingTimes.push(elapsedMs);
// Compare results
const result = compareInvoice(extracted, expected);
if (result.match) {
passedCount++;
console.log(` Result: MATCH (${(elapsedMs / 1000).toFixed(1)}s)`);
} else {
failedCount++;
console.log(` Result: MISMATCH (${(elapsedMs / 1000).toFixed(1)}s)`);
result.errors.forEach((e) => console.log(` - ${e}`));
}
// Assert match
expect(result.match).toBeTrue();
});
}
tap.test('summary', async () => {
const totalInvoices = testCases.length;
const accuracy = totalInvoices > 0 ? (passedCount / totalInvoices) * 100 : 0;
const totalTimeMs = processingTimes.reduce((a, b) => a + b, 0);
const avgTimeMs = processingTimes.length > 0 ? totalTimeMs / processingTimes.length : 0;
const avgTimeSec = avgTimeMs / 1000;
const totalTimeSec = totalTimeMs / 1000;
console.log(`\n======================================================`);
console.log(` Invoice Extraction Summary (PaddleOCR-VL Full)`);
console.log(`======================================================`);
console.log(` Method: PaddleOCR-VL Full Pipeline (HTML) -> Qwen2.5 (text-only)`);
console.log(` Passed: ${passedCount}/${totalInvoices}`);
console.log(` Failed: ${failedCount}/${totalInvoices}`);
console.log(` Accuracy: ${accuracy.toFixed(1)}%`);
console.log(`------------------------------------------------------`);
console.log(` Total time: ${totalTimeSec.toFixed(1)}s`);
console.log(` Avg per inv: ${avgTimeSec.toFixed(1)}s`);
console.log(`======================================================\n`);
});
export default tap.start();

View File

@@ -1,10 +1,8 @@
/**
* Invoice extraction using Qwen3-VL 8B Vision (Direct)
*
* Single-step pipeline: PDF → Images → Qwen3-VL → JSON
* Uses /no_think to disable reasoning mode for fast, direct responses.
*
* Qwen3-VL outperforms PaddleOCR-VL on certain invoice formats.
* Multi-query approach: 5 parallel simple queries to avoid token exhaustion.
* Single pass, no consensus voting.
*/
import { tap, expect } from '@git.zone/tstest/tapbundle';
import * as fs from 'fs';
@@ -56,26 +54,10 @@ function convertPdfToImages(pdfPath: string): string[] {
}
/**
* Extract invoice data directly from images using Qwen3-VL Vision
* Uses /no_think to disable reasoning mode for fast, direct JSON output
* Query Qwen3-VL for a single field
* Uses simple prompts to minimize thinking tokens
*/
async function extractInvoiceFromImages(images: string[]): Promise<IInvoice> {
console.log(` [Vision] Processing ${images.length} page(s) with Qwen3-VL`);
// /no_think disables Qwen3's reasoning mode - crucial for getting direct output
const prompt = `/no_think
Look at this invoice and extract these fields. Reply with ONLY JSON, no explanation.
- invoice_number
- invoice_date (format: YYYY-MM-DD)
- vendor_name
- currency (EUR, USD, or GBP)
- net_amount
- vat_amount
- total_amount
JSON: {"invoice_number":"...","invoice_date":"YYYY-MM-DD","vendor_name":"...","currency":"EUR","net_amount":0,"vat_amount":0,"total_amount":0}`;
async function queryField(images: string[], question: string): Promise<string> {
const response = await fetch(`${OLLAMA_URL}/api/chat`, {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
@@ -83,50 +65,108 @@ JSON: {"invoice_number":"...","invoice_date":"YYYY-MM-DD","vendor_name":"...","c
model: VISION_MODEL,
messages: [{
role: 'user',
content: prompt,
images: images, // Pass all pages
content: `${question} Reply with just the value, nothing else.`,
images: images,
}],
stream: false,
options: {
num_predict: 512,
temperature: 0.0,
num_predict: 500,
temperature: 0.1,
},
}),
});
if (!response.ok) {
const err = await response.text();
throw new Error(`Ollama API error: ${response.status} - ${err}`);
throw new Error(`Ollama API error: ${response.status}`);
}
const data = await response.json();
let content = data.message?.content || '';
return (data.message?.content || '').trim();
}
console.log(` [Vision] Response (${content.length} chars): ${content.substring(0, 200)}...`);
/**
* Extract invoice data using multiple simple queries
* Each query asks for 1-2 fields to minimize thinking tokens
* (Qwen3's thinking mode uses all tokens on complex prompts)
*/
async function extractInvoiceFromImages(images: string[]): Promise<IInvoice> {
console.log(` [Vision] Processing ${images.length} page(s) with Qwen3-VL (multi-query)`);
// Parse JSON from response
if (content.startsWith('```json')) content = content.slice(7);
else if (content.startsWith('```')) content = content.slice(3);
if (content.endsWith('```')) content = content.slice(0, -3);
content = content.trim();
// Query each field separately to avoid excessive thinking tokens
// Use explicit questions to avoid confusion between similar fields
// Log each result as it comes in (not waiting for all to complete)
const queryAndLog = async (name: string, question: string): Promise<string> => {
const result = await queryField(images, question);
console.log(` [Query] ${name}: "${result}"`);
return result;
};
const startIdx = content.indexOf('{');
const endIdx = content.lastIndexOf('}') + 1;
const [invoiceNum, invoiceDate, vendor, currency, totalAmount, netAmount, vatAmount] = await Promise.all([
queryAndLog('Invoice Number', 'What is the INVOICE NUMBER (not VAT number, not customer ID)? Look for "Invoice No", "Invoice #", "Rechnung Nr", "Facture". Just the number/code.'),
queryAndLog('Invoice Date ', 'What is the INVOICE DATE (not due date, not delivery date)? The date the invoice was issued. Format: YYYY-MM-DD'),
queryAndLog('Vendor ', 'What company ISSUED this invoice (the seller/vendor, not the buyer)? Look at the letterhead or "From" section.'),
queryAndLog('Currency ', 'What CURRENCY is used? Look for € (EUR), $ (USD), or £ (GBP). Answer with 3-letter code: EUR, USD, or GBP'),
queryAndLog('Total Amount ', 'What is the TOTAL AMOUNT INCLUDING TAX (the final amount to pay, with VAT/tax included)? Just the number, e.g. 24.99'),
queryAndLog('Net Amount ', 'What is the NET AMOUNT (subtotal before VAT/tax)? Just the number, e.g. 20.99'),
queryAndLog('VAT Amount ', 'What is the VAT/TAX AMOUNT? Just the number, e.g. 4.00'),
]);
if (startIdx < 0 || endIdx <= startIdx) {
throw new Error(`No JSON found: ${content.substring(0, 300)}`);
}
// Parse amount from string (handles European format)
const parseAmount = (s: string): number => {
if (!s) return 0;
// Extract number from the response
const match = s.match(/([\d.,]+)/);
if (!match) return 0;
const numStr = match[1];
// Handle European format: 1.234,56 → 1234.56
const normalized = numStr.includes(',') && numStr.indexOf(',') > numStr.lastIndexOf('.')
? numStr.replace(/\./g, '').replace(',', '.')
: numStr.replace(/,/g, '');
return parseFloat(normalized) || 0;
};
const parsed = JSON.parse(content.substring(startIdx, endIdx));
// Extract invoice number from potentially verbose response
const extractInvoiceNumber = (s: string): string => {
let clean = s.replace(/\*\*/g, '').replace(/`/g, '').trim();
// Look for common invoice number patterns
const patterns = [
/\b([A-Z]{2,3}\d{10,})\b/i, // IEE2022006460244
/\b([A-Z]\d{8,})\b/i, // R0014359508
/\b(INV[-\s]?\d{4}[-\s]?\d+)\b/i, // INV-2024-001
/\b(\d{7,})\b/, // 1579087430
];
for (const pattern of patterns) {
const match = clean.match(pattern);
if (match) return match[1];
}
return clean.replace(/[^A-Z0-9-]/gi, '').trim() || clean;
};
// Extract date (YYYY-MM-DD) from response
const extractDate = (s: string): string => {
let clean = s.replace(/\*\*/g, '').replace(/`/g, '').trim();
const isoMatch = clean.match(/(\d{4}-\d{2}-\d{2})/);
if (isoMatch) return isoMatch[1];
return clean.replace(/[^\d-]/g, '').trim();
};
// Extract currency
const extractCurrency = (s: string): string => {
const upper = s.toUpperCase();
if (upper.includes('EUR') || upper.includes('€')) return 'EUR';
if (upper.includes('USD') || upper.includes('$')) return 'USD';
if (upper.includes('GBP') || upper.includes('£')) return 'GBP';
return 'EUR';
};
return {
invoice_number: parsed.invoice_number || null,
invoice_date: parsed.invoice_date || null,
vendor_name: parsed.vendor_name || null,
currency: parsed.currency || 'EUR',
net_amount: parseFloat(parsed.net_amount) || 0,
vat_amount: parseFloat(parsed.vat_amount) || 0,
total_amount: parseFloat(parsed.total_amount) || 0,
invoice_number: extractInvoiceNumber(invoiceNum),
invoice_date: extractDate(invoiceDate),
vendor_name: vendor.replace(/\*\*/g, '').replace(/`/g, '').trim() || '',
currency: extractCurrency(currency),
net_amount: parseAmount(netAmount),
vat_amount: parseAmount(vatAmount),
total_amount: parseAmount(totalAmount),
};
}
@@ -298,7 +338,7 @@ tap.test('summary', async () => {
console.log(`\n======================================================`);
console.log(` Invoice Extraction Summary (Qwen3-VL Vision)`);
console.log(`======================================================`);
console.log(` Method: Qwen3-VL 8B Direct Vision (/no_think)`);
console.log(` Method: Multi-query (single pass)`);
console.log(` Passed: ${passedCount}/${total}`);
console.log(` Failed: ${failedCount}/${total}`);
console.log(` Accuracy: ${accuracy.toFixed(1)}%`);