Compare commits
5 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
| 6dbd06073b | |||
| ae28a64902 | |||
| 09ea7440e8 | |||
| 177e87d3b8 | |||
| 17ea7717eb |
33
Dockerfile_nanonets_ocr
Normal file
33
Dockerfile_nanonets_ocr
Normal file
@@ -0,0 +1,33 @@
|
||||
# Nanonets-OCR-s Vision Language Model
|
||||
# Based on Qwen2.5-VL-3B, fine-tuned for document OCR
|
||||
# ~8-10GB VRAM, outputs structured markdown with semantic tags
|
||||
#
|
||||
# Build: docker build -f Dockerfile_nanonets_ocr -t nanonets-ocr .
|
||||
# Run: docker run --gpus all -p 8000:8000 -v ht-huggingface-cache:/root/.cache/huggingface nanonets-ocr
|
||||
|
||||
FROM vllm/vllm-openai:latest
|
||||
|
||||
LABEL maintainer="Task Venture Capital GmbH <hello@task.vc>"
|
||||
LABEL description="Nanonets-OCR-s - Document OCR optimized Vision Language Model"
|
||||
LABEL org.opencontainers.image.source="https://code.foss.global/host.today/ht-docker-ai"
|
||||
|
||||
# Environment configuration
|
||||
ENV MODEL_NAME="nanonets/Nanonets-OCR-s"
|
||||
ENV HOST="0.0.0.0"
|
||||
ENV PORT="8000"
|
||||
ENV MAX_MODEL_LEN="8192"
|
||||
ENV GPU_MEMORY_UTILIZATION="0.9"
|
||||
|
||||
# Expose OpenAI-compatible API port
|
||||
EXPOSE 8000
|
||||
|
||||
# Health check - vLLM exposes /health endpoint
|
||||
HEALTHCHECK --interval=30s --timeout=10s --start-period=120s --retries=5 \
|
||||
CMD curl -f http://localhost:8000/health || exit 1
|
||||
|
||||
# Start vLLM server with Nanonets-OCR-s model
|
||||
CMD ["--model", "nanonets/Nanonets-OCR-s", \
|
||||
"--trust-remote-code", \
|
||||
"--max-model-len", "8192", \
|
||||
"--host", "0.0.0.0", \
|
||||
"--port", "8000"]
|
||||
16
changelog.md
16
changelog.md
@@ -1,5 +1,21 @@
|
||||
# Changelog
|
||||
|
||||
## 2026-01-18 - 1.13.2 - fix(tests)
|
||||
stabilize OCR extraction tests and manage GPU containers
|
||||
|
||||
- Add stopAllGpuContainers() and call it before starting GPU images to free GPU memory.
|
||||
- Remove PaddleOCR-VL image configs and associated ensure helpers from docker test helper to simplify images list.
|
||||
- Split invoice/bankstatement tests into two sequential stages: Stage 1 runs Nanonets OCR to produce markdown files, Stage 2 stops Nanonets and runs model extraction from saved markdown (avoids GPU contention).
|
||||
- Introduce temporary markdown directory handling and cleanup; add stopNanonets() and container running checks in tests.
|
||||
- Switch bank statement extraction model from qwen3:8b to gpt-oss:20b; add request timeout and improved logging/console output across tests.
|
||||
- Refactor extractWithConsensus and extraction functions to accept document identifiers, improve error messages and JSON extraction robustness.
|
||||
|
||||
## 2026-01-18 - 1.13.1 - fix(image_support_files)
|
||||
remove PaddleOCR-VL server scripts from image_support_files
|
||||
|
||||
- Deleted files: image_support_files/paddleocr_vl_full_server.py (approx. 636 lines) and image_support_files/paddleocr_vl_server.py (approx. 465 lines)
|
||||
- Cleanup/removal of legacy PaddleOCR-VL FastAPI server implementations — may affect users who relied on these local scripts
|
||||
|
||||
## 2026-01-18 - 1.13.0 - feat(tests)
|
||||
revamp tests and remove legacy Dockerfiles: adopt JSON/consensus workflows, switch MiniCPM model, and delete deprecated Docker/test variants
|
||||
|
||||
|
||||
@@ -1,636 +0,0 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
PaddleOCR-VL Full Pipeline API Server (Transformers backend)
|
||||
|
||||
Provides REST API for document parsing using:
|
||||
- PP-DocLayoutV2 for layout detection
|
||||
- PaddleOCR-VL (transformers) for recognition
|
||||
- Structured JSON/Markdown output
|
||||
"""
|
||||
|
||||
import os
|
||||
import io
|
||||
import re
|
||||
import base64
|
||||
import logging
|
||||
import tempfile
|
||||
import time
|
||||
import json
|
||||
from typing import Optional, List, Union
|
||||
from pathlib import Path
|
||||
|
||||
from fastapi import FastAPI, HTTPException, UploadFile, File, Form
|
||||
from fastapi.responses import JSONResponse
|
||||
from pydantic import BaseModel
|
||||
from PIL import Image
|
||||
import torch
|
||||
|
||||
# Configure logging
|
||||
logging.basicConfig(
|
||||
level=logging.INFO,
|
||||
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
||||
)
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Environment configuration
|
||||
SERVER_HOST = os.environ.get('SERVER_HOST', '0.0.0.0')
|
||||
SERVER_PORT = int(os.environ.get('SERVER_PORT', '8000'))
|
||||
MODEL_NAME = "PaddlePaddle/PaddleOCR-VL"
|
||||
|
||||
# Device configuration
|
||||
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
logger.info(f"Using device: {DEVICE}")
|
||||
|
||||
# Task prompts
|
||||
TASK_PROMPTS = {
|
||||
"ocr": "OCR:",
|
||||
"table": "Table Recognition:",
|
||||
"formula": "Formula Recognition:",
|
||||
"chart": "Chart Recognition:",
|
||||
}
|
||||
|
||||
# Initialize FastAPI app
|
||||
app = FastAPI(
|
||||
title="PaddleOCR-VL Full Pipeline Server",
|
||||
description="Document parsing with PP-DocLayoutV2 + PaddleOCR-VL (transformers)",
|
||||
version="1.0.0"
|
||||
)
|
||||
|
||||
# Global model instances
|
||||
vl_model = None
|
||||
vl_processor = None
|
||||
layout_model = None
|
||||
|
||||
|
||||
def load_vl_model():
|
||||
"""Load the PaddleOCR-VL model for element recognition"""
|
||||
global vl_model, vl_processor
|
||||
|
||||
if vl_model is not None:
|
||||
return
|
||||
|
||||
logger.info(f"Loading PaddleOCR-VL model: {MODEL_NAME}")
|
||||
from transformers import AutoModelForCausalLM, AutoProcessor
|
||||
|
||||
vl_processor = AutoProcessor.from_pretrained(MODEL_NAME, trust_remote_code=True)
|
||||
|
||||
if DEVICE == "cuda":
|
||||
vl_model = AutoModelForCausalLM.from_pretrained(
|
||||
MODEL_NAME,
|
||||
trust_remote_code=True,
|
||||
torch_dtype=torch.bfloat16,
|
||||
).to(DEVICE).eval()
|
||||
else:
|
||||
vl_model = AutoModelForCausalLM.from_pretrained(
|
||||
MODEL_NAME,
|
||||
trust_remote_code=True,
|
||||
torch_dtype=torch.float32,
|
||||
low_cpu_mem_usage=True,
|
||||
).eval()
|
||||
|
||||
logger.info("PaddleOCR-VL model loaded successfully")
|
||||
|
||||
|
||||
def load_layout_model():
|
||||
"""Load the LayoutDetection model for layout detection"""
|
||||
global layout_model
|
||||
|
||||
if layout_model is not None:
|
||||
return
|
||||
|
||||
try:
|
||||
logger.info("Loading LayoutDetection model (PP-DocLayout_plus-L)...")
|
||||
from paddleocr import LayoutDetection
|
||||
|
||||
layout_model = LayoutDetection()
|
||||
logger.info("LayoutDetection model loaded successfully")
|
||||
except Exception as e:
|
||||
logger.warning(f"Could not load LayoutDetection: {e}")
|
||||
logger.info("Falling back to VL-only mode (no layout detection)")
|
||||
|
||||
|
||||
def recognize_element(image: Image.Image, task: str = "ocr") -> str:
|
||||
"""Recognize a single element using PaddleOCR-VL"""
|
||||
load_vl_model()
|
||||
|
||||
prompt = TASK_PROMPTS.get(task, TASK_PROMPTS["ocr"])
|
||||
|
||||
messages = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "image", "image": image},
|
||||
{"type": "text", "text": prompt},
|
||||
]
|
||||
}
|
||||
]
|
||||
|
||||
inputs = vl_processor.apply_chat_template(
|
||||
messages,
|
||||
tokenize=True,
|
||||
add_generation_prompt=True,
|
||||
return_dict=True,
|
||||
return_tensors="pt"
|
||||
)
|
||||
|
||||
if DEVICE == "cuda":
|
||||
inputs = {k: v.to(DEVICE) for k, v in inputs.items()}
|
||||
|
||||
with torch.inference_mode():
|
||||
outputs = vl_model.generate(
|
||||
**inputs,
|
||||
max_new_tokens=4096,
|
||||
do_sample=False,
|
||||
use_cache=True
|
||||
)
|
||||
|
||||
response = vl_processor.batch_decode(outputs, skip_special_tokens=True)[0]
|
||||
|
||||
# Extract only the assistant's response content
|
||||
# The response format is: "User: <prompt>\nAssistant: <content>"
|
||||
# We want to extract just the content after "Assistant:"
|
||||
if "Assistant:" in response:
|
||||
parts = response.split("Assistant:")
|
||||
if len(parts) > 1:
|
||||
response = parts[-1].strip()
|
||||
elif "assistant:" in response.lower():
|
||||
# Case-insensitive fallback
|
||||
import re
|
||||
match = re.split(r'[Aa]ssistant:', response)
|
||||
if len(match) > 1:
|
||||
response = match[-1].strip()
|
||||
|
||||
return response
|
||||
|
||||
|
||||
def detect_layout(image: Image.Image) -> List[dict]:
|
||||
"""Detect layout regions in the image"""
|
||||
load_layout_model()
|
||||
|
||||
if layout_model is None:
|
||||
# No layout model - return a single region covering the whole image
|
||||
return [{
|
||||
"type": "text",
|
||||
"bbox": [0, 0, image.width, image.height],
|
||||
"score": 1.0
|
||||
}]
|
||||
|
||||
# Save image to temp file
|
||||
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp:
|
||||
image.save(tmp.name, "PNG")
|
||||
tmp_path = tmp.name
|
||||
|
||||
try:
|
||||
results = layout_model.predict(tmp_path)
|
||||
regions = []
|
||||
|
||||
for res in results:
|
||||
# LayoutDetection returns boxes in 'boxes' key
|
||||
for box in res.get("boxes", []):
|
||||
coord = box.get("coordinate", [0, 0, image.width, image.height])
|
||||
# Convert numpy floats to regular floats
|
||||
bbox = [float(c) for c in coord]
|
||||
regions.append({
|
||||
"type": box.get("label", "text"),
|
||||
"bbox": bbox,
|
||||
"score": float(box.get("score", 1.0))
|
||||
})
|
||||
|
||||
# Sort regions by vertical position (top to bottom)
|
||||
regions.sort(key=lambda r: r["bbox"][1])
|
||||
|
||||
return regions if regions else [{
|
||||
"type": "text",
|
||||
"bbox": [0, 0, image.width, image.height],
|
||||
"score": 1.0
|
||||
}]
|
||||
|
||||
finally:
|
||||
os.unlink(tmp_path)
|
||||
|
||||
|
||||
def process_document(image: Image.Image) -> dict:
|
||||
"""Process a document through the full pipeline"""
|
||||
logger.info(f"Processing document: {image.size}")
|
||||
|
||||
# Step 1: Detect layout
|
||||
regions = detect_layout(image)
|
||||
logger.info(f"Detected {len(regions)} layout regions")
|
||||
|
||||
# Step 2: Recognize each region
|
||||
blocks = []
|
||||
for i, region in enumerate(regions):
|
||||
region_type = region["type"].lower()
|
||||
bbox = region["bbox"]
|
||||
|
||||
# Crop region from image
|
||||
x1, y1, x2, y2 = [int(c) for c in bbox]
|
||||
region_image = image.crop((x1, y1, x2, y2))
|
||||
|
||||
# Determine task based on region type
|
||||
if "table" in region_type:
|
||||
task = "table"
|
||||
elif "formula" in region_type or "math" in region_type:
|
||||
task = "formula"
|
||||
elif "chart" in region_type or "figure" in region_type:
|
||||
task = "chart"
|
||||
else:
|
||||
task = "ocr"
|
||||
|
||||
# Recognize the region
|
||||
try:
|
||||
content = recognize_element(region_image, task)
|
||||
blocks.append({
|
||||
"index": i,
|
||||
"type": region_type,
|
||||
"bbox": bbox,
|
||||
"content": content,
|
||||
"task": task
|
||||
})
|
||||
logger.info(f" Region {i} ({region_type}): {len(content)} chars")
|
||||
except Exception as e:
|
||||
logger.error(f" Region {i} error: {e}")
|
||||
blocks.append({
|
||||
"index": i,
|
||||
"type": region_type,
|
||||
"bbox": bbox,
|
||||
"content": "",
|
||||
"error": str(e)
|
||||
})
|
||||
|
||||
return {"blocks": blocks, "image_size": list(image.size)}
|
||||
|
||||
|
||||
def result_to_markdown(result: dict) -> str:
|
||||
"""Convert result to Markdown format with structural hints for LLM processing.
|
||||
|
||||
Adds positional and type-based formatting to help downstream LLMs
|
||||
understand document structure:
|
||||
- Tables are marked with **[TABLE]** prefix
|
||||
- Header zone content (top 15%) is bolded
|
||||
- Footer zone content (bottom 15%) is separated with horizontal rule
|
||||
- Titles are formatted as # headers
|
||||
- Figures/charts are marked with *[Figure: ...]*
|
||||
"""
|
||||
lines = []
|
||||
image_height = result.get("image_size", [0, 1000])[1]
|
||||
|
||||
for block in result.get("blocks", []):
|
||||
block_type = block.get("type", "text").lower()
|
||||
content = block.get("content", "").strip()
|
||||
bbox = block.get("bbox", [])
|
||||
|
||||
if not content:
|
||||
continue
|
||||
|
||||
# Determine position zone (top 15%, middle, bottom 15%)
|
||||
y_pos = bbox[1] if bbox and len(bbox) > 1 else 0
|
||||
y_end = bbox[3] if bbox and len(bbox) > 3 else y_pos
|
||||
is_header_zone = y_pos < image_height * 0.15
|
||||
is_footer_zone = y_end > image_height * 0.85
|
||||
|
||||
# Format based on type and position
|
||||
if "table" in block_type:
|
||||
lines.append(f"\n**[TABLE]**\n{content}\n")
|
||||
elif "title" in block_type:
|
||||
lines.append(f"# {content}")
|
||||
elif "formula" in block_type or "math" in block_type:
|
||||
lines.append(f"\n$$\n{content}\n$$\n")
|
||||
elif "figure" in block_type or "chart" in block_type:
|
||||
lines.append(f"*[Figure: {content}]*")
|
||||
elif is_header_zone:
|
||||
lines.append(f"**{content}**")
|
||||
elif is_footer_zone:
|
||||
lines.append(f"---\n{content}")
|
||||
else:
|
||||
lines.append(content)
|
||||
|
||||
return "\n\n".join(lines)
|
||||
|
||||
|
||||
def parse_markdown_table(content: str) -> str:
|
||||
"""Convert table content to HTML table.
|
||||
|
||||
Handles:
|
||||
- PaddleOCR-VL format: <fcel>cell<lcel>cell<nl> (detected by <fcel> tags)
|
||||
- Pipe-delimited tables: | Header | Header |
|
||||
- Separator rows: |---|---|
|
||||
- Returns HTML <table> structure
|
||||
"""
|
||||
content_stripped = content.strip()
|
||||
|
||||
# Check for PaddleOCR-VL table format (<fcel>, <lcel>, <ecel>, <nl>)
|
||||
if '<fcel>' in content_stripped or '<nl>' in content_stripped:
|
||||
return parse_paddleocr_table(content_stripped)
|
||||
|
||||
lines = content_stripped.split('\n')
|
||||
if not lines:
|
||||
return f'<pre>{content}</pre>'
|
||||
|
||||
# Check if it looks like a markdown table
|
||||
if not any('|' in line for line in lines):
|
||||
return f'<pre>{content}</pre>'
|
||||
|
||||
html_rows = []
|
||||
is_header = True
|
||||
|
||||
for line in lines:
|
||||
line = line.strip()
|
||||
if not line or line.startswith('|') == False and '|' not in line:
|
||||
continue
|
||||
|
||||
# Skip separator rows (|---|---|)
|
||||
if re.match(r'^[\|\s\-:]+$', line):
|
||||
is_header = False
|
||||
continue
|
||||
|
||||
# Parse cells
|
||||
cells = [c.strip() for c in line.split('|')]
|
||||
cells = [c for c in cells if c] # Remove empty from edges
|
||||
|
||||
if is_header:
|
||||
row = '<tr>' + ''.join(f'<th>{c}</th>' for c in cells) + '</tr>'
|
||||
html_rows.append(f'<thead>{row}</thead>')
|
||||
is_header = False
|
||||
else:
|
||||
row = '<tr>' + ''.join(f'<td>{c}</td>' for c in cells) + '</tr>'
|
||||
html_rows.append(row)
|
||||
|
||||
if html_rows:
|
||||
# Wrap body rows in tbody
|
||||
header = html_rows[0] if '<thead>' in html_rows[0] else ''
|
||||
body_rows = [r for r in html_rows if '<thead>' not in r]
|
||||
body = f'<tbody>{"".join(body_rows)}</tbody>' if body_rows else ''
|
||||
return f'<table>{header}{body}</table>'
|
||||
|
||||
return f'<pre>{content}</pre>'
|
||||
|
||||
|
||||
def parse_paddleocr_table(content: str) -> str:
|
||||
"""Convert PaddleOCR-VL table format to HTML table.
|
||||
|
||||
PaddleOCR-VL uses:
|
||||
- <fcel> = first cell in a row
|
||||
- <lcel> = subsequent cells
|
||||
- <ecel> = empty cell
|
||||
- <nl> = row separator (newline)
|
||||
|
||||
Example input:
|
||||
<fcel>Header1<lcel>Header2<nl><fcel>Value1<lcel>Value2<nl>
|
||||
"""
|
||||
# Split into rows by <nl>
|
||||
rows_raw = re.split(r'<nl>', content)
|
||||
html_rows = []
|
||||
is_first_row = True
|
||||
|
||||
for row_content in rows_raw:
|
||||
row_content = row_content.strip()
|
||||
if not row_content:
|
||||
continue
|
||||
|
||||
# Extract cells: split by <fcel>, <lcel>, or <ecel>
|
||||
# Each cell is the text between these markers
|
||||
cells = []
|
||||
|
||||
# Pattern to match cell markers and capture content
|
||||
# Content is everything between markers
|
||||
parts = re.split(r'<fcel>|<lcel>|<ecel>', row_content)
|
||||
for part in parts:
|
||||
part = part.strip()
|
||||
if part:
|
||||
cells.append(part)
|
||||
|
||||
if not cells:
|
||||
continue
|
||||
|
||||
# First row is header
|
||||
if is_first_row:
|
||||
row_html = '<tr>' + ''.join(f'<th>{c}</th>' for c in cells) + '</tr>'
|
||||
html_rows.append(f'<thead>{row_html}</thead>')
|
||||
is_first_row = False
|
||||
else:
|
||||
row_html = '<tr>' + ''.join(f'<td>{c}</td>' for c in cells) + '</tr>'
|
||||
html_rows.append(row_html)
|
||||
|
||||
if html_rows:
|
||||
header = html_rows[0] if '<thead>' in html_rows[0] else ''
|
||||
body_rows = [r for r in html_rows if '<thead>' not in r]
|
||||
body = f'<tbody>{"".join(body_rows)}</tbody>' if body_rows else ''
|
||||
return f'<table>{header}{body}</table>'
|
||||
|
||||
return f'<pre>{content}</pre>'
|
||||
|
||||
|
||||
def result_to_html(result: dict) -> str:
|
||||
"""Convert result to semantic HTML for optimal LLM processing.
|
||||
|
||||
Uses semantic HTML5 tags with position metadata as data-* attributes.
|
||||
Markdown tables are converted to proper HTML <table> tags for
|
||||
unambiguous parsing by downstream LLMs.
|
||||
"""
|
||||
parts = []
|
||||
image_height = result.get("image_size", [0, 1000])[1]
|
||||
|
||||
parts.append('<!DOCTYPE html><html><body>')
|
||||
|
||||
for block in result.get("blocks", []):
|
||||
block_type = block.get("type", "text").lower()
|
||||
content = block.get("content", "").strip()
|
||||
bbox = block.get("bbox", [])
|
||||
|
||||
if not content:
|
||||
continue
|
||||
|
||||
# Position metadata
|
||||
y_pos = bbox[1] / image_height if bbox and len(bbox) > 1 else 0
|
||||
data_attrs = f'data-type="{block_type}" data-y="{y_pos:.2f}"'
|
||||
|
||||
# Format based on type
|
||||
if "table" in block_type:
|
||||
table_html = parse_markdown_table(content)
|
||||
parts.append(f'<section {data_attrs} class="table-region">{table_html}</section>')
|
||||
elif "title" in block_type:
|
||||
parts.append(f'<h1 {data_attrs}>{content}</h1>')
|
||||
elif "formula" in block_type or "math" in block_type:
|
||||
parts.append(f'<div {data_attrs} class="formula"><code>{content}</code></div>')
|
||||
elif "figure" in block_type or "chart" in block_type:
|
||||
parts.append(f'<figure {data_attrs}><figcaption>{content}</figcaption></figure>')
|
||||
elif y_pos < 0.15:
|
||||
parts.append(f'<header {data_attrs}><strong>{content}</strong></header>')
|
||||
elif y_pos > 0.85:
|
||||
parts.append(f'<footer {data_attrs}>{content}</footer>')
|
||||
else:
|
||||
parts.append(f'<p {data_attrs}>{content}</p>')
|
||||
|
||||
parts.append('</body></html>')
|
||||
return '\n'.join(parts)
|
||||
|
||||
|
||||
# Request/Response models
|
||||
class ParseRequest(BaseModel):
|
||||
image: str # base64 encoded image
|
||||
output_format: Optional[str] = "json"
|
||||
|
||||
|
||||
class ParseResponse(BaseModel):
|
||||
success: bool
|
||||
format: str
|
||||
result: Union[dict, str]
|
||||
processing_time: float
|
||||
error: Optional[str] = None
|
||||
|
||||
|
||||
def decode_image(image_source: str) -> Image.Image:
|
||||
"""Decode image from base64 or data URL"""
|
||||
if image_source.startswith("data:"):
|
||||
header, data = image_source.split(",", 1)
|
||||
image_data = base64.b64decode(data)
|
||||
else:
|
||||
image_data = base64.b64decode(image_source)
|
||||
|
||||
return Image.open(io.BytesIO(image_data)).convert("RGB")
|
||||
|
||||
|
||||
@app.on_event("startup")
|
||||
async def startup_event():
|
||||
"""Pre-load models on startup"""
|
||||
logger.info("Starting PaddleOCR-VL Full Pipeline Server...")
|
||||
try:
|
||||
load_vl_model()
|
||||
load_layout_model()
|
||||
logger.info("Models loaded successfully")
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to pre-load models: {e}")
|
||||
|
||||
|
||||
@app.get("/health")
|
||||
async def health_check():
|
||||
"""Health check endpoint"""
|
||||
return {
|
||||
"status": "healthy" if vl_model is not None else "loading",
|
||||
"service": "PaddleOCR-VL Full Pipeline (Transformers)",
|
||||
"device": DEVICE,
|
||||
"vl_model_loaded": vl_model is not None,
|
||||
"layout_model_loaded": layout_model is not None
|
||||
}
|
||||
|
||||
|
||||
@app.get("/formats")
|
||||
async def supported_formats():
|
||||
"""List supported output formats"""
|
||||
return {
|
||||
"output_formats": ["json", "markdown", "html"],
|
||||
"image_formats": ["PNG", "JPEG", "WebP", "BMP", "GIF", "TIFF"],
|
||||
"capabilities": [
|
||||
"Layout detection (PP-DocLayoutV2)",
|
||||
"Text recognition (OCR)",
|
||||
"Table recognition",
|
||||
"Formula recognition (LaTeX)",
|
||||
"Chart recognition",
|
||||
"Multi-language support (109 languages)"
|
||||
]
|
||||
}
|
||||
|
||||
|
||||
@app.post("/parse", response_model=ParseResponse)
|
||||
async def parse_document_endpoint(request: ParseRequest):
|
||||
"""Parse a document image and return structured output"""
|
||||
try:
|
||||
start_time = time.time()
|
||||
|
||||
image = decode_image(request.image)
|
||||
result = process_document(image)
|
||||
|
||||
if request.output_format == "markdown":
|
||||
markdown = result_to_markdown(result)
|
||||
output = {"markdown": markdown}
|
||||
elif request.output_format == "html":
|
||||
html = result_to_html(result)
|
||||
output = {"html": html}
|
||||
else:
|
||||
output = result
|
||||
|
||||
elapsed = time.time() - start_time
|
||||
logger.info(f"Processing complete in {elapsed:.2f}s")
|
||||
|
||||
return ParseResponse(
|
||||
success=True,
|
||||
format=request.output_format,
|
||||
result=output,
|
||||
processing_time=elapsed
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error processing document: {e}", exc_info=True)
|
||||
return ParseResponse(
|
||||
success=False,
|
||||
format=request.output_format,
|
||||
result={},
|
||||
processing_time=0,
|
||||
error=str(e)
|
||||
)
|
||||
|
||||
|
||||
@app.post("/v1/chat/completions")
|
||||
async def chat_completions(request: dict):
|
||||
"""OpenAI-compatible chat completions endpoint"""
|
||||
try:
|
||||
messages = request.get("messages", [])
|
||||
output_format = request.get("output_format", "json")
|
||||
|
||||
# Find user message with image
|
||||
image = None
|
||||
for msg in reversed(messages):
|
||||
if msg.get("role") == "user":
|
||||
content = msg.get("content", [])
|
||||
if isinstance(content, list):
|
||||
for item in content:
|
||||
if item.get("type") == "image_url":
|
||||
url = item.get("image_url", {}).get("url", "")
|
||||
image = decode_image(url)
|
||||
break
|
||||
break
|
||||
|
||||
if image is None:
|
||||
raise HTTPException(status_code=400, detail="No image provided")
|
||||
|
||||
start_time = time.time()
|
||||
result = process_document(image)
|
||||
|
||||
if output_format == "markdown":
|
||||
content = result_to_markdown(result)
|
||||
elif output_format == "html":
|
||||
content = result_to_html(result)
|
||||
else:
|
||||
content = json.dumps(result, ensure_ascii=False, indent=2)
|
||||
|
||||
elapsed = time.time() - start_time
|
||||
|
||||
return {
|
||||
"id": f"chatcmpl-{int(time.time()*1000)}",
|
||||
"object": "chat.completion",
|
||||
"created": int(time.time()),
|
||||
"model": "paddleocr-vl-full",
|
||||
"choices": [{
|
||||
"index": 0,
|
||||
"message": {"role": "assistant", "content": content},
|
||||
"finish_reason": "stop"
|
||||
}],
|
||||
"usage": {
|
||||
"prompt_tokens": 100,
|
||||
"completion_tokens": len(content) // 4,
|
||||
"total_tokens": 100 + len(content) // 4
|
||||
},
|
||||
"processing_time": elapsed
|
||||
}
|
||||
|
||||
except HTTPException:
|
||||
raise
|
||||
except Exception as e:
|
||||
logger.error(f"Error in chat completions: {e}", exc_info=True)
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import uvicorn
|
||||
uvicorn.run(app, host=SERVER_HOST, port=SERVER_PORT)
|
||||
@@ -1,465 +0,0 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
PaddleOCR-VL FastAPI Server (CPU variant)
|
||||
Provides OpenAI-compatible REST API for document parsing using PaddleOCR-VL
|
||||
"""
|
||||
|
||||
import os
|
||||
import io
|
||||
import base64
|
||||
import logging
|
||||
import time
|
||||
from typing import Optional, List, Any, Dict, Union
|
||||
|
||||
from fastapi import FastAPI, HTTPException
|
||||
from fastapi.responses import JSONResponse
|
||||
from pydantic import BaseModel
|
||||
import torch
|
||||
from PIL import Image
|
||||
|
||||
# Configure logging
|
||||
logging.basicConfig(
|
||||
level=logging.INFO,
|
||||
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
||||
)
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Environment configuration
|
||||
SERVER_HOST = os.environ.get('SERVER_HOST', '0.0.0.0')
|
||||
SERVER_PORT = int(os.environ.get('SERVER_PORT', '8000'))
|
||||
MODEL_NAME = os.environ.get('MODEL_NAME', 'PaddlePaddle/PaddleOCR-VL')
|
||||
|
||||
# Device configuration
|
||||
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
logger.info(f"Using device: {DEVICE}")
|
||||
|
||||
# Task prompts for PaddleOCR-VL
|
||||
TASK_PROMPTS = {
|
||||
"ocr": "OCR:",
|
||||
"table": "Table Recognition:",
|
||||
"formula": "Formula Recognition:",
|
||||
"chart": "Chart Recognition:",
|
||||
}
|
||||
|
||||
# Initialize FastAPI app
|
||||
app = FastAPI(
|
||||
title="PaddleOCR-VL Server",
|
||||
description="OpenAI-compatible REST API for document parsing using PaddleOCR-VL",
|
||||
version="1.0.0"
|
||||
)
|
||||
|
||||
# Global model instances
|
||||
model = None
|
||||
processor = None
|
||||
|
||||
|
||||
# Request/Response models (OpenAI-compatible)
|
||||
class ImageUrl(BaseModel):
|
||||
url: str
|
||||
|
||||
|
||||
class ContentItem(BaseModel):
|
||||
type: str
|
||||
text: Optional[str] = None
|
||||
image_url: Optional[ImageUrl] = None
|
||||
|
||||
|
||||
class Message(BaseModel):
|
||||
role: str
|
||||
content: Union[str, List[ContentItem]]
|
||||
|
||||
|
||||
class ChatCompletionRequest(BaseModel):
|
||||
model: str = "paddleocr-vl"
|
||||
messages: List[Message]
|
||||
temperature: Optional[float] = 0.0
|
||||
max_tokens: Optional[int] = 4096
|
||||
|
||||
|
||||
class Choice(BaseModel):
|
||||
index: int
|
||||
message: Message
|
||||
finish_reason: str
|
||||
|
||||
|
||||
class Usage(BaseModel):
|
||||
prompt_tokens: int
|
||||
completion_tokens: int
|
||||
total_tokens: int
|
||||
|
||||
|
||||
class ChatCompletionResponse(BaseModel):
|
||||
id: str
|
||||
object: str = "chat.completion"
|
||||
created: int
|
||||
model: str
|
||||
choices: List[Choice]
|
||||
usage: Usage
|
||||
|
||||
|
||||
class HealthResponse(BaseModel):
|
||||
status: str
|
||||
model: str
|
||||
device: str
|
||||
|
||||
|
||||
def load_model():
|
||||
"""Load the PaddleOCR-VL model and processor"""
|
||||
global model, processor
|
||||
|
||||
if model is not None:
|
||||
return
|
||||
|
||||
logger.info(f"Loading PaddleOCR-VL model: {MODEL_NAME}")
|
||||
|
||||
from transformers import AutoModelForCausalLM, AutoProcessor
|
||||
|
||||
# Load processor
|
||||
processor = AutoProcessor.from_pretrained(MODEL_NAME, trust_remote_code=True)
|
||||
|
||||
# Load model with appropriate settings for CPU/GPU
|
||||
if DEVICE == "cuda":
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
MODEL_NAME,
|
||||
trust_remote_code=True,
|
||||
torch_dtype=torch.bfloat16,
|
||||
).to(DEVICE).eval()
|
||||
else:
|
||||
# CPU mode - use float32 for compatibility
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
MODEL_NAME,
|
||||
trust_remote_code=True,
|
||||
torch_dtype=torch.float32,
|
||||
low_cpu_mem_usage=True,
|
||||
).eval()
|
||||
|
||||
logger.info("PaddleOCR-VL model loaded successfully")
|
||||
|
||||
|
||||
def optimize_image_resolution(image: Image.Image, max_size: int = 2048, min_size: int = 1080) -> Image.Image:
|
||||
"""
|
||||
Optimize image resolution for PaddleOCR-VL.
|
||||
|
||||
Best results are achieved with images in the 1080p-2K range.
|
||||
- Images larger than max_size are scaled down
|
||||
- Very small images are scaled up to min_size
|
||||
"""
|
||||
width, height = image.size
|
||||
max_dim = max(width, height)
|
||||
min_dim = min(width, height)
|
||||
|
||||
# Scale down if too large (4K+ images often miss text)
|
||||
if max_dim > max_size:
|
||||
scale = max_size / max_dim
|
||||
new_width = int(width * scale)
|
||||
new_height = int(height * scale)
|
||||
logger.info(f"Scaling down image from {width}x{height} to {new_width}x{new_height}")
|
||||
image = image.resize((new_width, new_height), Image.Resampling.LANCZOS)
|
||||
# Scale up if too small
|
||||
elif max_dim < min_size and min_dim < min_size:
|
||||
scale = min_size / max_dim
|
||||
new_width = int(width * scale)
|
||||
new_height = int(height * scale)
|
||||
logger.info(f"Scaling up image from {width}x{height} to {new_width}x{new_height}")
|
||||
image = image.resize((new_width, new_height), Image.Resampling.LANCZOS)
|
||||
else:
|
||||
logger.info(f"Image size {width}x{height} is optimal, no scaling needed")
|
||||
|
||||
return image
|
||||
|
||||
|
||||
def decode_image(image_source: str, optimize: bool = True) -> Image.Image:
|
||||
"""
|
||||
Decode image from various sources.
|
||||
|
||||
Supported formats:
|
||||
- Base64 data URL: data:image/png;base64,... or data:image/jpeg;base64,...
|
||||
- HTTP/HTTPS URL: https://example.com/image.png
|
||||
- Raw base64 string
|
||||
- Local file path
|
||||
|
||||
Supported image types: PNG, JPEG, WebP, BMP, GIF, TIFF
|
||||
"""
|
||||
image = None
|
||||
|
||||
if image_source.startswith("data:"):
|
||||
# Base64 encoded image with MIME type header
|
||||
# Supports: data:image/png;base64,... data:image/jpeg;base64,... etc.
|
||||
header, data = image_source.split(",", 1)
|
||||
image_data = base64.b64decode(data)
|
||||
image = Image.open(io.BytesIO(image_data)).convert("RGB")
|
||||
logger.debug(f"Decoded base64 image with header: {header}")
|
||||
elif image_source.startswith("http://") or image_source.startswith("https://"):
|
||||
# URL - fetch image
|
||||
import httpx
|
||||
response = httpx.get(image_source, timeout=30.0)
|
||||
response.raise_for_status()
|
||||
image = Image.open(io.BytesIO(response.content)).convert("RGB")
|
||||
logger.debug(f"Fetched image from URL: {image_source[:50]}...")
|
||||
else:
|
||||
# Assume it's a file path or raw base64
|
||||
try:
|
||||
image_data = base64.b64decode(image_source)
|
||||
image = Image.open(io.BytesIO(image_data)).convert("RGB")
|
||||
logger.debug("Decoded raw base64 image")
|
||||
except:
|
||||
# Try as file path
|
||||
image = Image.open(image_source).convert("RGB")
|
||||
logger.debug(f"Loaded image from file: {image_source}")
|
||||
|
||||
# Optimize resolution for best OCR results
|
||||
if optimize:
|
||||
image = optimize_image_resolution(image)
|
||||
|
||||
return image
|
||||
|
||||
|
||||
def extract_image_and_text(content: Union[str, List[ContentItem]]) -> tuple:
|
||||
"""Extract image and text prompt from message content"""
|
||||
if isinstance(content, str):
|
||||
return None, content
|
||||
|
||||
image = None
|
||||
text = ""
|
||||
|
||||
for item in content:
|
||||
if item.type == "image_url" and item.image_url:
|
||||
image = decode_image(item.image_url.url)
|
||||
elif item.type == "text" and item.text:
|
||||
text = item.text
|
||||
|
||||
return image, text
|
||||
|
||||
|
||||
def generate_response(image: Image.Image, prompt: str, max_tokens: int = 4096) -> str:
|
||||
"""Generate response using PaddleOCR-VL"""
|
||||
load_model()
|
||||
|
||||
messages = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "image", "image": image},
|
||||
{"type": "text", "text": prompt},
|
||||
]
|
||||
}
|
||||
]
|
||||
|
||||
inputs = processor.apply_chat_template(
|
||||
messages,
|
||||
tokenize=True,
|
||||
add_generation_prompt=True,
|
||||
return_dict=True,
|
||||
return_tensors="pt"
|
||||
)
|
||||
|
||||
if DEVICE == "cuda":
|
||||
inputs = {k: v.to(DEVICE) for k, v in inputs.items()}
|
||||
|
||||
with torch.inference_mode():
|
||||
outputs = model.generate(
|
||||
**inputs,
|
||||
max_new_tokens=max_tokens,
|
||||
do_sample=False,
|
||||
use_cache=True
|
||||
)
|
||||
|
||||
response = processor.batch_decode(outputs, skip_special_tokens=True)[0]
|
||||
|
||||
# Extract the assistant's response (after the prompt)
|
||||
if "assistant" in response.lower():
|
||||
parts = response.split("assistant")
|
||||
if len(parts) > 1:
|
||||
response = parts[-1].strip()
|
||||
|
||||
return response
|
||||
|
||||
|
||||
@app.on_event("startup")
|
||||
async def startup_event():
|
||||
"""Pre-load the model on startup"""
|
||||
logger.info("Pre-loading PaddleOCR-VL model...")
|
||||
try:
|
||||
load_model()
|
||||
logger.info("Model pre-loaded successfully")
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to pre-load model: {e}")
|
||||
# Don't fail startup - model will be loaded on first request
|
||||
|
||||
|
||||
@app.get("/health", response_model=HealthResponse)
|
||||
async def health_check():
|
||||
"""Health check endpoint"""
|
||||
return HealthResponse(
|
||||
status="healthy" if model is not None else "loading",
|
||||
model=MODEL_NAME,
|
||||
device=DEVICE
|
||||
)
|
||||
|
||||
|
||||
@app.get("/formats")
|
||||
async def supported_formats():
|
||||
"""List supported image formats and input methods"""
|
||||
return {
|
||||
"image_formats": {
|
||||
"supported": ["PNG", "JPEG", "WebP", "BMP", "GIF", "TIFF"],
|
||||
"recommended": ["PNG", "JPEG"],
|
||||
"mime_types": [
|
||||
"image/png",
|
||||
"image/jpeg",
|
||||
"image/webp",
|
||||
"image/bmp",
|
||||
"image/gif",
|
||||
"image/tiff"
|
||||
]
|
||||
},
|
||||
"input_methods": {
|
||||
"base64_data_url": {
|
||||
"description": "Base64 encoded image with MIME type header",
|
||||
"example": "..."
|
||||
},
|
||||
"http_url": {
|
||||
"description": "Direct HTTP/HTTPS URL to image",
|
||||
"example": "https://example.com/image.png"
|
||||
},
|
||||
"raw_base64": {
|
||||
"description": "Raw base64 string without header",
|
||||
"example": "iVBORw0KGgo..."
|
||||
}
|
||||
},
|
||||
"resolution": {
|
||||
"optimal_range": "1080p to 2K (1080-2048 pixels on longest side)",
|
||||
"auto_scaling": True,
|
||||
"note": "Images are automatically scaled to optimal range. 4K+ images are scaled down for better accuracy."
|
||||
},
|
||||
"task_prompts": TASK_PROMPTS
|
||||
}
|
||||
|
||||
|
||||
@app.get("/v1/models")
|
||||
async def list_models():
|
||||
"""List available models (OpenAI-compatible)"""
|
||||
return {
|
||||
"object": "list",
|
||||
"data": [
|
||||
{
|
||||
"id": "paddleocr-vl",
|
||||
"object": "model",
|
||||
"created": int(time.time()),
|
||||
"owned_by": "paddlepaddle"
|
||||
}
|
||||
]
|
||||
}
|
||||
|
||||
|
||||
@app.post("/v1/chat/completions", response_model=ChatCompletionResponse)
|
||||
async def chat_completions(request: ChatCompletionRequest):
|
||||
"""
|
||||
OpenAI-compatible chat completions endpoint for PaddleOCR-VL
|
||||
|
||||
Supports tasks:
|
||||
- "OCR:" - Text recognition
|
||||
- "Table Recognition:" - Table extraction
|
||||
- "Formula Recognition:" - Formula extraction
|
||||
- "Chart Recognition:" - Chart extraction
|
||||
"""
|
||||
try:
|
||||
# Get the last user message
|
||||
user_message = None
|
||||
for msg in reversed(request.messages):
|
||||
if msg.role == "user":
|
||||
user_message = msg
|
||||
break
|
||||
|
||||
if not user_message:
|
||||
raise HTTPException(status_code=400, detail="No user message found")
|
||||
|
||||
# Extract image and prompt
|
||||
image, prompt = extract_image_and_text(user_message.content)
|
||||
|
||||
if image is None:
|
||||
raise HTTPException(status_code=400, detail="No image provided in message")
|
||||
|
||||
# Default to OCR if no specific prompt
|
||||
if not prompt or prompt.strip() == "":
|
||||
prompt = "OCR:"
|
||||
|
||||
logger.info(f"Processing request with prompt: {prompt[:50]}...")
|
||||
|
||||
# Generate response
|
||||
start_time = time.time()
|
||||
response_text = generate_response(image, prompt, request.max_tokens or 4096)
|
||||
elapsed = time.time() - start_time
|
||||
|
||||
logger.info(f"Generated response in {elapsed:.2f}s ({len(response_text)} chars)")
|
||||
|
||||
# Build OpenAI-compatible response
|
||||
return ChatCompletionResponse(
|
||||
id=f"chatcmpl-{int(time.time()*1000)}",
|
||||
created=int(time.time()),
|
||||
model=request.model,
|
||||
choices=[
|
||||
Choice(
|
||||
index=0,
|
||||
message=Message(role="assistant", content=response_text),
|
||||
finish_reason="stop"
|
||||
)
|
||||
],
|
||||
usage=Usage(
|
||||
prompt_tokens=100, # Approximate
|
||||
completion_tokens=len(response_text) // 4,
|
||||
total_tokens=100 + len(response_text) // 4
|
||||
)
|
||||
)
|
||||
|
||||
except HTTPException:
|
||||
raise
|
||||
except Exception as e:
|
||||
logger.error(f"Error processing request: {e}")
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
|
||||
|
||||
# Legacy endpoint for compatibility with old PaddleOCR API
|
||||
class LegacyOCRRequest(BaseModel):
|
||||
image: str
|
||||
task: Optional[str] = "ocr"
|
||||
|
||||
|
||||
class LegacyOCRResponse(BaseModel):
|
||||
success: bool
|
||||
result: str
|
||||
task: str
|
||||
error: Optional[str] = None
|
||||
|
||||
|
||||
@app.post("/ocr", response_model=LegacyOCRResponse)
|
||||
async def legacy_ocr(request: LegacyOCRRequest):
|
||||
"""
|
||||
Legacy OCR endpoint for backwards compatibility
|
||||
|
||||
Tasks: ocr, table, formula, chart
|
||||
"""
|
||||
try:
|
||||
image = decode_image(request.image)
|
||||
prompt = TASK_PROMPTS.get(request.task, TASK_PROMPTS["ocr"])
|
||||
|
||||
result = generate_response(image, prompt)
|
||||
|
||||
return LegacyOCRResponse(
|
||||
success=True,
|
||||
result=result,
|
||||
task=request.task
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"Legacy OCR error: {e}")
|
||||
return LegacyOCRResponse(
|
||||
success=False,
|
||||
result="",
|
||||
task=request.task,
|
||||
error=str(e)
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import uvicorn
|
||||
uvicorn.run(app, host=SERVER_HOST, port=SERVER_PORT)
|
||||
@@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "@host.today/ht-docker-ai",
|
||||
"version": "1.13.0",
|
||||
"version": "1.13.2",
|
||||
"type": "module",
|
||||
"private": false,
|
||||
"description": "Docker images for AI vision-language models including MiniCPM-V 4.5",
|
||||
|
||||
@@ -244,8 +244,97 @@ The bank statement extraction uses a dual-VLM consensus approach:
|
||||
|
||||
---
|
||||
|
||||
## Nanonets-OCR-s
|
||||
|
||||
### Overview
|
||||
|
||||
Nanonets-OCR-s is a Qwen2.5-VL-3B model fine-tuned specifically for document OCR tasks. It outputs structured markdown with semantic tags.
|
||||
|
||||
**Key features:**
|
||||
- Based on Qwen2.5-VL-3B (~4B parameters)
|
||||
- Fine-tuned for document OCR
|
||||
- Outputs markdown with semantic HTML tags
|
||||
- ~8-10GB VRAM (fits comfortably in 16GB)
|
||||
|
||||
### Docker Images
|
||||
|
||||
| Tag | Description |
|
||||
|-----|-------------|
|
||||
| `nanonets-ocr` | GPU variant using vLLM (OpenAI-compatible API) |
|
||||
|
||||
### API Endpoints (OpenAI-compatible via vLLM)
|
||||
|
||||
| Endpoint | Method | Description |
|
||||
|----------|--------|-------------|
|
||||
| `/health` | GET | Health check |
|
||||
| `/v1/models` | GET | List available models |
|
||||
| `/v1/chat/completions` | POST | OpenAI-compatible chat completions |
|
||||
|
||||
### Request/Response Format
|
||||
|
||||
**POST /v1/chat/completions (OpenAI-compatible)**
|
||||
```json
|
||||
{
|
||||
"model": "nanonets/Nanonets-OCR-s",
|
||||
"messages": [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "image_url", "image_url": {"url": "data:image/png;base64,..."}},
|
||||
{"type": "text", "text": "Extract the text from the above document..."}
|
||||
]
|
||||
}
|
||||
],
|
||||
"temperature": 0.0,
|
||||
"max_tokens": 4096
|
||||
}
|
||||
```
|
||||
|
||||
### Nanonets OCR Prompt
|
||||
|
||||
The model is designed to work with a specific prompt format:
|
||||
```
|
||||
Extract the text from the above document as if you were reading it naturally.
|
||||
Return the tables in html format.
|
||||
Return the equations in LaTeX representation.
|
||||
If there is an image in the document and image caption is not present, add a small description inside <img></img> tag.
|
||||
Watermarks should be wrapped in brackets. Ex: <watermark>OFFICIAL COPY</watermark>.
|
||||
Page numbers should be wrapped in brackets. Ex: <page_number>14</page_number>.
|
||||
```
|
||||
|
||||
### Performance
|
||||
|
||||
- **GPU (vLLM)**: ~3-8 seconds per page
|
||||
- **VRAM usage**: ~8-10GB
|
||||
|
||||
### Two-Stage Pipeline (Nanonets + Qwen3)
|
||||
|
||||
The Nanonets tests use a two-stage pipeline:
|
||||
1. **Stage 1**: Nanonets-OCR-s converts images to markdown (via vLLM on port 8000)
|
||||
2. **Stage 2**: Qwen3 8B extracts structured JSON from markdown (via Ollama on port 11434)
|
||||
|
||||
**GPU Limitation**: Both vLLM and Ollama require significant GPU memory. On a single GPU system:
|
||||
- Running both simultaneously causes memory contention
|
||||
- For single GPU: Run services sequentially (stop Nanonets before Qwen3)
|
||||
- For multi-GPU: Assign each service to a different GPU
|
||||
|
||||
**Sequential Execution**:
|
||||
```bash
|
||||
# Step 1: Run Nanonets OCR (converts to markdown)
|
||||
docker start nanonets-test
|
||||
# ... perform OCR ...
|
||||
docker stop nanonets-test
|
||||
|
||||
# Step 2: Run Qwen3 extraction (from markdown)
|
||||
docker start minicpm-test
|
||||
# ... extract JSON ...
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Related Resources
|
||||
|
||||
- [Ollama Documentation](https://ollama.ai/docs)
|
||||
- [MiniCPM-V GitHub](https://github.com/OpenBMB/MiniCPM-V)
|
||||
- [Ollama API Reference](https://github.com/ollama/ollama/blob/main/docs/api.md)
|
||||
- [Nanonets-OCR-s on HuggingFace](https://huggingface.co/nanonets/Nanonets-OCR-s)
|
||||
|
||||
@@ -2,11 +2,8 @@ import { execSync } from 'child_process';
|
||||
|
||||
// Project container names (only manage these)
|
||||
const PROJECT_CONTAINERS = [
|
||||
'paddleocr-vl-test',
|
||||
'paddleocr-vl-gpu-test',
|
||||
'paddleocr-vl-cpu-test',
|
||||
'paddleocr-vl-full-test',
|
||||
'minicpm-test',
|
||||
'nanonets-test',
|
||||
];
|
||||
|
||||
// Image configurations
|
||||
@@ -23,30 +20,6 @@ export interface IImageConfig {
|
||||
}
|
||||
|
||||
export const IMAGES = {
|
||||
paddleocrVlGpu: {
|
||||
name: 'paddleocr-vl-gpu',
|
||||
dockerfile: 'Dockerfile_paddleocr_vl_gpu',
|
||||
buildContext: '.',
|
||||
containerName: 'paddleocr-vl-test',
|
||||
ports: ['8000:8000'],
|
||||
volumes: ['ht-huggingface-cache:/root/.cache/huggingface'],
|
||||
gpus: true,
|
||||
healthEndpoint: 'http://localhost:8000/health',
|
||||
healthTimeout: 300000, // 5 minutes for model loading
|
||||
} as IImageConfig,
|
||||
|
||||
paddleocrVlCpu: {
|
||||
name: 'paddleocr-vl-cpu',
|
||||
dockerfile: 'Dockerfile_paddleocr_vl_cpu',
|
||||
buildContext: '.',
|
||||
containerName: 'paddleocr-vl-test',
|
||||
ports: ['8000:8000'],
|
||||
volumes: ['ht-huggingface-cache:/root/.cache/huggingface'],
|
||||
gpus: false,
|
||||
healthEndpoint: 'http://localhost:8000/health',
|
||||
healthTimeout: 300000,
|
||||
} as IImageConfig,
|
||||
|
||||
minicpm: {
|
||||
name: 'minicpm45v',
|
||||
dockerfile: 'Dockerfile_minicpm45v_gpu',
|
||||
@@ -59,20 +32,17 @@ export const IMAGES = {
|
||||
healthTimeout: 120000,
|
||||
} as IImageConfig,
|
||||
|
||||
// Full PaddleOCR-VL pipeline with PP-DocLayoutV2 + structured JSON output
|
||||
paddleocrVlFull: {
|
||||
name: 'paddleocr-vl-full',
|
||||
dockerfile: 'Dockerfile_paddleocr_vl_full',
|
||||
// Nanonets-OCR-s - Document OCR optimized VLM (Qwen2.5-VL-3B fine-tuned)
|
||||
nanonetsOcr: {
|
||||
name: 'nanonets-ocr',
|
||||
dockerfile: 'Dockerfile_nanonets_ocr',
|
||||
buildContext: '.',
|
||||
containerName: 'paddleocr-vl-full-test',
|
||||
containerName: 'nanonets-test',
|
||||
ports: ['8000:8000'],
|
||||
volumes: [
|
||||
'ht-huggingface-cache:/root/.cache/huggingface',
|
||||
'ht-paddleocr-cache:/root/.paddleocr',
|
||||
],
|
||||
volumes: ['ht-huggingface-cache:/root/.cache/huggingface'],
|
||||
gpus: true,
|
||||
healthEndpoint: 'http://localhost:8000/health',
|
||||
healthTimeout: 600000, // 10 minutes for model loading (vLLM + PP-DocLayoutV2)
|
||||
healthTimeout: 300000, // 5 minutes for model loading
|
||||
} as IImageConfig,
|
||||
};
|
||||
|
||||
@@ -126,7 +96,7 @@ export function removeContainer(containerName: string): void {
|
||||
}
|
||||
|
||||
/**
|
||||
* Stop all project containers that conflict with the required one
|
||||
* Stop all project containers that conflict with the required one (port-based)
|
||||
*/
|
||||
export function stopConflictingContainers(requiredContainer: string, requiredPort: string): void {
|
||||
// Stop project containers using the same port
|
||||
@@ -144,6 +114,24 @@ export function stopConflictingContainers(requiredContainer: string, requiredPor
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Stop all GPU-consuming project containers (for GPU memory management)
|
||||
* This ensures GPU memory is freed before starting a new GPU service
|
||||
*/
|
||||
export function stopAllGpuContainers(exceptContainer?: string): void {
|
||||
for (const container of PROJECT_CONTAINERS) {
|
||||
if (container === exceptContainer) continue;
|
||||
|
||||
if (isContainerRunning(container)) {
|
||||
console.log(`[Docker] Stopping GPU container: ${container}`);
|
||||
exec(`docker stop ${container}`, true);
|
||||
// Give the GPU a moment to free memory
|
||||
}
|
||||
}
|
||||
// Brief pause to allow GPU memory to be released
|
||||
execSync('sleep 2');
|
||||
}
|
||||
|
||||
/**
|
||||
* Build a Docker image
|
||||
*/
|
||||
@@ -220,6 +208,11 @@ export async function ensureService(config: IImageConfig): Promise<boolean> {
|
||||
buildImage(config);
|
||||
}
|
||||
|
||||
// For GPU services, stop ALL other GPU containers to free GPU memory
|
||||
if (config.gpus) {
|
||||
stopAllGpuContainers(config.containerName);
|
||||
}
|
||||
|
||||
// Stop conflicting containers on the same port
|
||||
const mainPort = config.ports[0];
|
||||
stopConflictingContainers(config.containerName, mainPort);
|
||||
@@ -240,21 +233,7 @@ export async function ensureService(config: IImageConfig): Promise<boolean> {
|
||||
}
|
||||
|
||||
/**
|
||||
* Ensure PaddleOCR-VL GPU service is running
|
||||
*/
|
||||
export async function ensurePaddleOcrVlGpu(): Promise<boolean> {
|
||||
return ensureService(IMAGES.paddleocrVlGpu);
|
||||
}
|
||||
|
||||
/**
|
||||
* Ensure PaddleOCR-VL CPU service is running
|
||||
*/
|
||||
export async function ensurePaddleOcrVlCpu(): Promise<boolean> {
|
||||
return ensureService(IMAGES.paddleocrVlCpu);
|
||||
}
|
||||
|
||||
/**
|
||||
* Ensure MiniCPM service is running
|
||||
* Ensure MiniCPM service is running (Ollama with GPU)
|
||||
*/
|
||||
export async function ensureMiniCpm(): Promise<boolean> {
|
||||
return ensureService(IMAGES.minicpm);
|
||||
@@ -272,30 +251,6 @@ export function isGpuAvailable(): boolean {
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Ensure PaddleOCR-VL service (auto-detect GPU/CPU)
|
||||
*/
|
||||
export async function ensurePaddleOcrVl(): Promise<boolean> {
|
||||
if (isGpuAvailable()) {
|
||||
console.log('[Docker] GPU detected, using GPU image');
|
||||
return ensurePaddleOcrVlGpu();
|
||||
} else {
|
||||
console.log('[Docker] No GPU detected, using CPU image');
|
||||
return ensurePaddleOcrVlCpu();
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Ensure PaddleOCR-VL Full Pipeline service (PP-DocLayoutV2 + structured output)
|
||||
* This is the recommended service for production use - outputs structured JSON/Markdown
|
||||
*/
|
||||
export async function ensurePaddleOcrVlFull(): Promise<boolean> {
|
||||
if (!isGpuAvailable()) {
|
||||
console.log('[Docker] WARNING: Full pipeline requires GPU, but none detected');
|
||||
}
|
||||
return ensureService(IMAGES.paddleocrVlFull);
|
||||
}
|
||||
|
||||
/**
|
||||
* Ensure an Ollama model is pulled and available
|
||||
* Uses the MiniCPM container (which runs Ollama) to pull the model
|
||||
@@ -383,3 +338,14 @@ export async function ensureQwen3Vl(): Promise<boolean> {
|
||||
// Then ensure Qwen3-VL 8B is pulled
|
||||
return ensureOllamaModel('qwen3-vl:8b');
|
||||
}
|
||||
|
||||
/**
|
||||
* Ensure Nanonets-OCR-s service is running (via vLLM)
|
||||
* Document OCR optimized VLM based on Qwen2.5-VL-3B
|
||||
*/
|
||||
export async function ensureNanonetsOcr(): Promise<boolean> {
|
||||
if (!isGpuAvailable()) {
|
||||
console.log('[Docker] WARNING: Nanonets-OCR-s requires GPU, but none detected');
|
||||
}
|
||||
return ensureService(IMAGES.nanonetsOcr);
|
||||
}
|
||||
|
||||
585
test/test.bankstatements.nanonets.ts
Normal file
585
test/test.bankstatements.nanonets.ts
Normal file
@@ -0,0 +1,585 @@
|
||||
/**
|
||||
* Bank statement extraction using Nanonets-OCR-s + GPT-OSS 20B (sequential two-stage pipeline)
|
||||
*
|
||||
* Stage 1: Nanonets-OCR-s converts ALL document pages to markdown (stop after completion)
|
||||
* Stage 2: GPT-OSS 20B extracts structured JSON from saved markdown (after Nanonets stops)
|
||||
*
|
||||
* This approach avoids GPU contention by running services sequentially.
|
||||
*/
|
||||
import { tap, expect } from '@git.zone/tstest/tapbundle';
|
||||
import * as fs from 'fs';
|
||||
import * as path from 'path';
|
||||
import { execSync } from 'child_process';
|
||||
import * as os from 'os';
|
||||
import { ensureNanonetsOcr, ensureMiniCpm, removeContainer, isContainerRunning } from './helpers/docker.js';
|
||||
|
||||
const NANONETS_URL = 'http://localhost:8000/v1';
|
||||
const NANONETS_MODEL = 'nanonets/Nanonets-OCR-s';
|
||||
|
||||
const OLLAMA_URL = 'http://localhost:11434';
|
||||
const EXTRACTION_MODEL = 'gpt-oss:20b';
|
||||
|
||||
// Temp directory for storing markdown between stages
|
||||
const TEMP_MD_DIR = path.join(os.tmpdir(), 'nanonets-markdown');
|
||||
|
||||
interface ITransaction {
|
||||
date: string;
|
||||
counterparty: string;
|
||||
amount: number;
|
||||
}
|
||||
|
||||
interface ITestCase {
|
||||
name: string;
|
||||
pdfPath: string;
|
||||
jsonPath: string;
|
||||
markdownPath?: string;
|
||||
images?: string[];
|
||||
}
|
||||
|
||||
// Nanonets-specific prompt for document OCR to markdown
|
||||
const NANONETS_OCR_PROMPT = `Extract the text from the above document as if you were reading it naturally.
|
||||
Return the tables in html format.
|
||||
Return the equations in LaTeX representation.
|
||||
If there is an image in the document and image caption is not present, add a small description inside <img></img> tag.
|
||||
Watermarks should be wrapped in brackets. Ex: <watermark>OFFICIAL COPY</watermark>.
|
||||
Page numbers should be wrapped in brackets. Ex: <page_number>14</page_number>.`;
|
||||
|
||||
// JSON extraction prompt for GPT-OSS 20B
|
||||
const JSON_EXTRACTION_PROMPT = `Extract ALL transactions from this bank statement as JSON array. Each transaction: {"date": "YYYY-MM-DD", "counterparty": "NAME", "amount": -25.99}. Amount negative for debits, positive for credits. Only include actual transactions, not balances. Return ONLY JSON array, no explanation.
|
||||
|
||||
STATEMENT:
|
||||
`;
|
||||
|
||||
/**
|
||||
* Convert PDF to PNG images using ImageMagick
|
||||
*/
|
||||
function convertPdfToImages(pdfPath: string): string[] {
|
||||
const tempDir = fs.mkdtempSync(path.join(os.tmpdir(), 'pdf-convert-'));
|
||||
const outputPattern = path.join(tempDir, 'page-%d.png');
|
||||
|
||||
try {
|
||||
execSync(
|
||||
`convert -density 150 -quality 90 "${pdfPath}" -background white -alpha remove "${outputPattern}"`,
|
||||
{ stdio: 'pipe' }
|
||||
);
|
||||
|
||||
const files = fs.readdirSync(tempDir).filter((f: string) => f.endsWith('.png')).sort();
|
||||
const images: string[] = [];
|
||||
|
||||
for (const file of files) {
|
||||
const imagePath = path.join(tempDir, file);
|
||||
const imageData = fs.readFileSync(imagePath);
|
||||
images.push(imageData.toString('base64'));
|
||||
}
|
||||
|
||||
return images;
|
||||
} finally {
|
||||
fs.rmSync(tempDir, { recursive: true, force: true });
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Convert a single page to markdown using Nanonets-OCR-s
|
||||
*/
|
||||
async function convertPageToMarkdown(image: string, pageNum: number): Promise<string> {
|
||||
const startTime = Date.now();
|
||||
|
||||
const response = await fetch(`${NANONETS_URL}/chat/completions`, {
|
||||
method: 'POST',
|
||||
headers: {
|
||||
'Content-Type': 'application/json',
|
||||
'Authorization': 'Bearer dummy',
|
||||
},
|
||||
body: JSON.stringify({
|
||||
model: NANONETS_MODEL,
|
||||
messages: [{
|
||||
role: 'user',
|
||||
content: [
|
||||
{ type: 'image_url', image_url: { url: `data:image/png;base64,${image}` }},
|
||||
{ type: 'text', text: NANONETS_OCR_PROMPT },
|
||||
],
|
||||
}],
|
||||
max_tokens: 4096,
|
||||
temperature: 0.0,
|
||||
}),
|
||||
});
|
||||
|
||||
const elapsed = ((Date.now() - startTime) / 1000).toFixed(1);
|
||||
|
||||
if (!response.ok) {
|
||||
const errorText = await response.text();
|
||||
throw new Error(`Nanonets API error: ${response.status} - ${errorText}`);
|
||||
}
|
||||
|
||||
const data = await response.json();
|
||||
const content = (data.choices?.[0]?.message?.content || '').trim();
|
||||
console.log(` Page ${pageNum}: ${content.length} chars (${elapsed}s)`);
|
||||
return content;
|
||||
}
|
||||
|
||||
/**
|
||||
* Convert all pages of a document to markdown
|
||||
*/
|
||||
async function convertDocumentToMarkdown(images: string[], docName: string): Promise<string> {
|
||||
console.log(` [${docName}] Converting ${images.length} page(s)...`);
|
||||
|
||||
const markdownPages: string[] = [];
|
||||
|
||||
for (let i = 0; i < images.length; i++) {
|
||||
const markdown = await convertPageToMarkdown(images[i], i + 1);
|
||||
markdownPages.push(`--- PAGE ${i + 1} ---\n${markdown}`);
|
||||
}
|
||||
|
||||
const fullMarkdown = markdownPages.join('\n\n');
|
||||
console.log(` [${docName}] Complete: ${fullMarkdown.length} chars total`);
|
||||
return fullMarkdown;
|
||||
}
|
||||
|
||||
/**
|
||||
* Stop Nanonets container
|
||||
*/
|
||||
function stopNanonets(): void {
|
||||
console.log(' [Docker] Stopping Nanonets container...');
|
||||
try {
|
||||
execSync('docker stop nanonets-test 2>/dev/null || true', { stdio: 'pipe' });
|
||||
// Wait for GPU memory to be released
|
||||
execSync('sleep 5', { stdio: 'pipe' });
|
||||
console.log(' [Docker] Nanonets stopped');
|
||||
} catch {
|
||||
console.log(' [Docker] Nanonets was not running');
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Ensure GPT-OSS 20B model is available and warmed up
|
||||
*/
|
||||
async function ensureExtractionModel(): Promise<boolean> {
|
||||
try {
|
||||
const response = await fetch(`${OLLAMA_URL}/api/tags`);
|
||||
if (response.ok) {
|
||||
const data = await response.json();
|
||||
const models = data.models || [];
|
||||
if (models.some((m: { name: string }) => m.name === EXTRACTION_MODEL)) {
|
||||
console.log(` [Ollama] Model available: ${EXTRACTION_MODEL}`);
|
||||
|
||||
// Warmup: send a simple request to ensure model is loaded
|
||||
console.log(` [Ollama] Warming up model...`);
|
||||
const warmupResponse = await fetch(`${OLLAMA_URL}/api/chat`, {
|
||||
method: 'POST',
|
||||
headers: { 'Content-Type': 'application/json' },
|
||||
body: JSON.stringify({
|
||||
model: EXTRACTION_MODEL,
|
||||
messages: [{ role: 'user', content: 'Return: [{"test": 1}]' }],
|
||||
stream: false,
|
||||
}),
|
||||
signal: AbortSignal.timeout(120000),
|
||||
});
|
||||
|
||||
if (warmupResponse.ok) {
|
||||
const warmupData = await warmupResponse.json();
|
||||
console.log(` [Ollama] Warmup complete (${warmupData.message?.content?.length || 0} chars)`);
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
}
|
||||
} catch {
|
||||
return false;
|
||||
}
|
||||
|
||||
console.log(` [Ollama] Pulling ${EXTRACTION_MODEL}...`);
|
||||
const pullResponse = await fetch(`${OLLAMA_URL}/api/pull`, {
|
||||
method: 'POST',
|
||||
headers: { 'Content-Type': 'application/json' },
|
||||
body: JSON.stringify({ name: EXTRACTION_MODEL, stream: false }),
|
||||
});
|
||||
|
||||
return pullResponse.ok;
|
||||
}
|
||||
|
||||
/**
|
||||
* Extract transactions from markdown using GPT-OSS 20B (streaming)
|
||||
*/
|
||||
async function extractTransactionsFromMarkdown(markdown: string, queryId: string): Promise<ITransaction[]> {
|
||||
console.log(` [${queryId}] Sending to ${EXTRACTION_MODEL}...`);
|
||||
console.log(` [${queryId}] Markdown length: ${markdown.length}`);
|
||||
const startTime = Date.now();
|
||||
|
||||
const fullPrompt = JSON_EXTRACTION_PROMPT + markdown;
|
||||
console.log(` [${queryId}] Prompt preview: ${fullPrompt.substring(0, 200)}...`);
|
||||
|
||||
const response = await fetch(`${OLLAMA_URL}/api/chat`, {
|
||||
method: 'POST',
|
||||
headers: { 'Content-Type': 'application/json' },
|
||||
body: JSON.stringify({
|
||||
model: EXTRACTION_MODEL,
|
||||
messages: [{
|
||||
role: 'user',
|
||||
content: fullPrompt,
|
||||
}],
|
||||
stream: true,
|
||||
}),
|
||||
signal: AbortSignal.timeout(600000), // 10 minute timeout
|
||||
});
|
||||
|
||||
if (!response.ok) {
|
||||
const elapsed = ((Date.now() - startTime) / 1000).toFixed(1);
|
||||
console.log(` [${queryId}] ERROR: ${response.status} (${elapsed}s)`);
|
||||
throw new Error(`Ollama API error: ${response.status}`);
|
||||
}
|
||||
|
||||
// Stream the response and log to console
|
||||
let content = '';
|
||||
const reader = response.body!.getReader();
|
||||
const decoder = new TextDecoder();
|
||||
|
||||
process.stdout.write(` [${queryId}] `);
|
||||
|
||||
while (true) {
|
||||
const { done, value } = await reader.read();
|
||||
if (done) break;
|
||||
|
||||
const chunk = decoder.decode(value, { stream: true });
|
||||
// Each line is a JSON object
|
||||
for (const line of chunk.split('\n').filter(l => l.trim())) {
|
||||
try {
|
||||
const json = JSON.parse(line);
|
||||
const token = json.message?.content || '';
|
||||
if (token) {
|
||||
process.stdout.write(token);
|
||||
content += token;
|
||||
}
|
||||
} catch {
|
||||
// Ignore parse errors for partial chunks
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
const elapsed = ((Date.now() - startTime) / 1000).toFixed(1);
|
||||
console.log(`\n [${queryId}] Done: ${content.length} chars (${elapsed}s)`);
|
||||
|
||||
return parseJsonResponse(content, queryId);
|
||||
}
|
||||
|
||||
/**
|
||||
* Sanitize JSON string
|
||||
*/
|
||||
function sanitizeJson(jsonStr: string): string {
|
||||
let s = jsonStr;
|
||||
s = s.replace(/"amount"\s*:\s*\+/g, '"amount": ');
|
||||
s = s.replace(/:\s*\+(\d)/g, ': $1');
|
||||
s = s.replace(/"amount"\s*:\s*(-?)(\d{1,3})\.(\d{3})\.(\d{2})\b/g, '"amount": $1$2$3.$4');
|
||||
s = s.replace(/,\s*([}\]])/g, '$1');
|
||||
s = s.replace(/"([^"\\]*)\n([^"]*)"/g, '"$1 $2"');
|
||||
s = s.replace(/"([^"\\]*)\t([^"]*)"/g, '"$1 $2"');
|
||||
s = s.replace(/[\x00-\x08\x0B\x0C\x0E-\x1F]/g, ' ');
|
||||
return s;
|
||||
}
|
||||
|
||||
/**
|
||||
* Parse amount from various formats
|
||||
*/
|
||||
function parseAmount(value: unknown): number {
|
||||
if (typeof value === 'number') return value;
|
||||
if (typeof value !== 'string') return 0;
|
||||
|
||||
let s = value.replace(/[€$£\s]/g, '').replace('−', '-').replace('–', '-');
|
||||
if (s.includes(',') && s.indexOf(',') > s.lastIndexOf('.')) {
|
||||
s = s.replace(/\./g, '').replace(',', '.');
|
||||
} else {
|
||||
s = s.replace(/,/g, '');
|
||||
}
|
||||
return parseFloat(s) || 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* Parse JSON response into transactions
|
||||
*/
|
||||
function parseJsonResponse(response: string, queryId: string): ITransaction[] {
|
||||
// Remove thinking tags if present
|
||||
let cleanResponse = response.replace(/<think>[\s\S]*?<\/think>/g, '').trim();
|
||||
|
||||
// Debug: show what we're working with
|
||||
console.log(` [${queryId}] Response preview: ${cleanResponse.substring(0, 300)}...`);
|
||||
|
||||
const codeBlockMatch = cleanResponse.match(/```(?:json)?\s*([\s\S]*?)```/);
|
||||
let jsonStr = codeBlockMatch ? codeBlockMatch[1].trim() : cleanResponse;
|
||||
jsonStr = sanitizeJson(jsonStr);
|
||||
|
||||
try {
|
||||
const parsed = JSON.parse(jsonStr);
|
||||
if (Array.isArray(parsed)) {
|
||||
const txs = parsed.map(tx => ({
|
||||
date: String(tx.date || ''),
|
||||
counterparty: String(tx.counterparty || tx.description || ''),
|
||||
amount: parseAmount(tx.amount),
|
||||
}));
|
||||
console.log(` [${queryId}] Parsed ${txs.length} transactions`);
|
||||
return txs;
|
||||
}
|
||||
} catch (e) {
|
||||
// Try to find a JSON array in the text
|
||||
const arrayMatch = jsonStr.match(/\[[\s\S]*\]/);
|
||||
if (arrayMatch) {
|
||||
console.log(` [${queryId}] Array match found: ${arrayMatch[0].length} chars`);
|
||||
try {
|
||||
const parsed = JSON.parse(sanitizeJson(arrayMatch[0]));
|
||||
if (Array.isArray(parsed)) {
|
||||
const txs = parsed.map(tx => ({
|
||||
date: String(tx.date || ''),
|
||||
counterparty: String(tx.counterparty || tx.description || ''),
|
||||
amount: parseAmount(tx.amount),
|
||||
}));
|
||||
console.log(` [${queryId}] Parsed ${txs.length} transactions (array match)`);
|
||||
return txs;
|
||||
}
|
||||
} catch (innerErr) {
|
||||
console.log(` [${queryId}] Array parse error: ${(innerErr as Error).message}`);
|
||||
}
|
||||
} else {
|
||||
console.log(` [${queryId}] No JSON array found in response`);
|
||||
}
|
||||
}
|
||||
|
||||
console.log(` [${queryId}] PARSE FAILED`);
|
||||
return [];
|
||||
}
|
||||
|
||||
/**
|
||||
* Extract transactions (single pass)
|
||||
*/
|
||||
async function extractTransactions(markdown: string, docName: string): Promise<ITransaction[]> {
|
||||
console.log(` [${docName}] Extracting...`);
|
||||
const txs = await extractTransactionsFromMarkdown(markdown, docName);
|
||||
console.log(` [${docName}] Extracted ${txs.length} transactions`);
|
||||
return txs;
|
||||
}
|
||||
|
||||
/**
|
||||
* Compare transactions
|
||||
*/
|
||||
function compareTransactions(
|
||||
extracted: ITransaction[],
|
||||
expected: ITransaction[]
|
||||
): { matches: number; total: number; errors: string[] } {
|
||||
const errors: string[] = [];
|
||||
let matches = 0;
|
||||
|
||||
for (let i = 0; i < expected.length; i++) {
|
||||
const exp = expected[i];
|
||||
const ext = extracted[i];
|
||||
|
||||
if (!ext) {
|
||||
errors.push(`Missing tx ${i}: ${exp.date} ${exp.counterparty}`);
|
||||
continue;
|
||||
}
|
||||
|
||||
const dateMatch = ext.date === exp.date;
|
||||
const amountMatch = Math.abs(ext.amount - exp.amount) < 0.01;
|
||||
|
||||
if (dateMatch && amountMatch) {
|
||||
matches++;
|
||||
} else {
|
||||
errors.push(`Mismatch ${i}: exp ${exp.date}/${exp.amount}, got ${ext.date}/${ext.amount}`);
|
||||
}
|
||||
}
|
||||
|
||||
if (extracted.length > expected.length) {
|
||||
errors.push(`Extra transactions: ${extracted.length - expected.length}`);
|
||||
}
|
||||
|
||||
return { matches, total: expected.length, errors };
|
||||
}
|
||||
|
||||
/**
|
||||
* Find all test cases
|
||||
*/
|
||||
function findTestCases(): ITestCase[] {
|
||||
const testDir = path.join(process.cwd(), '.nogit');
|
||||
if (!fs.existsSync(testDir)) return [];
|
||||
|
||||
const files = fs.readdirSync(testDir);
|
||||
const testCases: ITestCase[] = [];
|
||||
|
||||
for (const pdf of files.filter((f: string) => f.endsWith('.pdf'))) {
|
||||
const baseName = pdf.replace('.pdf', '');
|
||||
const jsonFile = `${baseName}.json`;
|
||||
if (files.includes(jsonFile)) {
|
||||
testCases.push({
|
||||
name: baseName,
|
||||
pdfPath: path.join(testDir, pdf),
|
||||
jsonPath: path.join(testDir, jsonFile),
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
return testCases.sort((a, b) => a.name.localeCompare(b.name));
|
||||
}
|
||||
|
||||
// ============ TESTS ============
|
||||
|
||||
const testCases = findTestCases();
|
||||
console.log(`\nFound ${testCases.length} bank statement test cases\n`);
|
||||
|
||||
// Ensure temp directory exists
|
||||
if (!fs.existsSync(TEMP_MD_DIR)) {
|
||||
fs.mkdirSync(TEMP_MD_DIR, { recursive: true });
|
||||
}
|
||||
|
||||
// -------- STAGE 1: OCR with Nanonets --------
|
||||
|
||||
// Check if all markdown files already exist
|
||||
function allMarkdownFilesExist(): boolean {
|
||||
for (const tc of testCases) {
|
||||
const mdPath = path.join(TEMP_MD_DIR, `${tc.name}.md`);
|
||||
if (!fs.existsSync(mdPath)) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
// Track whether we need to run Stage 1
|
||||
let stage1Needed = !allMarkdownFilesExist();
|
||||
|
||||
tap.test('Stage 1: Setup Nanonets', async () => {
|
||||
console.log('\n========== STAGE 1: Nanonets OCR ==========\n');
|
||||
|
||||
if (!stage1Needed) {
|
||||
console.log(' [SKIP] All markdown files already exist, skipping Nanonets setup');
|
||||
return;
|
||||
}
|
||||
|
||||
const ok = await ensureNanonetsOcr();
|
||||
expect(ok).toBeTrue();
|
||||
});
|
||||
|
||||
tap.test('Stage 1: Convert all documents to markdown', async () => {
|
||||
if (!stage1Needed) {
|
||||
console.log(' [SKIP] Using existing markdown files from previous run\n');
|
||||
// Load existing markdown paths
|
||||
for (const tc of testCases) {
|
||||
tc.markdownPath = path.join(TEMP_MD_DIR, `${tc.name}.md`);
|
||||
console.log(` Loaded: ${tc.markdownPath}`);
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
console.log('\n Converting all PDFs to markdown with Nanonets-OCR-s...\n');
|
||||
|
||||
for (const tc of testCases) {
|
||||
console.log(`\n === ${tc.name} ===`);
|
||||
|
||||
// Convert PDF to images
|
||||
const images = convertPdfToImages(tc.pdfPath);
|
||||
console.log(` Pages: ${images.length}`);
|
||||
|
||||
// Convert to markdown
|
||||
const markdown = await convertDocumentToMarkdown(images, tc.name);
|
||||
|
||||
// Save markdown to temp file
|
||||
const mdPath = path.join(TEMP_MD_DIR, `${tc.name}.md`);
|
||||
fs.writeFileSync(mdPath, markdown);
|
||||
tc.markdownPath = mdPath;
|
||||
console.log(` Saved: ${mdPath}`);
|
||||
}
|
||||
|
||||
console.log('\n Stage 1 complete: All documents converted to markdown\n');
|
||||
});
|
||||
|
||||
tap.test('Stage 1: Stop Nanonets', async () => {
|
||||
if (!stage1Needed) {
|
||||
console.log(' [SKIP] Nanonets was not started');
|
||||
return;
|
||||
}
|
||||
|
||||
stopNanonets();
|
||||
// Verify it's stopped
|
||||
await new Promise(resolve => setTimeout(resolve, 3000));
|
||||
expect(isContainerRunning('nanonets-test')).toBeFalse();
|
||||
});
|
||||
|
||||
// -------- STAGE 2: Extraction with GPT-OSS 20B --------
|
||||
|
||||
tap.test('Stage 2: Setup Ollama + GPT-OSS 20B', async () => {
|
||||
console.log('\n========== STAGE 2: GPT-OSS 20B Extraction ==========\n');
|
||||
|
||||
const ollamaOk = await ensureMiniCpm();
|
||||
expect(ollamaOk).toBeTrue();
|
||||
|
||||
const extractionOk = await ensureExtractionModel();
|
||||
expect(extractionOk).toBeTrue();
|
||||
});
|
||||
|
||||
let passedCount = 0;
|
||||
let failedCount = 0;
|
||||
|
||||
for (const tc of testCases) {
|
||||
tap.test(`Stage 2: Extract ${tc.name}`, async () => {
|
||||
const expected: ITransaction[] = JSON.parse(fs.readFileSync(tc.jsonPath, 'utf-8'));
|
||||
console.log(`\n === ${tc.name} ===`);
|
||||
console.log(` Expected: ${expected.length} transactions`);
|
||||
|
||||
// Load saved markdown
|
||||
const mdPath = path.join(TEMP_MD_DIR, `${tc.name}.md`);
|
||||
if (!fs.existsSync(mdPath)) {
|
||||
throw new Error(`Markdown not found: ${mdPath}. Run Stage 1 first.`);
|
||||
}
|
||||
const markdown = fs.readFileSync(mdPath, 'utf-8');
|
||||
console.log(` Markdown: ${markdown.length} chars`);
|
||||
|
||||
// Extract transactions (single pass)
|
||||
const extracted = await extractTransactions(markdown, tc.name);
|
||||
|
||||
// Log results
|
||||
console.log(` Extracted: ${extracted.length} transactions`);
|
||||
for (let i = 0; i < Math.min(extracted.length, 5); i++) {
|
||||
const tx = extracted[i];
|
||||
console.log(` ${i + 1}. ${tx.date} | ${tx.counterparty.substring(0, 25).padEnd(25)} | ${tx.amount >= 0 ? '+' : ''}${tx.amount.toFixed(2)}`);
|
||||
}
|
||||
if (extracted.length > 5) {
|
||||
console.log(` ... and ${extracted.length - 5} more`);
|
||||
}
|
||||
|
||||
// Compare
|
||||
const result = compareTransactions(extracted, expected);
|
||||
const pass = result.matches === result.total && extracted.length === expected.length;
|
||||
|
||||
if (pass) {
|
||||
passedCount++;
|
||||
console.log(` Result: PASS (${result.matches}/${result.total})`);
|
||||
} else {
|
||||
failedCount++;
|
||||
console.log(` Result: FAIL (${result.matches}/${result.total})`);
|
||||
result.errors.slice(0, 5).forEach(e => console.log(` - ${e}`));
|
||||
}
|
||||
|
||||
expect(result.matches).toEqual(result.total);
|
||||
expect(extracted.length).toEqual(expected.length);
|
||||
});
|
||||
}
|
||||
|
||||
tap.test('Summary', async () => {
|
||||
console.log(`\n======================================================`);
|
||||
console.log(` Bank Statement Summary (Nanonets + GPT-OSS 20B Sequential)`);
|
||||
console.log(`======================================================`);
|
||||
console.log(` Stage 1: Nanonets-OCR-s (document -> markdown)`);
|
||||
console.log(` Stage 2: GPT-OSS 20B (markdown -> JSON)`);
|
||||
console.log(` Passed: ${passedCount}/${testCases.length}`);
|
||||
console.log(` Failed: ${failedCount}/${testCases.length}`);
|
||||
console.log(`======================================================\n`);
|
||||
|
||||
// Only cleanup temp files if ALL tests passed
|
||||
if (failedCount === 0 && passedCount === testCases.length) {
|
||||
try {
|
||||
fs.rmSync(TEMP_MD_DIR, { recursive: true, force: true });
|
||||
console.log(` Cleaned up temp directory: ${TEMP_MD_DIR}\n`);
|
||||
} catch {
|
||||
// Ignore
|
||||
}
|
||||
} else {
|
||||
console.log(` Keeping temp directory for debugging: ${TEMP_MD_DIR}\n`);
|
||||
}
|
||||
});
|
||||
|
||||
export default tap.start();
|
||||
604
test/test.invoices.nanonets.ts
Normal file
604
test/test.invoices.nanonets.ts
Normal file
@@ -0,0 +1,604 @@
|
||||
/**
|
||||
* Invoice extraction using Nanonets-OCR-s + Qwen3 (sequential two-stage pipeline)
|
||||
*
|
||||
* Stage 1: Nanonets-OCR-s converts ALL document pages to markdown (stop after completion)
|
||||
* Stage 2: Qwen3 extracts structured JSON from saved markdown (after Nanonets stops)
|
||||
*
|
||||
* This approach avoids GPU contention by running services sequentially.
|
||||
*/
|
||||
import { tap, expect } from '@git.zone/tstest/tapbundle';
|
||||
import * as fs from 'fs';
|
||||
import * as path from 'path';
|
||||
import { execSync } from 'child_process';
|
||||
import * as os from 'os';
|
||||
import { ensureNanonetsOcr, ensureMiniCpm, isContainerRunning } from './helpers/docker.js';
|
||||
|
||||
const NANONETS_URL = 'http://localhost:8000/v1';
|
||||
const NANONETS_MODEL = 'nanonets/Nanonets-OCR-s';
|
||||
|
||||
const OLLAMA_URL = 'http://localhost:11434';
|
||||
const QWEN_MODEL = 'qwen3:8b';
|
||||
|
||||
// Temp directory for storing markdown between stages
|
||||
const TEMP_MD_DIR = path.join(os.tmpdir(), 'nanonets-invoices-markdown');
|
||||
|
||||
interface IInvoice {
|
||||
invoice_number: string;
|
||||
invoice_date: string;
|
||||
vendor_name: string;
|
||||
currency: string;
|
||||
net_amount: number;
|
||||
vat_amount: number;
|
||||
total_amount: number;
|
||||
}
|
||||
|
||||
interface ITestCase {
|
||||
name: string;
|
||||
pdfPath: string;
|
||||
jsonPath: string;
|
||||
markdownPath?: string;
|
||||
}
|
||||
|
||||
// Nanonets-specific prompt for document OCR to markdown
|
||||
const NANONETS_OCR_PROMPT = `Extract the text from the above document as if you were reading it naturally.
|
||||
Return the tables in html format.
|
||||
Return the equations in LaTeX representation.
|
||||
If there is an image in the document and image caption is not present, add a small description inside <img></img> tag.
|
||||
Watermarks should be wrapped in brackets. Ex: <watermark>OFFICIAL COPY</watermark>.
|
||||
Page numbers should be wrapped in brackets. Ex: <page_number>14</page_number>.`;
|
||||
|
||||
// JSON extraction prompt for Qwen3
|
||||
const JSON_EXTRACTION_PROMPT = `You are an invoice data extractor. Below is an invoice document converted to text/markdown. Extract the key invoice fields as JSON.
|
||||
|
||||
IMPORTANT RULES:
|
||||
1. invoice_number: The unique invoice/document number (NOT VAT ID, NOT customer ID)
|
||||
2. invoice_date: Format as YYYY-MM-DD
|
||||
3. vendor_name: The company that issued the invoice
|
||||
4. currency: EUR, USD, or GBP
|
||||
5. net_amount: Amount before tax
|
||||
6. vat_amount: Tax/VAT amount
|
||||
7. total_amount: Final total (gross amount)
|
||||
|
||||
Return ONLY this JSON format, no explanation:
|
||||
{
|
||||
"invoice_number": "INV-2024-001",
|
||||
"invoice_date": "2024-01-15",
|
||||
"vendor_name": "Company Name",
|
||||
"currency": "EUR",
|
||||
"net_amount": 100.00,
|
||||
"vat_amount": 19.00,
|
||||
"total_amount": 119.00
|
||||
}
|
||||
|
||||
INVOICE TEXT:
|
||||
`;
|
||||
|
||||
/**
|
||||
* Convert PDF to PNG images
|
||||
*/
|
||||
function convertPdfToImages(pdfPath: string): string[] {
|
||||
const tempDir = fs.mkdtempSync(path.join(os.tmpdir(), 'pdf-convert-'));
|
||||
const outputPattern = path.join(tempDir, 'page-%d.png');
|
||||
|
||||
try {
|
||||
execSync(
|
||||
`convert -density 150 -quality 90 "${pdfPath}" -background white -alpha remove "${outputPattern}"`,
|
||||
{ stdio: 'pipe' }
|
||||
);
|
||||
|
||||
const files = fs.readdirSync(tempDir).filter((f) => f.endsWith('.png')).sort();
|
||||
const images: string[] = [];
|
||||
|
||||
for (const file of files) {
|
||||
const imagePath = path.join(tempDir, file);
|
||||
const imageData = fs.readFileSync(imagePath);
|
||||
images.push(imageData.toString('base64'));
|
||||
}
|
||||
|
||||
return images;
|
||||
} finally {
|
||||
fs.rmSync(tempDir, { recursive: true, force: true });
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Convert a single page to markdown using Nanonets-OCR-s
|
||||
*/
|
||||
async function convertPageToMarkdown(image: string, pageNum: number): Promise<string> {
|
||||
const startTime = Date.now();
|
||||
|
||||
const response = await fetch(`${NANONETS_URL}/chat/completions`, {
|
||||
method: 'POST',
|
||||
headers: {
|
||||
'Content-Type': 'application/json',
|
||||
'Authorization': 'Bearer dummy',
|
||||
},
|
||||
body: JSON.stringify({
|
||||
model: NANONETS_MODEL,
|
||||
messages: [{
|
||||
role: 'user',
|
||||
content: [
|
||||
{ type: 'image_url', image_url: { url: `data:image/png;base64,${image}` }},
|
||||
{ type: 'text', text: NANONETS_OCR_PROMPT },
|
||||
],
|
||||
}],
|
||||
max_tokens: 4096,
|
||||
temperature: 0.0,
|
||||
}),
|
||||
});
|
||||
|
||||
const elapsed = ((Date.now() - startTime) / 1000).toFixed(1);
|
||||
|
||||
if (!response.ok) {
|
||||
const errorText = await response.text();
|
||||
throw new Error(`Nanonets API error: ${response.status} - ${errorText}`);
|
||||
}
|
||||
|
||||
const data = await response.json();
|
||||
const content = (data.choices?.[0]?.message?.content || '').trim();
|
||||
console.log(` Page ${pageNum}: ${content.length} chars (${elapsed}s)`);
|
||||
return content;
|
||||
}
|
||||
|
||||
/**
|
||||
* Convert all pages of a document to markdown
|
||||
*/
|
||||
async function convertDocumentToMarkdown(images: string[], docName: string): Promise<string> {
|
||||
console.log(` [${docName}] Converting ${images.length} page(s)...`);
|
||||
|
||||
const markdownPages: string[] = [];
|
||||
|
||||
for (let i = 0; i < images.length; i++) {
|
||||
const markdown = await convertPageToMarkdown(images[i], i + 1);
|
||||
markdownPages.push(`--- PAGE ${i + 1} ---\n${markdown}`);
|
||||
}
|
||||
|
||||
const fullMarkdown = markdownPages.join('\n\n');
|
||||
console.log(` [${docName}] Complete: ${fullMarkdown.length} chars total`);
|
||||
return fullMarkdown;
|
||||
}
|
||||
|
||||
/**
|
||||
* Stop Nanonets container
|
||||
*/
|
||||
function stopNanonets(): void {
|
||||
console.log(' [Docker] Stopping Nanonets container...');
|
||||
try {
|
||||
execSync('docker stop nanonets-test 2>/dev/null || true', { stdio: 'pipe' });
|
||||
execSync('sleep 5', { stdio: 'pipe' });
|
||||
console.log(' [Docker] Nanonets stopped');
|
||||
} catch {
|
||||
console.log(' [Docker] Nanonets was not running');
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Ensure Qwen3 model is available
|
||||
*/
|
||||
async function ensureQwen3(): Promise<boolean> {
|
||||
try {
|
||||
const response = await fetch(`${OLLAMA_URL}/api/tags`);
|
||||
if (response.ok) {
|
||||
const data = await response.json();
|
||||
const models = data.models || [];
|
||||
if (models.some((m: { name: string }) => m.name === QWEN_MODEL)) {
|
||||
console.log(` [Ollama] Model available: ${QWEN_MODEL}`);
|
||||
return true;
|
||||
}
|
||||
}
|
||||
} catch {
|
||||
return false;
|
||||
}
|
||||
|
||||
console.log(` [Ollama] Pulling ${QWEN_MODEL}...`);
|
||||
const pullResponse = await fetch(`${OLLAMA_URL}/api/pull`, {
|
||||
method: 'POST',
|
||||
headers: { 'Content-Type': 'application/json' },
|
||||
body: JSON.stringify({ name: QWEN_MODEL, stream: false }),
|
||||
});
|
||||
|
||||
return pullResponse.ok;
|
||||
}
|
||||
|
||||
/**
|
||||
* Parse amount from string (handles European format)
|
||||
*/
|
||||
function parseAmount(s: string | number | undefined): number {
|
||||
if (s === undefined || s === null) return 0;
|
||||
if (typeof s === 'number') return s;
|
||||
const match = s.match(/([\d.,]+)/);
|
||||
if (!match) return 0;
|
||||
const numStr = match[1];
|
||||
const normalized = numStr.includes(',') && numStr.indexOf(',') > numStr.lastIndexOf('.')
|
||||
? numStr.replace(/\./g, '').replace(',', '.')
|
||||
: numStr.replace(/,/g, '');
|
||||
return parseFloat(normalized) || 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* Extract invoice number from potentially verbose response
|
||||
*/
|
||||
function extractInvoiceNumber(s: string | undefined): string {
|
||||
if (!s) return '';
|
||||
let clean = s.replace(/\*\*/g, '').replace(/`/g, '').trim();
|
||||
const patterns = [
|
||||
/\b([A-Z]{2,3}\d{10,})\b/i,
|
||||
/\b([A-Z]\d{8,})\b/i,
|
||||
/\b(INV[-\s]?\d{4}[-\s]?\d+)\b/i,
|
||||
/\b(\d{7,})\b/,
|
||||
];
|
||||
for (const pattern of patterns) {
|
||||
const match = clean.match(pattern);
|
||||
if (match) return match[1];
|
||||
}
|
||||
return clean.replace(/[^A-Z0-9-]/gi, '').trim() || clean;
|
||||
}
|
||||
|
||||
/**
|
||||
* Extract date (YYYY-MM-DD) from response
|
||||
*/
|
||||
function extractDate(s: string | undefined): string {
|
||||
if (!s) return '';
|
||||
let clean = s.replace(/\*\*/g, '').replace(/`/g, '').trim();
|
||||
const isoMatch = clean.match(/(\d{4}-\d{2}-\d{2})/);
|
||||
if (isoMatch) return isoMatch[1];
|
||||
const dmyMatch = clean.match(/(\d{1,2})[\/.](\d{1,2})[\/.](\d{4})/);
|
||||
if (dmyMatch) {
|
||||
return `${dmyMatch[3]}-${dmyMatch[2].padStart(2, '0')}-${dmyMatch[1].padStart(2, '0')}`;
|
||||
}
|
||||
return clean.replace(/[^\d-]/g, '').trim();
|
||||
}
|
||||
|
||||
/**
|
||||
* Extract currency
|
||||
*/
|
||||
function extractCurrency(s: string | undefined): string {
|
||||
if (!s) return 'EUR';
|
||||
const upper = s.toUpperCase();
|
||||
if (upper.includes('EUR') || upper.includes('€')) return 'EUR';
|
||||
if (upper.includes('USD') || upper.includes('$')) return 'USD';
|
||||
if (upper.includes('GBP') || upper.includes('£')) return 'GBP';
|
||||
return 'EUR';
|
||||
}
|
||||
|
||||
/**
|
||||
* Extract JSON from response
|
||||
*/
|
||||
function extractJsonFromResponse(response: string): Record<string, unknown> | null {
|
||||
let cleanResponse = response.replace(/<think>[\s\S]*?<\/think>/g, '').trim();
|
||||
const codeBlockMatch = cleanResponse.match(/```(?:json)?\s*([\s\S]*?)```/);
|
||||
const jsonStr = codeBlockMatch ? codeBlockMatch[1].trim() : cleanResponse;
|
||||
|
||||
try {
|
||||
return JSON.parse(jsonStr);
|
||||
} catch {
|
||||
const jsonMatch = jsonStr.match(/\{[\s\S]*\}/);
|
||||
if (jsonMatch) {
|
||||
try {
|
||||
return JSON.parse(jsonMatch[0]);
|
||||
} catch {
|
||||
return null;
|
||||
}
|
||||
}
|
||||
return null;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Parse JSON response into IInvoice
|
||||
*/
|
||||
function parseJsonToInvoice(response: string): IInvoice | null {
|
||||
const parsed = extractJsonFromResponse(response);
|
||||
if (!parsed) return null;
|
||||
|
||||
return {
|
||||
invoice_number: extractInvoiceNumber(String(parsed.invoice_number || '')),
|
||||
invoice_date: extractDate(String(parsed.invoice_date || '')),
|
||||
vendor_name: String(parsed.vendor_name || '').replace(/\*\*/g, '').replace(/`/g, '').trim(),
|
||||
currency: extractCurrency(String(parsed.currency || '')),
|
||||
net_amount: parseAmount(parsed.net_amount as string | number),
|
||||
vat_amount: parseAmount(parsed.vat_amount as string | number),
|
||||
total_amount: parseAmount(parsed.total_amount as string | number),
|
||||
};
|
||||
}
|
||||
|
||||
/**
|
||||
* Extract invoice from markdown using Qwen3
|
||||
*/
|
||||
async function extractInvoiceFromMarkdown(markdown: string, queryId: string): Promise<IInvoice | null> {
|
||||
console.log(` [${queryId}] Sending to ${QWEN_MODEL}...`);
|
||||
const startTime = Date.now();
|
||||
|
||||
const response = await fetch(`${OLLAMA_URL}/api/chat`, {
|
||||
method: 'POST',
|
||||
headers: { 'Content-Type': 'application/json' },
|
||||
signal: AbortSignal.timeout(600000), // 10 minute timeout for large documents
|
||||
body: JSON.stringify({
|
||||
model: QWEN_MODEL,
|
||||
messages: [{
|
||||
role: 'user',
|
||||
content: JSON_EXTRACTION_PROMPT + markdown,
|
||||
}],
|
||||
stream: false,
|
||||
options: {
|
||||
num_predict: 2000,
|
||||
temperature: 0.1,
|
||||
},
|
||||
}),
|
||||
});
|
||||
|
||||
const elapsed = ((Date.now() - startTime) / 1000).toFixed(1);
|
||||
|
||||
if (!response.ok) {
|
||||
console.log(` [${queryId}] ERROR: ${response.status} (${elapsed}s)`);
|
||||
throw new Error(`Ollama API error: ${response.status}`);
|
||||
}
|
||||
|
||||
const data = await response.json();
|
||||
const content = (data.message?.content || '').trim();
|
||||
console.log(` [${queryId}] Response: ${content.length} chars (${elapsed}s)`);
|
||||
|
||||
return parseJsonToInvoice(content);
|
||||
}
|
||||
|
||||
/**
|
||||
* Compare two invoices for consensus
|
||||
*/
|
||||
function invoicesMatch(a: IInvoice, b: IInvoice): boolean {
|
||||
const numMatch = a.invoice_number.toLowerCase() === b.invoice_number.toLowerCase();
|
||||
const dateMatch = a.invoice_date === b.invoice_date;
|
||||
const totalMatch = Math.abs(a.total_amount - b.total_amount) < 0.02;
|
||||
return numMatch && dateMatch && totalMatch;
|
||||
}
|
||||
|
||||
/**
|
||||
* Extract with consensus
|
||||
*/
|
||||
async function extractWithConsensus(markdown: string, docName: string): Promise<IInvoice> {
|
||||
const MAX_ATTEMPTS = 3;
|
||||
|
||||
for (let attempt = 1; attempt <= MAX_ATTEMPTS; attempt++) {
|
||||
console.log(` [${docName}] Attempt ${attempt}/${MAX_ATTEMPTS}`);
|
||||
|
||||
const inv1 = await extractInvoiceFromMarkdown(markdown, `${docName}-A${attempt}Q1`);
|
||||
const inv2 = await extractInvoiceFromMarkdown(markdown, `${docName}-A${attempt}Q2`);
|
||||
|
||||
if (!inv1 || !inv2) {
|
||||
console.log(` [${docName}] Parsing failed, retrying...`);
|
||||
continue;
|
||||
}
|
||||
|
||||
console.log(` [${docName}] Q1: ${inv1.invoice_number} | ${inv1.invoice_date} | ${inv1.total_amount}`);
|
||||
console.log(` [${docName}] Q2: ${inv2.invoice_number} | ${inv2.invoice_date} | ${inv2.total_amount}`);
|
||||
|
||||
if (invoicesMatch(inv1, inv2)) {
|
||||
console.log(` [${docName}] CONSENSUS`);
|
||||
return inv2;
|
||||
}
|
||||
console.log(` [${docName}] No consensus`);
|
||||
}
|
||||
|
||||
// Fallback
|
||||
const fallback = await extractInvoiceFromMarkdown(markdown, `${docName}-FALLBACK`);
|
||||
if (fallback) {
|
||||
console.log(` [${docName}] FALLBACK: ${fallback.invoice_number} | ${fallback.invoice_date} | ${fallback.total_amount}`);
|
||||
return fallback;
|
||||
}
|
||||
|
||||
return {
|
||||
invoice_number: '',
|
||||
invoice_date: '',
|
||||
vendor_name: '',
|
||||
currency: 'EUR',
|
||||
net_amount: 0,
|
||||
vat_amount: 0,
|
||||
total_amount: 0,
|
||||
};
|
||||
}
|
||||
|
||||
/**
|
||||
* Normalize date to YYYY-MM-DD
|
||||
*/
|
||||
function normalizeDate(dateStr: string | null): string {
|
||||
if (!dateStr) return '';
|
||||
if (/^\d{4}-\d{2}-\d{2}$/.test(dateStr)) return dateStr;
|
||||
|
||||
const monthMap: Record<string, string> = {
|
||||
JAN: '01', FEB: '02', MAR: '03', APR: '04', MAY: '05', JUN: '06',
|
||||
JUL: '07', AUG: '08', SEP: '09', OCT: '10', NOV: '11', DEC: '12',
|
||||
};
|
||||
|
||||
let match = dateStr.match(/^(\d{1,2})-([A-Z]{3})-(\d{4})$/i);
|
||||
if (match) {
|
||||
return `${match[3]}-${monthMap[match[2].toUpperCase()] || '01'}-${match[1].padStart(2, '0')}`;
|
||||
}
|
||||
|
||||
match = dateStr.match(/^(\d{1,2})[\/.](\d{1,2})[\/.](\d{4})$/);
|
||||
if (match) {
|
||||
return `${match[3]}-${match[2].padStart(2, '0')}-${match[1].padStart(2, '0')}`;
|
||||
}
|
||||
|
||||
return dateStr;
|
||||
}
|
||||
|
||||
/**
|
||||
* Compare extracted invoice against expected
|
||||
*/
|
||||
function compareInvoice(
|
||||
extracted: IInvoice,
|
||||
expected: IInvoice
|
||||
): { match: boolean; errors: string[] } {
|
||||
const errors: string[] = [];
|
||||
|
||||
const extNum = extracted.invoice_number?.replace(/\s/g, '').toLowerCase() || '';
|
||||
const expNum = expected.invoice_number?.replace(/\s/g, '').toLowerCase() || '';
|
||||
if (extNum !== expNum) {
|
||||
errors.push(`invoice_number: exp "${expected.invoice_number}", got "${extracted.invoice_number}"`);
|
||||
}
|
||||
|
||||
if (normalizeDate(extracted.invoice_date) !== normalizeDate(expected.invoice_date)) {
|
||||
errors.push(`invoice_date: exp "${expected.invoice_date}", got "${extracted.invoice_date}"`);
|
||||
}
|
||||
|
||||
if (Math.abs(extracted.total_amount - expected.total_amount) > 0.02) {
|
||||
errors.push(`total_amount: exp ${expected.total_amount}, got ${extracted.total_amount}`);
|
||||
}
|
||||
|
||||
if (extracted.currency?.toUpperCase() !== expected.currency?.toUpperCase()) {
|
||||
errors.push(`currency: exp "${expected.currency}", got "${extracted.currency}"`);
|
||||
}
|
||||
|
||||
return { match: errors.length === 0, errors };
|
||||
}
|
||||
|
||||
/**
|
||||
* Find all test cases
|
||||
*/
|
||||
function findTestCases(): ITestCase[] {
|
||||
const testDir = path.join(process.cwd(), '.nogit/invoices');
|
||||
if (!fs.existsSync(testDir)) return [];
|
||||
|
||||
const files = fs.readdirSync(testDir);
|
||||
const testCases: ITestCase[] = [];
|
||||
|
||||
for (const pdf of files.filter((f) => f.endsWith('.pdf'))) {
|
||||
const baseName = pdf.replace('.pdf', '');
|
||||
const jsonFile = `${baseName}.json`;
|
||||
if (files.includes(jsonFile)) {
|
||||
testCases.push({
|
||||
name: baseName,
|
||||
pdfPath: path.join(testDir, pdf),
|
||||
jsonPath: path.join(testDir, jsonFile),
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
return testCases.sort((a, b) => a.name.localeCompare(b.name));
|
||||
}
|
||||
|
||||
// ============ TESTS ============
|
||||
|
||||
const testCases = findTestCases();
|
||||
console.log(`\nFound ${testCases.length} invoice test cases\n`);
|
||||
|
||||
// Ensure temp directory exists
|
||||
if (!fs.existsSync(TEMP_MD_DIR)) {
|
||||
fs.mkdirSync(TEMP_MD_DIR, { recursive: true });
|
||||
}
|
||||
|
||||
// -------- STAGE 1: OCR with Nanonets --------
|
||||
|
||||
tap.test('Stage 1: Setup Nanonets', async () => {
|
||||
console.log('\n========== STAGE 1: Nanonets OCR ==========\n');
|
||||
const ok = await ensureNanonetsOcr();
|
||||
expect(ok).toBeTrue();
|
||||
});
|
||||
|
||||
tap.test('Stage 1: Convert all invoices to markdown', async () => {
|
||||
console.log('\n Converting all invoice PDFs to markdown with Nanonets-OCR-s...\n');
|
||||
|
||||
for (const tc of testCases) {
|
||||
console.log(`\n === ${tc.name} ===`);
|
||||
|
||||
const images = convertPdfToImages(tc.pdfPath);
|
||||
console.log(` Pages: ${images.length}`);
|
||||
|
||||
const markdown = await convertDocumentToMarkdown(images, tc.name);
|
||||
|
||||
const mdPath = path.join(TEMP_MD_DIR, `${tc.name}.md`);
|
||||
fs.writeFileSync(mdPath, markdown);
|
||||
tc.markdownPath = mdPath;
|
||||
console.log(` Saved: ${mdPath}`);
|
||||
}
|
||||
|
||||
console.log('\n Stage 1 complete: All invoices converted to markdown\n');
|
||||
});
|
||||
|
||||
tap.test('Stage 1: Stop Nanonets', async () => {
|
||||
stopNanonets();
|
||||
await new Promise(resolve => setTimeout(resolve, 3000));
|
||||
expect(isContainerRunning('nanonets-test')).toBeFalse();
|
||||
});
|
||||
|
||||
// -------- STAGE 2: Extraction with Qwen3 --------
|
||||
|
||||
tap.test('Stage 2: Setup Ollama + Qwen3', async () => {
|
||||
console.log('\n========== STAGE 2: Qwen3 Extraction ==========\n');
|
||||
|
||||
const ollamaOk = await ensureMiniCpm();
|
||||
expect(ollamaOk).toBeTrue();
|
||||
|
||||
const qwenOk = await ensureQwen3();
|
||||
expect(qwenOk).toBeTrue();
|
||||
});
|
||||
|
||||
let passedCount = 0;
|
||||
let failedCount = 0;
|
||||
const processingTimes: number[] = [];
|
||||
|
||||
for (const tc of testCases) {
|
||||
tap.test(`Stage 2: Extract ${tc.name}`, async () => {
|
||||
const expected: IInvoice = JSON.parse(fs.readFileSync(tc.jsonPath, 'utf-8'));
|
||||
console.log(`\n === ${tc.name} ===`);
|
||||
console.log(` Expected: ${expected.invoice_number} | ${expected.invoice_date} | ${expected.total_amount} ${expected.currency}`);
|
||||
|
||||
const startTime = Date.now();
|
||||
|
||||
const mdPath = path.join(TEMP_MD_DIR, `${tc.name}.md`);
|
||||
if (!fs.existsSync(mdPath)) {
|
||||
throw new Error(`Markdown not found: ${mdPath}. Run Stage 1 first.`);
|
||||
}
|
||||
const markdown = fs.readFileSync(mdPath, 'utf-8');
|
||||
console.log(` Markdown: ${markdown.length} chars`);
|
||||
|
||||
const extracted = await extractWithConsensus(markdown, tc.name);
|
||||
|
||||
const elapsedMs = Date.now() - startTime;
|
||||
processingTimes.push(elapsedMs);
|
||||
|
||||
console.log(` Extracted: ${extracted.invoice_number} | ${extracted.invoice_date} | ${extracted.total_amount} ${extracted.currency}`);
|
||||
|
||||
const result = compareInvoice(extracted, expected);
|
||||
|
||||
if (result.match) {
|
||||
passedCount++;
|
||||
console.log(` Result: MATCH (${(elapsedMs / 1000).toFixed(1)}s)`);
|
||||
} else {
|
||||
failedCount++;
|
||||
console.log(` Result: MISMATCH (${(elapsedMs / 1000).toFixed(1)}s)`);
|
||||
result.errors.forEach(e => console.log(` - ${e}`));
|
||||
}
|
||||
|
||||
expect(result.match).toBeTrue();
|
||||
});
|
||||
}
|
||||
|
||||
tap.test('Summary', async () => {
|
||||
const totalInvoices = testCases.length;
|
||||
const accuracy = totalInvoices > 0 ? (passedCount / totalInvoices) * 100 : 0;
|
||||
const totalTimeMs = processingTimes.reduce((a, b) => a + b, 0);
|
||||
const avgTimeSec = processingTimes.length > 0 ? totalTimeMs / processingTimes.length / 1000 : 0;
|
||||
|
||||
console.log(`\n========================================`);
|
||||
console.log(` Invoice Summary (Nanonets + Qwen3)`);
|
||||
console.log(`========================================`);
|
||||
console.log(` Stage 1: Nanonets-OCR-s (doc -> md)`);
|
||||
console.log(` Stage 2: Qwen3 8B (md -> JSON)`);
|
||||
console.log(` Passed: ${passedCount}/${totalInvoices}`);
|
||||
console.log(` Failed: ${failedCount}/${totalInvoices}`);
|
||||
console.log(` Accuracy: ${accuracy.toFixed(1)}%`);
|
||||
console.log(`----------------------------------------`);
|
||||
console.log(` Total time: ${(totalTimeMs / 1000).toFixed(1)}s`);
|
||||
console.log(` Avg per inv: ${avgTimeSec.toFixed(1)}s`);
|
||||
console.log(`========================================\n`);
|
||||
|
||||
// Cleanup temp files
|
||||
try {
|
||||
fs.rmSync(TEMP_MD_DIR, { recursive: true, force: true });
|
||||
console.log(` Cleaned up temp directory: ${TEMP_MD_DIR}\n`);
|
||||
} catch {
|
||||
// Ignore
|
||||
}
|
||||
});
|
||||
|
||||
export default tap.start();
|
||||
Reference in New Issue
Block a user