Compare commits
2 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
| 177e87d3b8 | |||
| 17ea7717eb |
@@ -1,5 +1,11 @@
|
|||||||
# Changelog
|
# Changelog
|
||||||
|
|
||||||
|
## 2026-01-18 - 1.13.1 - fix(image_support_files)
|
||||||
|
remove PaddleOCR-VL server scripts from image_support_files
|
||||||
|
|
||||||
|
- Deleted files: image_support_files/paddleocr_vl_full_server.py (approx. 636 lines) and image_support_files/paddleocr_vl_server.py (approx. 465 lines)
|
||||||
|
- Cleanup/removal of legacy PaddleOCR-VL FastAPI server implementations — may affect users who relied on these local scripts
|
||||||
|
|
||||||
## 2026-01-18 - 1.13.0 - feat(tests)
|
## 2026-01-18 - 1.13.0 - feat(tests)
|
||||||
revamp tests and remove legacy Dockerfiles: adopt JSON/consensus workflows, switch MiniCPM model, and delete deprecated Docker/test variants
|
revamp tests and remove legacy Dockerfiles: adopt JSON/consensus workflows, switch MiniCPM model, and delete deprecated Docker/test variants
|
||||||
|
|
||||||
|
|||||||
@@ -1,636 +0,0 @@
|
|||||||
#!/usr/bin/env python3
|
|
||||||
"""
|
|
||||||
PaddleOCR-VL Full Pipeline API Server (Transformers backend)
|
|
||||||
|
|
||||||
Provides REST API for document parsing using:
|
|
||||||
- PP-DocLayoutV2 for layout detection
|
|
||||||
- PaddleOCR-VL (transformers) for recognition
|
|
||||||
- Structured JSON/Markdown output
|
|
||||||
"""
|
|
||||||
|
|
||||||
import os
|
|
||||||
import io
|
|
||||||
import re
|
|
||||||
import base64
|
|
||||||
import logging
|
|
||||||
import tempfile
|
|
||||||
import time
|
|
||||||
import json
|
|
||||||
from typing import Optional, List, Union
|
|
||||||
from pathlib import Path
|
|
||||||
|
|
||||||
from fastapi import FastAPI, HTTPException, UploadFile, File, Form
|
|
||||||
from fastapi.responses import JSONResponse
|
|
||||||
from pydantic import BaseModel
|
|
||||||
from PIL import Image
|
|
||||||
import torch
|
|
||||||
|
|
||||||
# Configure logging
|
|
||||||
logging.basicConfig(
|
|
||||||
level=logging.INFO,
|
|
||||||
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
|
||||||
)
|
|
||||||
logger = logging.getLogger(__name__)
|
|
||||||
|
|
||||||
# Environment configuration
|
|
||||||
SERVER_HOST = os.environ.get('SERVER_HOST', '0.0.0.0')
|
|
||||||
SERVER_PORT = int(os.environ.get('SERVER_PORT', '8000'))
|
|
||||||
MODEL_NAME = "PaddlePaddle/PaddleOCR-VL"
|
|
||||||
|
|
||||||
# Device configuration
|
|
||||||
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
|
||||||
logger.info(f"Using device: {DEVICE}")
|
|
||||||
|
|
||||||
# Task prompts
|
|
||||||
TASK_PROMPTS = {
|
|
||||||
"ocr": "OCR:",
|
|
||||||
"table": "Table Recognition:",
|
|
||||||
"formula": "Formula Recognition:",
|
|
||||||
"chart": "Chart Recognition:",
|
|
||||||
}
|
|
||||||
|
|
||||||
# Initialize FastAPI app
|
|
||||||
app = FastAPI(
|
|
||||||
title="PaddleOCR-VL Full Pipeline Server",
|
|
||||||
description="Document parsing with PP-DocLayoutV2 + PaddleOCR-VL (transformers)",
|
|
||||||
version="1.0.0"
|
|
||||||
)
|
|
||||||
|
|
||||||
# Global model instances
|
|
||||||
vl_model = None
|
|
||||||
vl_processor = None
|
|
||||||
layout_model = None
|
|
||||||
|
|
||||||
|
|
||||||
def load_vl_model():
|
|
||||||
"""Load the PaddleOCR-VL model for element recognition"""
|
|
||||||
global vl_model, vl_processor
|
|
||||||
|
|
||||||
if vl_model is not None:
|
|
||||||
return
|
|
||||||
|
|
||||||
logger.info(f"Loading PaddleOCR-VL model: {MODEL_NAME}")
|
|
||||||
from transformers import AutoModelForCausalLM, AutoProcessor
|
|
||||||
|
|
||||||
vl_processor = AutoProcessor.from_pretrained(MODEL_NAME, trust_remote_code=True)
|
|
||||||
|
|
||||||
if DEVICE == "cuda":
|
|
||||||
vl_model = AutoModelForCausalLM.from_pretrained(
|
|
||||||
MODEL_NAME,
|
|
||||||
trust_remote_code=True,
|
|
||||||
torch_dtype=torch.bfloat16,
|
|
||||||
).to(DEVICE).eval()
|
|
||||||
else:
|
|
||||||
vl_model = AutoModelForCausalLM.from_pretrained(
|
|
||||||
MODEL_NAME,
|
|
||||||
trust_remote_code=True,
|
|
||||||
torch_dtype=torch.float32,
|
|
||||||
low_cpu_mem_usage=True,
|
|
||||||
).eval()
|
|
||||||
|
|
||||||
logger.info("PaddleOCR-VL model loaded successfully")
|
|
||||||
|
|
||||||
|
|
||||||
def load_layout_model():
|
|
||||||
"""Load the LayoutDetection model for layout detection"""
|
|
||||||
global layout_model
|
|
||||||
|
|
||||||
if layout_model is not None:
|
|
||||||
return
|
|
||||||
|
|
||||||
try:
|
|
||||||
logger.info("Loading LayoutDetection model (PP-DocLayout_plus-L)...")
|
|
||||||
from paddleocr import LayoutDetection
|
|
||||||
|
|
||||||
layout_model = LayoutDetection()
|
|
||||||
logger.info("LayoutDetection model loaded successfully")
|
|
||||||
except Exception as e:
|
|
||||||
logger.warning(f"Could not load LayoutDetection: {e}")
|
|
||||||
logger.info("Falling back to VL-only mode (no layout detection)")
|
|
||||||
|
|
||||||
|
|
||||||
def recognize_element(image: Image.Image, task: str = "ocr") -> str:
|
|
||||||
"""Recognize a single element using PaddleOCR-VL"""
|
|
||||||
load_vl_model()
|
|
||||||
|
|
||||||
prompt = TASK_PROMPTS.get(task, TASK_PROMPTS["ocr"])
|
|
||||||
|
|
||||||
messages = [
|
|
||||||
{
|
|
||||||
"role": "user",
|
|
||||||
"content": [
|
|
||||||
{"type": "image", "image": image},
|
|
||||||
{"type": "text", "text": prompt},
|
|
||||||
]
|
|
||||||
}
|
|
||||||
]
|
|
||||||
|
|
||||||
inputs = vl_processor.apply_chat_template(
|
|
||||||
messages,
|
|
||||||
tokenize=True,
|
|
||||||
add_generation_prompt=True,
|
|
||||||
return_dict=True,
|
|
||||||
return_tensors="pt"
|
|
||||||
)
|
|
||||||
|
|
||||||
if DEVICE == "cuda":
|
|
||||||
inputs = {k: v.to(DEVICE) for k, v in inputs.items()}
|
|
||||||
|
|
||||||
with torch.inference_mode():
|
|
||||||
outputs = vl_model.generate(
|
|
||||||
**inputs,
|
|
||||||
max_new_tokens=4096,
|
|
||||||
do_sample=False,
|
|
||||||
use_cache=True
|
|
||||||
)
|
|
||||||
|
|
||||||
response = vl_processor.batch_decode(outputs, skip_special_tokens=True)[0]
|
|
||||||
|
|
||||||
# Extract only the assistant's response content
|
|
||||||
# The response format is: "User: <prompt>\nAssistant: <content>"
|
|
||||||
# We want to extract just the content after "Assistant:"
|
|
||||||
if "Assistant:" in response:
|
|
||||||
parts = response.split("Assistant:")
|
|
||||||
if len(parts) > 1:
|
|
||||||
response = parts[-1].strip()
|
|
||||||
elif "assistant:" in response.lower():
|
|
||||||
# Case-insensitive fallback
|
|
||||||
import re
|
|
||||||
match = re.split(r'[Aa]ssistant:', response)
|
|
||||||
if len(match) > 1:
|
|
||||||
response = match[-1].strip()
|
|
||||||
|
|
||||||
return response
|
|
||||||
|
|
||||||
|
|
||||||
def detect_layout(image: Image.Image) -> List[dict]:
|
|
||||||
"""Detect layout regions in the image"""
|
|
||||||
load_layout_model()
|
|
||||||
|
|
||||||
if layout_model is None:
|
|
||||||
# No layout model - return a single region covering the whole image
|
|
||||||
return [{
|
|
||||||
"type": "text",
|
|
||||||
"bbox": [0, 0, image.width, image.height],
|
|
||||||
"score": 1.0
|
|
||||||
}]
|
|
||||||
|
|
||||||
# Save image to temp file
|
|
||||||
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp:
|
|
||||||
image.save(tmp.name, "PNG")
|
|
||||||
tmp_path = tmp.name
|
|
||||||
|
|
||||||
try:
|
|
||||||
results = layout_model.predict(tmp_path)
|
|
||||||
regions = []
|
|
||||||
|
|
||||||
for res in results:
|
|
||||||
# LayoutDetection returns boxes in 'boxes' key
|
|
||||||
for box in res.get("boxes", []):
|
|
||||||
coord = box.get("coordinate", [0, 0, image.width, image.height])
|
|
||||||
# Convert numpy floats to regular floats
|
|
||||||
bbox = [float(c) for c in coord]
|
|
||||||
regions.append({
|
|
||||||
"type": box.get("label", "text"),
|
|
||||||
"bbox": bbox,
|
|
||||||
"score": float(box.get("score", 1.0))
|
|
||||||
})
|
|
||||||
|
|
||||||
# Sort regions by vertical position (top to bottom)
|
|
||||||
regions.sort(key=lambda r: r["bbox"][1])
|
|
||||||
|
|
||||||
return regions if regions else [{
|
|
||||||
"type": "text",
|
|
||||||
"bbox": [0, 0, image.width, image.height],
|
|
||||||
"score": 1.0
|
|
||||||
}]
|
|
||||||
|
|
||||||
finally:
|
|
||||||
os.unlink(tmp_path)
|
|
||||||
|
|
||||||
|
|
||||||
def process_document(image: Image.Image) -> dict:
|
|
||||||
"""Process a document through the full pipeline"""
|
|
||||||
logger.info(f"Processing document: {image.size}")
|
|
||||||
|
|
||||||
# Step 1: Detect layout
|
|
||||||
regions = detect_layout(image)
|
|
||||||
logger.info(f"Detected {len(regions)} layout regions")
|
|
||||||
|
|
||||||
# Step 2: Recognize each region
|
|
||||||
blocks = []
|
|
||||||
for i, region in enumerate(regions):
|
|
||||||
region_type = region["type"].lower()
|
|
||||||
bbox = region["bbox"]
|
|
||||||
|
|
||||||
# Crop region from image
|
|
||||||
x1, y1, x2, y2 = [int(c) for c in bbox]
|
|
||||||
region_image = image.crop((x1, y1, x2, y2))
|
|
||||||
|
|
||||||
# Determine task based on region type
|
|
||||||
if "table" in region_type:
|
|
||||||
task = "table"
|
|
||||||
elif "formula" in region_type or "math" in region_type:
|
|
||||||
task = "formula"
|
|
||||||
elif "chart" in region_type or "figure" in region_type:
|
|
||||||
task = "chart"
|
|
||||||
else:
|
|
||||||
task = "ocr"
|
|
||||||
|
|
||||||
# Recognize the region
|
|
||||||
try:
|
|
||||||
content = recognize_element(region_image, task)
|
|
||||||
blocks.append({
|
|
||||||
"index": i,
|
|
||||||
"type": region_type,
|
|
||||||
"bbox": bbox,
|
|
||||||
"content": content,
|
|
||||||
"task": task
|
|
||||||
})
|
|
||||||
logger.info(f" Region {i} ({region_type}): {len(content)} chars")
|
|
||||||
except Exception as e:
|
|
||||||
logger.error(f" Region {i} error: {e}")
|
|
||||||
blocks.append({
|
|
||||||
"index": i,
|
|
||||||
"type": region_type,
|
|
||||||
"bbox": bbox,
|
|
||||||
"content": "",
|
|
||||||
"error": str(e)
|
|
||||||
})
|
|
||||||
|
|
||||||
return {"blocks": blocks, "image_size": list(image.size)}
|
|
||||||
|
|
||||||
|
|
||||||
def result_to_markdown(result: dict) -> str:
|
|
||||||
"""Convert result to Markdown format with structural hints for LLM processing.
|
|
||||||
|
|
||||||
Adds positional and type-based formatting to help downstream LLMs
|
|
||||||
understand document structure:
|
|
||||||
- Tables are marked with **[TABLE]** prefix
|
|
||||||
- Header zone content (top 15%) is bolded
|
|
||||||
- Footer zone content (bottom 15%) is separated with horizontal rule
|
|
||||||
- Titles are formatted as # headers
|
|
||||||
- Figures/charts are marked with *[Figure: ...]*
|
|
||||||
"""
|
|
||||||
lines = []
|
|
||||||
image_height = result.get("image_size", [0, 1000])[1]
|
|
||||||
|
|
||||||
for block in result.get("blocks", []):
|
|
||||||
block_type = block.get("type", "text").lower()
|
|
||||||
content = block.get("content", "").strip()
|
|
||||||
bbox = block.get("bbox", [])
|
|
||||||
|
|
||||||
if not content:
|
|
||||||
continue
|
|
||||||
|
|
||||||
# Determine position zone (top 15%, middle, bottom 15%)
|
|
||||||
y_pos = bbox[1] if bbox and len(bbox) > 1 else 0
|
|
||||||
y_end = bbox[3] if bbox and len(bbox) > 3 else y_pos
|
|
||||||
is_header_zone = y_pos < image_height * 0.15
|
|
||||||
is_footer_zone = y_end > image_height * 0.85
|
|
||||||
|
|
||||||
# Format based on type and position
|
|
||||||
if "table" in block_type:
|
|
||||||
lines.append(f"\n**[TABLE]**\n{content}\n")
|
|
||||||
elif "title" in block_type:
|
|
||||||
lines.append(f"# {content}")
|
|
||||||
elif "formula" in block_type or "math" in block_type:
|
|
||||||
lines.append(f"\n$$\n{content}\n$$\n")
|
|
||||||
elif "figure" in block_type or "chart" in block_type:
|
|
||||||
lines.append(f"*[Figure: {content}]*")
|
|
||||||
elif is_header_zone:
|
|
||||||
lines.append(f"**{content}**")
|
|
||||||
elif is_footer_zone:
|
|
||||||
lines.append(f"---\n{content}")
|
|
||||||
else:
|
|
||||||
lines.append(content)
|
|
||||||
|
|
||||||
return "\n\n".join(lines)
|
|
||||||
|
|
||||||
|
|
||||||
def parse_markdown_table(content: str) -> str:
|
|
||||||
"""Convert table content to HTML table.
|
|
||||||
|
|
||||||
Handles:
|
|
||||||
- PaddleOCR-VL format: <fcel>cell<lcel>cell<nl> (detected by <fcel> tags)
|
|
||||||
- Pipe-delimited tables: | Header | Header |
|
|
||||||
- Separator rows: |---|---|
|
|
||||||
- Returns HTML <table> structure
|
|
||||||
"""
|
|
||||||
content_stripped = content.strip()
|
|
||||||
|
|
||||||
# Check for PaddleOCR-VL table format (<fcel>, <lcel>, <ecel>, <nl>)
|
|
||||||
if '<fcel>' in content_stripped or '<nl>' in content_stripped:
|
|
||||||
return parse_paddleocr_table(content_stripped)
|
|
||||||
|
|
||||||
lines = content_stripped.split('\n')
|
|
||||||
if not lines:
|
|
||||||
return f'<pre>{content}</pre>'
|
|
||||||
|
|
||||||
# Check if it looks like a markdown table
|
|
||||||
if not any('|' in line for line in lines):
|
|
||||||
return f'<pre>{content}</pre>'
|
|
||||||
|
|
||||||
html_rows = []
|
|
||||||
is_header = True
|
|
||||||
|
|
||||||
for line in lines:
|
|
||||||
line = line.strip()
|
|
||||||
if not line or line.startswith('|') == False and '|' not in line:
|
|
||||||
continue
|
|
||||||
|
|
||||||
# Skip separator rows (|---|---|)
|
|
||||||
if re.match(r'^[\|\s\-:]+$', line):
|
|
||||||
is_header = False
|
|
||||||
continue
|
|
||||||
|
|
||||||
# Parse cells
|
|
||||||
cells = [c.strip() for c in line.split('|')]
|
|
||||||
cells = [c for c in cells if c] # Remove empty from edges
|
|
||||||
|
|
||||||
if is_header:
|
|
||||||
row = '<tr>' + ''.join(f'<th>{c}</th>' for c in cells) + '</tr>'
|
|
||||||
html_rows.append(f'<thead>{row}</thead>')
|
|
||||||
is_header = False
|
|
||||||
else:
|
|
||||||
row = '<tr>' + ''.join(f'<td>{c}</td>' for c in cells) + '</tr>'
|
|
||||||
html_rows.append(row)
|
|
||||||
|
|
||||||
if html_rows:
|
|
||||||
# Wrap body rows in tbody
|
|
||||||
header = html_rows[0] if '<thead>' in html_rows[0] else ''
|
|
||||||
body_rows = [r for r in html_rows if '<thead>' not in r]
|
|
||||||
body = f'<tbody>{"".join(body_rows)}</tbody>' if body_rows else ''
|
|
||||||
return f'<table>{header}{body}</table>'
|
|
||||||
|
|
||||||
return f'<pre>{content}</pre>'
|
|
||||||
|
|
||||||
|
|
||||||
def parse_paddleocr_table(content: str) -> str:
|
|
||||||
"""Convert PaddleOCR-VL table format to HTML table.
|
|
||||||
|
|
||||||
PaddleOCR-VL uses:
|
|
||||||
- <fcel> = first cell in a row
|
|
||||||
- <lcel> = subsequent cells
|
|
||||||
- <ecel> = empty cell
|
|
||||||
- <nl> = row separator (newline)
|
|
||||||
|
|
||||||
Example input:
|
|
||||||
<fcel>Header1<lcel>Header2<nl><fcel>Value1<lcel>Value2<nl>
|
|
||||||
"""
|
|
||||||
# Split into rows by <nl>
|
|
||||||
rows_raw = re.split(r'<nl>', content)
|
|
||||||
html_rows = []
|
|
||||||
is_first_row = True
|
|
||||||
|
|
||||||
for row_content in rows_raw:
|
|
||||||
row_content = row_content.strip()
|
|
||||||
if not row_content:
|
|
||||||
continue
|
|
||||||
|
|
||||||
# Extract cells: split by <fcel>, <lcel>, or <ecel>
|
|
||||||
# Each cell is the text between these markers
|
|
||||||
cells = []
|
|
||||||
|
|
||||||
# Pattern to match cell markers and capture content
|
|
||||||
# Content is everything between markers
|
|
||||||
parts = re.split(r'<fcel>|<lcel>|<ecel>', row_content)
|
|
||||||
for part in parts:
|
|
||||||
part = part.strip()
|
|
||||||
if part:
|
|
||||||
cells.append(part)
|
|
||||||
|
|
||||||
if not cells:
|
|
||||||
continue
|
|
||||||
|
|
||||||
# First row is header
|
|
||||||
if is_first_row:
|
|
||||||
row_html = '<tr>' + ''.join(f'<th>{c}</th>' for c in cells) + '</tr>'
|
|
||||||
html_rows.append(f'<thead>{row_html}</thead>')
|
|
||||||
is_first_row = False
|
|
||||||
else:
|
|
||||||
row_html = '<tr>' + ''.join(f'<td>{c}</td>' for c in cells) + '</tr>'
|
|
||||||
html_rows.append(row_html)
|
|
||||||
|
|
||||||
if html_rows:
|
|
||||||
header = html_rows[0] if '<thead>' in html_rows[0] else ''
|
|
||||||
body_rows = [r for r in html_rows if '<thead>' not in r]
|
|
||||||
body = f'<tbody>{"".join(body_rows)}</tbody>' if body_rows else ''
|
|
||||||
return f'<table>{header}{body}</table>'
|
|
||||||
|
|
||||||
return f'<pre>{content}</pre>'
|
|
||||||
|
|
||||||
|
|
||||||
def result_to_html(result: dict) -> str:
|
|
||||||
"""Convert result to semantic HTML for optimal LLM processing.
|
|
||||||
|
|
||||||
Uses semantic HTML5 tags with position metadata as data-* attributes.
|
|
||||||
Markdown tables are converted to proper HTML <table> tags for
|
|
||||||
unambiguous parsing by downstream LLMs.
|
|
||||||
"""
|
|
||||||
parts = []
|
|
||||||
image_height = result.get("image_size", [0, 1000])[1]
|
|
||||||
|
|
||||||
parts.append('<!DOCTYPE html><html><body>')
|
|
||||||
|
|
||||||
for block in result.get("blocks", []):
|
|
||||||
block_type = block.get("type", "text").lower()
|
|
||||||
content = block.get("content", "").strip()
|
|
||||||
bbox = block.get("bbox", [])
|
|
||||||
|
|
||||||
if not content:
|
|
||||||
continue
|
|
||||||
|
|
||||||
# Position metadata
|
|
||||||
y_pos = bbox[1] / image_height if bbox and len(bbox) > 1 else 0
|
|
||||||
data_attrs = f'data-type="{block_type}" data-y="{y_pos:.2f}"'
|
|
||||||
|
|
||||||
# Format based on type
|
|
||||||
if "table" in block_type:
|
|
||||||
table_html = parse_markdown_table(content)
|
|
||||||
parts.append(f'<section {data_attrs} class="table-region">{table_html}</section>')
|
|
||||||
elif "title" in block_type:
|
|
||||||
parts.append(f'<h1 {data_attrs}>{content}</h1>')
|
|
||||||
elif "formula" in block_type or "math" in block_type:
|
|
||||||
parts.append(f'<div {data_attrs} class="formula"><code>{content}</code></div>')
|
|
||||||
elif "figure" in block_type or "chart" in block_type:
|
|
||||||
parts.append(f'<figure {data_attrs}><figcaption>{content}</figcaption></figure>')
|
|
||||||
elif y_pos < 0.15:
|
|
||||||
parts.append(f'<header {data_attrs}><strong>{content}</strong></header>')
|
|
||||||
elif y_pos > 0.85:
|
|
||||||
parts.append(f'<footer {data_attrs}>{content}</footer>')
|
|
||||||
else:
|
|
||||||
parts.append(f'<p {data_attrs}>{content}</p>')
|
|
||||||
|
|
||||||
parts.append('</body></html>')
|
|
||||||
return '\n'.join(parts)
|
|
||||||
|
|
||||||
|
|
||||||
# Request/Response models
|
|
||||||
class ParseRequest(BaseModel):
|
|
||||||
image: str # base64 encoded image
|
|
||||||
output_format: Optional[str] = "json"
|
|
||||||
|
|
||||||
|
|
||||||
class ParseResponse(BaseModel):
|
|
||||||
success: bool
|
|
||||||
format: str
|
|
||||||
result: Union[dict, str]
|
|
||||||
processing_time: float
|
|
||||||
error: Optional[str] = None
|
|
||||||
|
|
||||||
|
|
||||||
def decode_image(image_source: str) -> Image.Image:
|
|
||||||
"""Decode image from base64 or data URL"""
|
|
||||||
if image_source.startswith("data:"):
|
|
||||||
header, data = image_source.split(",", 1)
|
|
||||||
image_data = base64.b64decode(data)
|
|
||||||
else:
|
|
||||||
image_data = base64.b64decode(image_source)
|
|
||||||
|
|
||||||
return Image.open(io.BytesIO(image_data)).convert("RGB")
|
|
||||||
|
|
||||||
|
|
||||||
@app.on_event("startup")
|
|
||||||
async def startup_event():
|
|
||||||
"""Pre-load models on startup"""
|
|
||||||
logger.info("Starting PaddleOCR-VL Full Pipeline Server...")
|
|
||||||
try:
|
|
||||||
load_vl_model()
|
|
||||||
load_layout_model()
|
|
||||||
logger.info("Models loaded successfully")
|
|
||||||
except Exception as e:
|
|
||||||
logger.error(f"Failed to pre-load models: {e}")
|
|
||||||
|
|
||||||
|
|
||||||
@app.get("/health")
|
|
||||||
async def health_check():
|
|
||||||
"""Health check endpoint"""
|
|
||||||
return {
|
|
||||||
"status": "healthy" if vl_model is not None else "loading",
|
|
||||||
"service": "PaddleOCR-VL Full Pipeline (Transformers)",
|
|
||||||
"device": DEVICE,
|
|
||||||
"vl_model_loaded": vl_model is not None,
|
|
||||||
"layout_model_loaded": layout_model is not None
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
@app.get("/formats")
|
|
||||||
async def supported_formats():
|
|
||||||
"""List supported output formats"""
|
|
||||||
return {
|
|
||||||
"output_formats": ["json", "markdown", "html"],
|
|
||||||
"image_formats": ["PNG", "JPEG", "WebP", "BMP", "GIF", "TIFF"],
|
|
||||||
"capabilities": [
|
|
||||||
"Layout detection (PP-DocLayoutV2)",
|
|
||||||
"Text recognition (OCR)",
|
|
||||||
"Table recognition",
|
|
||||||
"Formula recognition (LaTeX)",
|
|
||||||
"Chart recognition",
|
|
||||||
"Multi-language support (109 languages)"
|
|
||||||
]
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
@app.post("/parse", response_model=ParseResponse)
|
|
||||||
async def parse_document_endpoint(request: ParseRequest):
|
|
||||||
"""Parse a document image and return structured output"""
|
|
||||||
try:
|
|
||||||
start_time = time.time()
|
|
||||||
|
|
||||||
image = decode_image(request.image)
|
|
||||||
result = process_document(image)
|
|
||||||
|
|
||||||
if request.output_format == "markdown":
|
|
||||||
markdown = result_to_markdown(result)
|
|
||||||
output = {"markdown": markdown}
|
|
||||||
elif request.output_format == "html":
|
|
||||||
html = result_to_html(result)
|
|
||||||
output = {"html": html}
|
|
||||||
else:
|
|
||||||
output = result
|
|
||||||
|
|
||||||
elapsed = time.time() - start_time
|
|
||||||
logger.info(f"Processing complete in {elapsed:.2f}s")
|
|
||||||
|
|
||||||
return ParseResponse(
|
|
||||||
success=True,
|
|
||||||
format=request.output_format,
|
|
||||||
result=output,
|
|
||||||
processing_time=elapsed
|
|
||||||
)
|
|
||||||
|
|
||||||
except Exception as e:
|
|
||||||
logger.error(f"Error processing document: {e}", exc_info=True)
|
|
||||||
return ParseResponse(
|
|
||||||
success=False,
|
|
||||||
format=request.output_format,
|
|
||||||
result={},
|
|
||||||
processing_time=0,
|
|
||||||
error=str(e)
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
@app.post("/v1/chat/completions")
|
|
||||||
async def chat_completions(request: dict):
|
|
||||||
"""OpenAI-compatible chat completions endpoint"""
|
|
||||||
try:
|
|
||||||
messages = request.get("messages", [])
|
|
||||||
output_format = request.get("output_format", "json")
|
|
||||||
|
|
||||||
# Find user message with image
|
|
||||||
image = None
|
|
||||||
for msg in reversed(messages):
|
|
||||||
if msg.get("role") == "user":
|
|
||||||
content = msg.get("content", [])
|
|
||||||
if isinstance(content, list):
|
|
||||||
for item in content:
|
|
||||||
if item.get("type") == "image_url":
|
|
||||||
url = item.get("image_url", {}).get("url", "")
|
|
||||||
image = decode_image(url)
|
|
||||||
break
|
|
||||||
break
|
|
||||||
|
|
||||||
if image is None:
|
|
||||||
raise HTTPException(status_code=400, detail="No image provided")
|
|
||||||
|
|
||||||
start_time = time.time()
|
|
||||||
result = process_document(image)
|
|
||||||
|
|
||||||
if output_format == "markdown":
|
|
||||||
content = result_to_markdown(result)
|
|
||||||
elif output_format == "html":
|
|
||||||
content = result_to_html(result)
|
|
||||||
else:
|
|
||||||
content = json.dumps(result, ensure_ascii=False, indent=2)
|
|
||||||
|
|
||||||
elapsed = time.time() - start_time
|
|
||||||
|
|
||||||
return {
|
|
||||||
"id": f"chatcmpl-{int(time.time()*1000)}",
|
|
||||||
"object": "chat.completion",
|
|
||||||
"created": int(time.time()),
|
|
||||||
"model": "paddleocr-vl-full",
|
|
||||||
"choices": [{
|
|
||||||
"index": 0,
|
|
||||||
"message": {"role": "assistant", "content": content},
|
|
||||||
"finish_reason": "stop"
|
|
||||||
}],
|
|
||||||
"usage": {
|
|
||||||
"prompt_tokens": 100,
|
|
||||||
"completion_tokens": len(content) // 4,
|
|
||||||
"total_tokens": 100 + len(content) // 4
|
|
||||||
},
|
|
||||||
"processing_time": elapsed
|
|
||||||
}
|
|
||||||
|
|
||||||
except HTTPException:
|
|
||||||
raise
|
|
||||||
except Exception as e:
|
|
||||||
logger.error(f"Error in chat completions: {e}", exc_info=True)
|
|
||||||
raise HTTPException(status_code=500, detail=str(e))
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
import uvicorn
|
|
||||||
uvicorn.run(app, host=SERVER_HOST, port=SERVER_PORT)
|
|
||||||
@@ -1,465 +0,0 @@
|
|||||||
#!/usr/bin/env python3
|
|
||||||
"""
|
|
||||||
PaddleOCR-VL FastAPI Server (CPU variant)
|
|
||||||
Provides OpenAI-compatible REST API for document parsing using PaddleOCR-VL
|
|
||||||
"""
|
|
||||||
|
|
||||||
import os
|
|
||||||
import io
|
|
||||||
import base64
|
|
||||||
import logging
|
|
||||||
import time
|
|
||||||
from typing import Optional, List, Any, Dict, Union
|
|
||||||
|
|
||||||
from fastapi import FastAPI, HTTPException
|
|
||||||
from fastapi.responses import JSONResponse
|
|
||||||
from pydantic import BaseModel
|
|
||||||
import torch
|
|
||||||
from PIL import Image
|
|
||||||
|
|
||||||
# Configure logging
|
|
||||||
logging.basicConfig(
|
|
||||||
level=logging.INFO,
|
|
||||||
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
|
||||||
)
|
|
||||||
logger = logging.getLogger(__name__)
|
|
||||||
|
|
||||||
# Environment configuration
|
|
||||||
SERVER_HOST = os.environ.get('SERVER_HOST', '0.0.0.0')
|
|
||||||
SERVER_PORT = int(os.environ.get('SERVER_PORT', '8000'))
|
|
||||||
MODEL_NAME = os.environ.get('MODEL_NAME', 'PaddlePaddle/PaddleOCR-VL')
|
|
||||||
|
|
||||||
# Device configuration
|
|
||||||
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
|
||||||
logger.info(f"Using device: {DEVICE}")
|
|
||||||
|
|
||||||
# Task prompts for PaddleOCR-VL
|
|
||||||
TASK_PROMPTS = {
|
|
||||||
"ocr": "OCR:",
|
|
||||||
"table": "Table Recognition:",
|
|
||||||
"formula": "Formula Recognition:",
|
|
||||||
"chart": "Chart Recognition:",
|
|
||||||
}
|
|
||||||
|
|
||||||
# Initialize FastAPI app
|
|
||||||
app = FastAPI(
|
|
||||||
title="PaddleOCR-VL Server",
|
|
||||||
description="OpenAI-compatible REST API for document parsing using PaddleOCR-VL",
|
|
||||||
version="1.0.0"
|
|
||||||
)
|
|
||||||
|
|
||||||
# Global model instances
|
|
||||||
model = None
|
|
||||||
processor = None
|
|
||||||
|
|
||||||
|
|
||||||
# Request/Response models (OpenAI-compatible)
|
|
||||||
class ImageUrl(BaseModel):
|
|
||||||
url: str
|
|
||||||
|
|
||||||
|
|
||||||
class ContentItem(BaseModel):
|
|
||||||
type: str
|
|
||||||
text: Optional[str] = None
|
|
||||||
image_url: Optional[ImageUrl] = None
|
|
||||||
|
|
||||||
|
|
||||||
class Message(BaseModel):
|
|
||||||
role: str
|
|
||||||
content: Union[str, List[ContentItem]]
|
|
||||||
|
|
||||||
|
|
||||||
class ChatCompletionRequest(BaseModel):
|
|
||||||
model: str = "paddleocr-vl"
|
|
||||||
messages: List[Message]
|
|
||||||
temperature: Optional[float] = 0.0
|
|
||||||
max_tokens: Optional[int] = 4096
|
|
||||||
|
|
||||||
|
|
||||||
class Choice(BaseModel):
|
|
||||||
index: int
|
|
||||||
message: Message
|
|
||||||
finish_reason: str
|
|
||||||
|
|
||||||
|
|
||||||
class Usage(BaseModel):
|
|
||||||
prompt_tokens: int
|
|
||||||
completion_tokens: int
|
|
||||||
total_tokens: int
|
|
||||||
|
|
||||||
|
|
||||||
class ChatCompletionResponse(BaseModel):
|
|
||||||
id: str
|
|
||||||
object: str = "chat.completion"
|
|
||||||
created: int
|
|
||||||
model: str
|
|
||||||
choices: List[Choice]
|
|
||||||
usage: Usage
|
|
||||||
|
|
||||||
|
|
||||||
class HealthResponse(BaseModel):
|
|
||||||
status: str
|
|
||||||
model: str
|
|
||||||
device: str
|
|
||||||
|
|
||||||
|
|
||||||
def load_model():
|
|
||||||
"""Load the PaddleOCR-VL model and processor"""
|
|
||||||
global model, processor
|
|
||||||
|
|
||||||
if model is not None:
|
|
||||||
return
|
|
||||||
|
|
||||||
logger.info(f"Loading PaddleOCR-VL model: {MODEL_NAME}")
|
|
||||||
|
|
||||||
from transformers import AutoModelForCausalLM, AutoProcessor
|
|
||||||
|
|
||||||
# Load processor
|
|
||||||
processor = AutoProcessor.from_pretrained(MODEL_NAME, trust_remote_code=True)
|
|
||||||
|
|
||||||
# Load model with appropriate settings for CPU/GPU
|
|
||||||
if DEVICE == "cuda":
|
|
||||||
model = AutoModelForCausalLM.from_pretrained(
|
|
||||||
MODEL_NAME,
|
|
||||||
trust_remote_code=True,
|
|
||||||
torch_dtype=torch.bfloat16,
|
|
||||||
).to(DEVICE).eval()
|
|
||||||
else:
|
|
||||||
# CPU mode - use float32 for compatibility
|
|
||||||
model = AutoModelForCausalLM.from_pretrained(
|
|
||||||
MODEL_NAME,
|
|
||||||
trust_remote_code=True,
|
|
||||||
torch_dtype=torch.float32,
|
|
||||||
low_cpu_mem_usage=True,
|
|
||||||
).eval()
|
|
||||||
|
|
||||||
logger.info("PaddleOCR-VL model loaded successfully")
|
|
||||||
|
|
||||||
|
|
||||||
def optimize_image_resolution(image: Image.Image, max_size: int = 2048, min_size: int = 1080) -> Image.Image:
|
|
||||||
"""
|
|
||||||
Optimize image resolution for PaddleOCR-VL.
|
|
||||||
|
|
||||||
Best results are achieved with images in the 1080p-2K range.
|
|
||||||
- Images larger than max_size are scaled down
|
|
||||||
- Very small images are scaled up to min_size
|
|
||||||
"""
|
|
||||||
width, height = image.size
|
|
||||||
max_dim = max(width, height)
|
|
||||||
min_dim = min(width, height)
|
|
||||||
|
|
||||||
# Scale down if too large (4K+ images often miss text)
|
|
||||||
if max_dim > max_size:
|
|
||||||
scale = max_size / max_dim
|
|
||||||
new_width = int(width * scale)
|
|
||||||
new_height = int(height * scale)
|
|
||||||
logger.info(f"Scaling down image from {width}x{height} to {new_width}x{new_height}")
|
|
||||||
image = image.resize((new_width, new_height), Image.Resampling.LANCZOS)
|
|
||||||
# Scale up if too small
|
|
||||||
elif max_dim < min_size and min_dim < min_size:
|
|
||||||
scale = min_size / max_dim
|
|
||||||
new_width = int(width * scale)
|
|
||||||
new_height = int(height * scale)
|
|
||||||
logger.info(f"Scaling up image from {width}x{height} to {new_width}x{new_height}")
|
|
||||||
image = image.resize((new_width, new_height), Image.Resampling.LANCZOS)
|
|
||||||
else:
|
|
||||||
logger.info(f"Image size {width}x{height} is optimal, no scaling needed")
|
|
||||||
|
|
||||||
return image
|
|
||||||
|
|
||||||
|
|
||||||
def decode_image(image_source: str, optimize: bool = True) -> Image.Image:
|
|
||||||
"""
|
|
||||||
Decode image from various sources.
|
|
||||||
|
|
||||||
Supported formats:
|
|
||||||
- Base64 data URL: data:image/png;base64,... or data:image/jpeg;base64,...
|
|
||||||
- HTTP/HTTPS URL: https://example.com/image.png
|
|
||||||
- Raw base64 string
|
|
||||||
- Local file path
|
|
||||||
|
|
||||||
Supported image types: PNG, JPEG, WebP, BMP, GIF, TIFF
|
|
||||||
"""
|
|
||||||
image = None
|
|
||||||
|
|
||||||
if image_source.startswith("data:"):
|
|
||||||
# Base64 encoded image with MIME type header
|
|
||||||
# Supports: data:image/png;base64,... data:image/jpeg;base64,... etc.
|
|
||||||
header, data = image_source.split(",", 1)
|
|
||||||
image_data = base64.b64decode(data)
|
|
||||||
image = Image.open(io.BytesIO(image_data)).convert("RGB")
|
|
||||||
logger.debug(f"Decoded base64 image with header: {header}")
|
|
||||||
elif image_source.startswith("http://") or image_source.startswith("https://"):
|
|
||||||
# URL - fetch image
|
|
||||||
import httpx
|
|
||||||
response = httpx.get(image_source, timeout=30.0)
|
|
||||||
response.raise_for_status()
|
|
||||||
image = Image.open(io.BytesIO(response.content)).convert("RGB")
|
|
||||||
logger.debug(f"Fetched image from URL: {image_source[:50]}...")
|
|
||||||
else:
|
|
||||||
# Assume it's a file path or raw base64
|
|
||||||
try:
|
|
||||||
image_data = base64.b64decode(image_source)
|
|
||||||
image = Image.open(io.BytesIO(image_data)).convert("RGB")
|
|
||||||
logger.debug("Decoded raw base64 image")
|
|
||||||
except:
|
|
||||||
# Try as file path
|
|
||||||
image = Image.open(image_source).convert("RGB")
|
|
||||||
logger.debug(f"Loaded image from file: {image_source}")
|
|
||||||
|
|
||||||
# Optimize resolution for best OCR results
|
|
||||||
if optimize:
|
|
||||||
image = optimize_image_resolution(image)
|
|
||||||
|
|
||||||
return image
|
|
||||||
|
|
||||||
|
|
||||||
def extract_image_and_text(content: Union[str, List[ContentItem]]) -> tuple:
|
|
||||||
"""Extract image and text prompt from message content"""
|
|
||||||
if isinstance(content, str):
|
|
||||||
return None, content
|
|
||||||
|
|
||||||
image = None
|
|
||||||
text = ""
|
|
||||||
|
|
||||||
for item in content:
|
|
||||||
if item.type == "image_url" and item.image_url:
|
|
||||||
image = decode_image(item.image_url.url)
|
|
||||||
elif item.type == "text" and item.text:
|
|
||||||
text = item.text
|
|
||||||
|
|
||||||
return image, text
|
|
||||||
|
|
||||||
|
|
||||||
def generate_response(image: Image.Image, prompt: str, max_tokens: int = 4096) -> str:
|
|
||||||
"""Generate response using PaddleOCR-VL"""
|
|
||||||
load_model()
|
|
||||||
|
|
||||||
messages = [
|
|
||||||
{
|
|
||||||
"role": "user",
|
|
||||||
"content": [
|
|
||||||
{"type": "image", "image": image},
|
|
||||||
{"type": "text", "text": prompt},
|
|
||||||
]
|
|
||||||
}
|
|
||||||
]
|
|
||||||
|
|
||||||
inputs = processor.apply_chat_template(
|
|
||||||
messages,
|
|
||||||
tokenize=True,
|
|
||||||
add_generation_prompt=True,
|
|
||||||
return_dict=True,
|
|
||||||
return_tensors="pt"
|
|
||||||
)
|
|
||||||
|
|
||||||
if DEVICE == "cuda":
|
|
||||||
inputs = {k: v.to(DEVICE) for k, v in inputs.items()}
|
|
||||||
|
|
||||||
with torch.inference_mode():
|
|
||||||
outputs = model.generate(
|
|
||||||
**inputs,
|
|
||||||
max_new_tokens=max_tokens,
|
|
||||||
do_sample=False,
|
|
||||||
use_cache=True
|
|
||||||
)
|
|
||||||
|
|
||||||
response = processor.batch_decode(outputs, skip_special_tokens=True)[0]
|
|
||||||
|
|
||||||
# Extract the assistant's response (after the prompt)
|
|
||||||
if "assistant" in response.lower():
|
|
||||||
parts = response.split("assistant")
|
|
||||||
if len(parts) > 1:
|
|
||||||
response = parts[-1].strip()
|
|
||||||
|
|
||||||
return response
|
|
||||||
|
|
||||||
|
|
||||||
@app.on_event("startup")
|
|
||||||
async def startup_event():
|
|
||||||
"""Pre-load the model on startup"""
|
|
||||||
logger.info("Pre-loading PaddleOCR-VL model...")
|
|
||||||
try:
|
|
||||||
load_model()
|
|
||||||
logger.info("Model pre-loaded successfully")
|
|
||||||
except Exception as e:
|
|
||||||
logger.error(f"Failed to pre-load model: {e}")
|
|
||||||
# Don't fail startup - model will be loaded on first request
|
|
||||||
|
|
||||||
|
|
||||||
@app.get("/health", response_model=HealthResponse)
|
|
||||||
async def health_check():
|
|
||||||
"""Health check endpoint"""
|
|
||||||
return HealthResponse(
|
|
||||||
status="healthy" if model is not None else "loading",
|
|
||||||
model=MODEL_NAME,
|
|
||||||
device=DEVICE
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
@app.get("/formats")
|
|
||||||
async def supported_formats():
|
|
||||||
"""List supported image formats and input methods"""
|
|
||||||
return {
|
|
||||||
"image_formats": {
|
|
||||||
"supported": ["PNG", "JPEG", "WebP", "BMP", "GIF", "TIFF"],
|
|
||||||
"recommended": ["PNG", "JPEG"],
|
|
||||||
"mime_types": [
|
|
||||||
"image/png",
|
|
||||||
"image/jpeg",
|
|
||||||
"image/webp",
|
|
||||||
"image/bmp",
|
|
||||||
"image/gif",
|
|
||||||
"image/tiff"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
"input_methods": {
|
|
||||||
"base64_data_url": {
|
|
||||||
"description": "Base64 encoded image with MIME type header",
|
|
||||||
"example": "..."
|
|
||||||
},
|
|
||||||
"http_url": {
|
|
||||||
"description": "Direct HTTP/HTTPS URL to image",
|
|
||||||
"example": "https://example.com/image.png"
|
|
||||||
},
|
|
||||||
"raw_base64": {
|
|
||||||
"description": "Raw base64 string without header",
|
|
||||||
"example": "iVBORw0KGgo..."
|
|
||||||
}
|
|
||||||
},
|
|
||||||
"resolution": {
|
|
||||||
"optimal_range": "1080p to 2K (1080-2048 pixels on longest side)",
|
|
||||||
"auto_scaling": True,
|
|
||||||
"note": "Images are automatically scaled to optimal range. 4K+ images are scaled down for better accuracy."
|
|
||||||
},
|
|
||||||
"task_prompts": TASK_PROMPTS
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
@app.get("/v1/models")
|
|
||||||
async def list_models():
|
|
||||||
"""List available models (OpenAI-compatible)"""
|
|
||||||
return {
|
|
||||||
"object": "list",
|
|
||||||
"data": [
|
|
||||||
{
|
|
||||||
"id": "paddleocr-vl",
|
|
||||||
"object": "model",
|
|
||||||
"created": int(time.time()),
|
|
||||||
"owned_by": "paddlepaddle"
|
|
||||||
}
|
|
||||||
]
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
@app.post("/v1/chat/completions", response_model=ChatCompletionResponse)
|
|
||||||
async def chat_completions(request: ChatCompletionRequest):
|
|
||||||
"""
|
|
||||||
OpenAI-compatible chat completions endpoint for PaddleOCR-VL
|
|
||||||
|
|
||||||
Supports tasks:
|
|
||||||
- "OCR:" - Text recognition
|
|
||||||
- "Table Recognition:" - Table extraction
|
|
||||||
- "Formula Recognition:" - Formula extraction
|
|
||||||
- "Chart Recognition:" - Chart extraction
|
|
||||||
"""
|
|
||||||
try:
|
|
||||||
# Get the last user message
|
|
||||||
user_message = None
|
|
||||||
for msg in reversed(request.messages):
|
|
||||||
if msg.role == "user":
|
|
||||||
user_message = msg
|
|
||||||
break
|
|
||||||
|
|
||||||
if not user_message:
|
|
||||||
raise HTTPException(status_code=400, detail="No user message found")
|
|
||||||
|
|
||||||
# Extract image and prompt
|
|
||||||
image, prompt = extract_image_and_text(user_message.content)
|
|
||||||
|
|
||||||
if image is None:
|
|
||||||
raise HTTPException(status_code=400, detail="No image provided in message")
|
|
||||||
|
|
||||||
# Default to OCR if no specific prompt
|
|
||||||
if not prompt or prompt.strip() == "":
|
|
||||||
prompt = "OCR:"
|
|
||||||
|
|
||||||
logger.info(f"Processing request with prompt: {prompt[:50]}...")
|
|
||||||
|
|
||||||
# Generate response
|
|
||||||
start_time = time.time()
|
|
||||||
response_text = generate_response(image, prompt, request.max_tokens or 4096)
|
|
||||||
elapsed = time.time() - start_time
|
|
||||||
|
|
||||||
logger.info(f"Generated response in {elapsed:.2f}s ({len(response_text)} chars)")
|
|
||||||
|
|
||||||
# Build OpenAI-compatible response
|
|
||||||
return ChatCompletionResponse(
|
|
||||||
id=f"chatcmpl-{int(time.time()*1000)}",
|
|
||||||
created=int(time.time()),
|
|
||||||
model=request.model,
|
|
||||||
choices=[
|
|
||||||
Choice(
|
|
||||||
index=0,
|
|
||||||
message=Message(role="assistant", content=response_text),
|
|
||||||
finish_reason="stop"
|
|
||||||
)
|
|
||||||
],
|
|
||||||
usage=Usage(
|
|
||||||
prompt_tokens=100, # Approximate
|
|
||||||
completion_tokens=len(response_text) // 4,
|
|
||||||
total_tokens=100 + len(response_text) // 4
|
|
||||||
)
|
|
||||||
)
|
|
||||||
|
|
||||||
except HTTPException:
|
|
||||||
raise
|
|
||||||
except Exception as e:
|
|
||||||
logger.error(f"Error processing request: {e}")
|
|
||||||
raise HTTPException(status_code=500, detail=str(e))
|
|
||||||
|
|
||||||
|
|
||||||
# Legacy endpoint for compatibility with old PaddleOCR API
|
|
||||||
class LegacyOCRRequest(BaseModel):
|
|
||||||
image: str
|
|
||||||
task: Optional[str] = "ocr"
|
|
||||||
|
|
||||||
|
|
||||||
class LegacyOCRResponse(BaseModel):
|
|
||||||
success: bool
|
|
||||||
result: str
|
|
||||||
task: str
|
|
||||||
error: Optional[str] = None
|
|
||||||
|
|
||||||
|
|
||||||
@app.post("/ocr", response_model=LegacyOCRResponse)
|
|
||||||
async def legacy_ocr(request: LegacyOCRRequest):
|
|
||||||
"""
|
|
||||||
Legacy OCR endpoint for backwards compatibility
|
|
||||||
|
|
||||||
Tasks: ocr, table, formula, chart
|
|
||||||
"""
|
|
||||||
try:
|
|
||||||
image = decode_image(request.image)
|
|
||||||
prompt = TASK_PROMPTS.get(request.task, TASK_PROMPTS["ocr"])
|
|
||||||
|
|
||||||
result = generate_response(image, prompt)
|
|
||||||
|
|
||||||
return LegacyOCRResponse(
|
|
||||||
success=True,
|
|
||||||
result=result,
|
|
||||||
task=request.task
|
|
||||||
)
|
|
||||||
except Exception as e:
|
|
||||||
logger.error(f"Legacy OCR error: {e}")
|
|
||||||
return LegacyOCRResponse(
|
|
||||||
success=False,
|
|
||||||
result="",
|
|
||||||
task=request.task,
|
|
||||||
error=str(e)
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
import uvicorn
|
|
||||||
uvicorn.run(app, host=SERVER_HOST, port=SERVER_PORT)
|
|
||||||
@@ -1,6 +1,6 @@
|
|||||||
{
|
{
|
||||||
"name": "@host.today/ht-docker-ai",
|
"name": "@host.today/ht-docker-ai",
|
||||||
"version": "1.13.0",
|
"version": "1.13.1",
|
||||||
"type": "module",
|
"type": "module",
|
||||||
"private": false,
|
"private": false,
|
||||||
"description": "Docker images for AI vision-language models including MiniCPM-V 4.5",
|
"description": "Docker images for AI vision-language models including MiniCPM-V 4.5",
|
||||||
|
|||||||
Reference in New Issue
Block a user