585 lines
19 KiB
TypeScript
585 lines
19 KiB
TypeScript
/**
|
|
* Invoice extraction using Nanonets-OCR-s + Qwen3 (two-stage pipeline)
|
|
*
|
|
* Stage 1: Nanonets-OCR-s converts document pages to markdown (its strength)
|
|
* Stage 2: Qwen3 extracts structured JSON from the combined markdown
|
|
*
|
|
* This leverages each model's strengths:
|
|
* - Nanonets: Document OCR with semantic tags
|
|
* - Qwen3: Text understanding and JSON extraction
|
|
*/
|
|
import { tap, expect } from '@git.zone/tstest/tapbundle';
|
|
import * as fs from 'fs';
|
|
import * as path from 'path';
|
|
import { execSync } from 'child_process';
|
|
import * as os from 'os';
|
|
import { ensureNanonetsOcr, ensureMiniCpm } from './helpers/docker.js';
|
|
|
|
const NANONETS_URL = 'http://localhost:8000/v1';
|
|
const NANONETS_MODEL = 'nanonets/Nanonets-OCR-s';
|
|
|
|
const OLLAMA_URL = 'http://localhost:11434';
|
|
const QWEN_MODEL = 'qwen3:8b';
|
|
|
|
interface IInvoice {
|
|
invoice_number: string;
|
|
invoice_date: string;
|
|
vendor_name: string;
|
|
currency: string;
|
|
net_amount: number;
|
|
vat_amount: number;
|
|
total_amount: number;
|
|
}
|
|
|
|
// Nanonets-specific prompt for document OCR to markdown
|
|
const NANONETS_OCR_PROMPT = `Extract the text from the above document as if you were reading it naturally.
|
|
Return the tables in html format.
|
|
Return the equations in LaTeX representation.
|
|
If there is an image in the document and image caption is not present, add a small description inside <img></img> tag.
|
|
Watermarks should be wrapped in brackets. Ex: <watermark>OFFICIAL COPY</watermark>.
|
|
Page numbers should be wrapped in brackets. Ex: <page_number>14</page_number>.`;
|
|
|
|
// JSON extraction prompt for Qwen3
|
|
const JSON_EXTRACTION_PROMPT = `You are an invoice data extractor. Below is an invoice document converted to text/markdown. Extract the key invoice fields as JSON.
|
|
|
|
IMPORTANT RULES:
|
|
1. invoice_number: The unique invoice/document number (NOT VAT ID, NOT customer ID)
|
|
2. invoice_date: Format as YYYY-MM-DD
|
|
3. vendor_name: The company that issued the invoice
|
|
4. currency: EUR, USD, or GBP
|
|
5. net_amount: Amount before tax
|
|
6. vat_amount: Tax/VAT amount
|
|
7. total_amount: Final total (gross amount)
|
|
|
|
Return ONLY this JSON format, no explanation:
|
|
{
|
|
"invoice_number": "INV-2024-001",
|
|
"invoice_date": "2024-01-15",
|
|
"vendor_name": "Company Name",
|
|
"currency": "EUR",
|
|
"net_amount": 100.00,
|
|
"vat_amount": 19.00,
|
|
"total_amount": 119.00
|
|
}
|
|
|
|
INVOICE TEXT:
|
|
`;
|
|
|
|
/**
|
|
* Convert PDF to PNG images using ImageMagick
|
|
*/
|
|
function convertPdfToImages(pdfPath: string): string[] {
|
|
const tempDir = fs.mkdtempSync(path.join(os.tmpdir(), 'pdf-convert-'));
|
|
const outputPattern = path.join(tempDir, 'page-%d.png');
|
|
|
|
try {
|
|
// Use 150 DPI to keep images within model's context length
|
|
execSync(
|
|
`convert -density 150 -quality 90 "${pdfPath}" -background white -alpha remove "${outputPattern}"`,
|
|
{ stdio: 'pipe' }
|
|
);
|
|
|
|
const files = fs.readdirSync(tempDir).filter((f) => f.endsWith('.png')).sort();
|
|
const images: string[] = [];
|
|
|
|
for (const file of files) {
|
|
const imagePath = path.join(tempDir, file);
|
|
const imageData = fs.readFileSync(imagePath);
|
|
images.push(imageData.toString('base64'));
|
|
}
|
|
|
|
return images;
|
|
} finally {
|
|
fs.rmSync(tempDir, { recursive: true, force: true });
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Stage 1: Convert a single page to markdown using Nanonets-OCR-s
|
|
*/
|
|
async function convertPageToMarkdown(image: string, pageNum: number): Promise<string> {
|
|
console.log(` [Nanonets] Converting page ${pageNum} to markdown...`);
|
|
const startTime = Date.now();
|
|
|
|
const response = await fetch(`${NANONETS_URL}/chat/completions`, {
|
|
method: 'POST',
|
|
headers: {
|
|
'Content-Type': 'application/json',
|
|
'Authorization': 'Bearer dummy',
|
|
},
|
|
body: JSON.stringify({
|
|
model: NANONETS_MODEL,
|
|
messages: [{
|
|
role: 'user',
|
|
content: [
|
|
{ type: 'image_url', image_url: { url: `data:image/png;base64,${image}` }},
|
|
{ type: 'text', text: NANONETS_OCR_PROMPT },
|
|
],
|
|
}],
|
|
max_tokens: 4096,
|
|
temperature: 0.0,
|
|
}),
|
|
});
|
|
|
|
const elapsed = ((Date.now() - startTime) / 1000).toFixed(1);
|
|
|
|
if (!response.ok) {
|
|
const errorText = await response.text();
|
|
console.log(` [Nanonets] ERROR page ${pageNum}: ${response.status} - ${errorText}`);
|
|
throw new Error(`Nanonets API error: ${response.status}`);
|
|
}
|
|
|
|
const data = await response.json();
|
|
const content = (data.choices?.[0]?.message?.content || '').trim();
|
|
console.log(` [Nanonets] Page ${pageNum} converted (${elapsed}s, ${content.length} chars)`);
|
|
return content;
|
|
}
|
|
|
|
/**
|
|
* Stage 1: Convert all pages to markdown using Nanonets-OCR-s
|
|
*/
|
|
async function convertDocumentToMarkdown(images: string[]): Promise<string> {
|
|
console.log(` [Stage 1] Converting ${images.length} page(s) to markdown with Nanonets-OCR-s...`);
|
|
|
|
const markdownPages: string[] = [];
|
|
|
|
for (let i = 0; i < images.length; i++) {
|
|
const markdown = await convertPageToMarkdown(images[i], i + 1);
|
|
markdownPages.push(`--- PAGE ${i + 1} ---\n${markdown}`);
|
|
}
|
|
|
|
const fullMarkdown = markdownPages.join('\n\n');
|
|
console.log(` [Stage 1] Complete: ${fullMarkdown.length} chars total`);
|
|
return fullMarkdown;
|
|
}
|
|
|
|
/**
|
|
* Ensure Qwen3 model is available
|
|
*/
|
|
async function ensureQwen3(): Promise<boolean> {
|
|
try {
|
|
const response = await fetch(`${OLLAMA_URL}/api/tags`);
|
|
if (response.ok) {
|
|
const data = await response.json();
|
|
const models = data.models || [];
|
|
if (models.some((m: { name: string }) => m.name === QWEN_MODEL)) {
|
|
console.log(` [Ollama] Model available: ${QWEN_MODEL}`);
|
|
return true;
|
|
}
|
|
}
|
|
} catch {
|
|
return false;
|
|
}
|
|
|
|
console.log(` [Ollama] Pulling ${QWEN_MODEL}...`);
|
|
const pullResponse = await fetch(`${OLLAMA_URL}/api/pull`, {
|
|
method: 'POST',
|
|
headers: { 'Content-Type': 'application/json' },
|
|
body: JSON.stringify({ name: QWEN_MODEL, stream: false }),
|
|
});
|
|
|
|
return pullResponse.ok;
|
|
}
|
|
|
|
/**
|
|
* Parse amount from string (handles European format)
|
|
*/
|
|
function parseAmount(s: string | number | undefined): number {
|
|
if (s === undefined || s === null) return 0;
|
|
if (typeof s === 'number') return s;
|
|
const match = s.match(/([\d.,]+)/);
|
|
if (!match) return 0;
|
|
const numStr = match[1];
|
|
// Handle European format: 1.234,56 -> 1234.56
|
|
const normalized = numStr.includes(',') && numStr.indexOf(',') > numStr.lastIndexOf('.')
|
|
? numStr.replace(/\./g, '').replace(',', '.')
|
|
: numStr.replace(/,/g, '');
|
|
return parseFloat(normalized) || 0;
|
|
}
|
|
|
|
/**
|
|
* Extract invoice number from potentially verbose response
|
|
*/
|
|
function extractInvoiceNumber(s: string | undefined): string {
|
|
if (!s) return '';
|
|
let clean = s.replace(/\*\*/g, '').replace(/`/g, '').trim();
|
|
const patterns = [
|
|
/\b([A-Z]{2,3}\d{10,})\b/i, // IEE2022006460244
|
|
/\b([A-Z]\d{8,})\b/i, // R0014359508
|
|
/\b(INV[-\s]?\d{4}[-\s]?\d+)\b/i, // INV-2024-001
|
|
/\b(\d{7,})\b/, // 1579087430
|
|
];
|
|
for (const pattern of patterns) {
|
|
const match = clean.match(pattern);
|
|
if (match) return match[1];
|
|
}
|
|
return clean.replace(/[^A-Z0-9-]/gi, '').trim() || clean;
|
|
}
|
|
|
|
/**
|
|
* Extract date (YYYY-MM-DD) from response
|
|
*/
|
|
function extractDate(s: string | undefined): string {
|
|
if (!s) return '';
|
|
let clean = s.replace(/\*\*/g, '').replace(/`/g, '').trim();
|
|
const isoMatch = clean.match(/(\d{4}-\d{2}-\d{2})/);
|
|
if (isoMatch) return isoMatch[1];
|
|
// Try DD/MM/YYYY or DD.MM.YYYY
|
|
const dmyMatch = clean.match(/(\d{1,2})[\/.](\d{1,2})[\/.](\d{4})/);
|
|
if (dmyMatch) {
|
|
return `${dmyMatch[3]}-${dmyMatch[2].padStart(2, '0')}-${dmyMatch[1].padStart(2, '0')}`;
|
|
}
|
|
return clean.replace(/[^\d-]/g, '').trim();
|
|
}
|
|
|
|
/**
|
|
* Extract currency
|
|
*/
|
|
function extractCurrency(s: string | undefined): string {
|
|
if (!s) return 'EUR';
|
|
const upper = s.toUpperCase();
|
|
if (upper.includes('EUR') || upper.includes('€')) return 'EUR';
|
|
if (upper.includes('USD') || upper.includes('$')) return 'USD';
|
|
if (upper.includes('GBP') || upper.includes('£')) return 'GBP';
|
|
return 'EUR';
|
|
}
|
|
|
|
/**
|
|
* Extract JSON from response (handles markdown code blocks)
|
|
*/
|
|
function extractJsonFromResponse(response: string): Record<string, unknown> | null {
|
|
// Remove thinking tags if present (Qwen3 may include <think>...</think>)
|
|
let cleanResponse = response.replace(/<think>[\s\S]*?<\/think>/g, '').trim();
|
|
|
|
// Try to find JSON in markdown code block
|
|
const codeBlockMatch = cleanResponse.match(/```(?:json)?\s*([\s\S]*?)```/);
|
|
const jsonStr = codeBlockMatch ? codeBlockMatch[1].trim() : cleanResponse;
|
|
|
|
try {
|
|
return JSON.parse(jsonStr);
|
|
} catch {
|
|
// Try to find JSON object pattern
|
|
const jsonMatch = jsonStr.match(/\{[\s\S]*\}/);
|
|
if (jsonMatch) {
|
|
try {
|
|
return JSON.parse(jsonMatch[0]);
|
|
} catch {
|
|
return null;
|
|
}
|
|
}
|
|
return null;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Parse JSON response into IInvoice
|
|
*/
|
|
function parseJsonToInvoice(response: string): IInvoice | null {
|
|
const parsed = extractJsonFromResponse(response);
|
|
if (!parsed) return null;
|
|
|
|
return {
|
|
invoice_number: extractInvoiceNumber(String(parsed.invoice_number || '')),
|
|
invoice_date: extractDate(String(parsed.invoice_date || '')),
|
|
vendor_name: String(parsed.vendor_name || '').replace(/\*\*/g, '').replace(/`/g, '').trim(),
|
|
currency: extractCurrency(String(parsed.currency || '')),
|
|
net_amount: parseAmount(parsed.net_amount as string | number),
|
|
vat_amount: parseAmount(parsed.vat_amount as string | number),
|
|
total_amount: parseAmount(parsed.total_amount as string | number),
|
|
};
|
|
}
|
|
|
|
/**
|
|
* Stage 2: Extract invoice from markdown using Qwen3
|
|
*/
|
|
async function extractInvoiceFromMarkdown(markdown: string, queryId: string): Promise<IInvoice | null> {
|
|
console.log(` [${queryId}] Sending markdown to ${QWEN_MODEL}...`);
|
|
const startTime = Date.now();
|
|
|
|
const response = await fetch(`${OLLAMA_URL}/api/chat`, {
|
|
method: 'POST',
|
|
headers: { 'Content-Type': 'application/json' },
|
|
body: JSON.stringify({
|
|
model: QWEN_MODEL,
|
|
messages: [{
|
|
role: 'user',
|
|
content: JSON_EXTRACTION_PROMPT + markdown,
|
|
}],
|
|
stream: false,
|
|
options: {
|
|
num_predict: 2000,
|
|
temperature: 0.1,
|
|
},
|
|
}),
|
|
});
|
|
|
|
const elapsed = ((Date.now() - startTime) / 1000).toFixed(1);
|
|
|
|
if (!response.ok) {
|
|
console.log(` [${queryId}] ERROR: ${response.status} (${elapsed}s)`);
|
|
throw new Error(`Ollama API error: ${response.status}`);
|
|
}
|
|
|
|
const data = await response.json();
|
|
const content = (data.message?.content || '').trim();
|
|
console.log(` [${queryId}] Response received (${elapsed}s, ${content.length} chars)`);
|
|
|
|
return parseJsonToInvoice(content);
|
|
}
|
|
|
|
/**
|
|
* Compare two invoices for consensus (key fields must match)
|
|
*/
|
|
function invoicesMatch(a: IInvoice, b: IInvoice): boolean {
|
|
const numMatch = a.invoice_number.toLowerCase() === b.invoice_number.toLowerCase();
|
|
const dateMatch = a.invoice_date === b.invoice_date;
|
|
const totalMatch = Math.abs(a.total_amount - b.total_amount) < 0.02;
|
|
return numMatch && dateMatch && totalMatch;
|
|
}
|
|
|
|
/**
|
|
* Stage 2: Extract invoice using Qwen3 with consensus
|
|
*/
|
|
async function extractWithConsensus(markdown: string): Promise<IInvoice> {
|
|
const MAX_ATTEMPTS = 3;
|
|
console.log(` [Stage 2] Extracting invoice with ${QWEN_MODEL} (consensus)...`);
|
|
|
|
for (let attempt = 1; attempt <= MAX_ATTEMPTS; attempt++) {
|
|
console.log(`\n [Stage 2] --- Attempt ${attempt}/${MAX_ATTEMPTS} ---`);
|
|
|
|
// Extract twice
|
|
const inv1 = await extractInvoiceFromMarkdown(markdown, `A${attempt}Q1`);
|
|
const inv2 = await extractInvoiceFromMarkdown(markdown, `A${attempt}Q2`);
|
|
|
|
if (!inv1 || !inv2) {
|
|
console.log(` [Stage 2] Parsing failed, retrying...`);
|
|
continue;
|
|
}
|
|
|
|
console.log(` [Stage 2] Q1: ${inv1.invoice_number} | ${inv1.invoice_date} | ${inv1.total_amount} ${inv1.currency}`);
|
|
console.log(` [Stage 2] Q2: ${inv2.invoice_number} | ${inv2.invoice_date} | ${inv2.total_amount} ${inv2.currency}`);
|
|
|
|
if (invoicesMatch(inv1, inv2)) {
|
|
console.log(` [Stage 2] CONSENSUS REACHED`);
|
|
return inv2;
|
|
}
|
|
|
|
console.log(` [Stage 2] NO CONSENSUS`);
|
|
}
|
|
|
|
// Fallback: use last response
|
|
console.log(`\n [Stage 2] === FALLBACK ===`);
|
|
const fallback = await extractInvoiceFromMarkdown(markdown, 'FALLBACK');
|
|
|
|
if (fallback) {
|
|
console.log(` [Stage 2] ~ FALLBACK: ${fallback.invoice_number} | ${fallback.invoice_date} | ${fallback.total_amount}`);
|
|
return fallback;
|
|
}
|
|
|
|
// Return empty invoice if all else fails
|
|
return {
|
|
invoice_number: '',
|
|
invoice_date: '',
|
|
vendor_name: '',
|
|
currency: 'EUR',
|
|
net_amount: 0,
|
|
vat_amount: 0,
|
|
total_amount: 0,
|
|
};
|
|
}
|
|
|
|
/**
|
|
* Full pipeline: PDF -> Images -> Markdown -> JSON
|
|
*/
|
|
async function extractInvoice(images: string[]): Promise<IInvoice> {
|
|
// Stage 1: Convert to markdown
|
|
const markdown = await convertDocumentToMarkdown(images);
|
|
|
|
// Stage 2: Extract invoice with consensus
|
|
const invoice = await extractWithConsensus(markdown);
|
|
|
|
return invoice;
|
|
}
|
|
|
|
/**
|
|
* Normalize date to YYYY-MM-DD
|
|
*/
|
|
function normalizeDate(dateStr: string | null): string {
|
|
if (!dateStr) return '';
|
|
if (/^\d{4}-\d{2}-\d{2}$/.test(dateStr)) return dateStr;
|
|
|
|
const monthMap: Record<string, string> = {
|
|
JAN: '01', FEB: '02', MAR: '03', APR: '04', MAY: '05', JUN: '06',
|
|
JUL: '07', AUG: '08', SEP: '09', OCT: '10', NOV: '11', DEC: '12',
|
|
};
|
|
|
|
let match = dateStr.match(/^(\d{1,2})-([A-Z]{3})-(\d{4})$/i);
|
|
if (match) {
|
|
return `${match[3]}-${monthMap[match[2].toUpperCase()] || '01'}-${match[1].padStart(2, '0')}`;
|
|
}
|
|
|
|
match = dateStr.match(/^(\d{1,2})[\/.](\d{1,2})[\/.](\d{4})$/);
|
|
if (match) {
|
|
return `${match[3]}-${match[2].padStart(2, '0')}-${match[1].padStart(2, '0')}`;
|
|
}
|
|
|
|
return dateStr;
|
|
}
|
|
|
|
/**
|
|
* Compare extracted invoice against expected
|
|
*/
|
|
function compareInvoice(
|
|
extracted: IInvoice,
|
|
expected: IInvoice
|
|
): { match: boolean; errors: string[] } {
|
|
const errors: string[] = [];
|
|
|
|
// Compare invoice number (normalize by removing spaces and case)
|
|
const extNum = extracted.invoice_number?.replace(/\s/g, '').toLowerCase() || '';
|
|
const expNum = expected.invoice_number?.replace(/\s/g, '').toLowerCase() || '';
|
|
if (extNum !== expNum) {
|
|
errors.push(`invoice_number: expected "${expected.invoice_number}", got "${extracted.invoice_number}"`);
|
|
}
|
|
|
|
// Compare date
|
|
if (normalizeDate(extracted.invoice_date) !== normalizeDate(expected.invoice_date)) {
|
|
errors.push(`invoice_date: expected "${expected.invoice_date}", got "${extracted.invoice_date}"`);
|
|
}
|
|
|
|
// Compare total amount (with tolerance)
|
|
if (Math.abs(extracted.total_amount - expected.total_amount) > 0.02) {
|
|
errors.push(`total_amount: expected ${expected.total_amount}, got ${extracted.total_amount}`);
|
|
}
|
|
|
|
// Compare currency
|
|
if (extracted.currency?.toUpperCase() !== expected.currency?.toUpperCase()) {
|
|
errors.push(`currency: expected "${expected.currency}", got "${extracted.currency}"`);
|
|
}
|
|
|
|
return { match: errors.length === 0, errors };
|
|
}
|
|
|
|
/**
|
|
* Find all test cases (PDF + JSON pairs) in .nogit/invoices/
|
|
*/
|
|
function findTestCases(): Array<{ name: string; pdfPath: string; jsonPath: string }> {
|
|
const testDir = path.join(process.cwd(), '.nogit/invoices');
|
|
if (!fs.existsSync(testDir)) {
|
|
return [];
|
|
}
|
|
|
|
const files = fs.readdirSync(testDir);
|
|
const pdfFiles = files.filter((f) => f.endsWith('.pdf'));
|
|
const testCases: Array<{ name: string; pdfPath: string; jsonPath: string }> = [];
|
|
|
|
for (const pdf of pdfFiles) {
|
|
const baseName = pdf.replace('.pdf', '');
|
|
const jsonFile = `${baseName}.json`;
|
|
if (files.includes(jsonFile)) {
|
|
testCases.push({
|
|
name: baseName,
|
|
pdfPath: path.join(testDir, pdf),
|
|
jsonPath: path.join(testDir, jsonFile),
|
|
});
|
|
}
|
|
}
|
|
|
|
testCases.sort((a, b) => a.name.localeCompare(b.name));
|
|
return testCases;
|
|
}
|
|
|
|
// Tests
|
|
|
|
tap.test('setup: ensure containers are running', async () => {
|
|
console.log('\n[Setup] Checking Docker containers...\n');
|
|
|
|
// Nanonets for OCR
|
|
const nanonetsOk = await ensureNanonetsOcr();
|
|
expect(nanonetsOk).toBeTrue();
|
|
|
|
// Ollama for Qwen3
|
|
const ollamaOk = await ensureMiniCpm();
|
|
expect(ollamaOk).toBeTrue();
|
|
|
|
// Qwen3 model
|
|
const qwenOk = await ensureQwen3();
|
|
expect(qwenOk).toBeTrue();
|
|
|
|
console.log('\n[Setup] All containers ready!\n');
|
|
});
|
|
|
|
tap.test('should have models available', async () => {
|
|
// Check Nanonets
|
|
const nanonetsResp = await fetch(`${NANONETS_URL}/models`);
|
|
expect(nanonetsResp.ok).toBeTrue();
|
|
|
|
// Check Qwen3
|
|
const ollamaResp = await fetch(`${OLLAMA_URL}/api/tags`);
|
|
expect(ollamaResp.ok).toBeTrue();
|
|
const data = await ollamaResp.json();
|
|
const modelNames = data.models.map((m: { name: string }) => m.name);
|
|
expect(modelNames.some((name: string) => name.includes('qwen3'))).toBeTrue();
|
|
});
|
|
|
|
const testCases = findTestCases();
|
|
console.log(`\nFound ${testCases.length} invoice test cases (Nanonets + Qwen3)\n`);
|
|
|
|
let passedCount = 0;
|
|
let failedCount = 0;
|
|
const processingTimes: number[] = [];
|
|
|
|
for (const testCase of testCases) {
|
|
tap.test(`should extract invoice: ${testCase.name}`, async () => {
|
|
const expected: IInvoice = JSON.parse(fs.readFileSync(testCase.jsonPath, 'utf-8'));
|
|
console.log(`\n=== ${testCase.name} ===`);
|
|
console.log(`Expected: ${expected.invoice_number} | ${expected.invoice_date} | ${expected.total_amount} ${expected.currency}`);
|
|
|
|
const startTime = Date.now();
|
|
const images = convertPdfToImages(testCase.pdfPath);
|
|
console.log(` Pages: ${images.length}`);
|
|
|
|
const extracted = await extractInvoice(images);
|
|
console.log(` Extracted: ${extracted.invoice_number} | ${extracted.invoice_date} | ${extracted.total_amount} ${extracted.currency}`);
|
|
|
|
const elapsedMs = Date.now() - startTime;
|
|
processingTimes.push(elapsedMs);
|
|
|
|
const result = compareInvoice(extracted, expected);
|
|
|
|
if (result.match) {
|
|
passedCount++;
|
|
console.log(` Result: MATCH (${(elapsedMs / 1000).toFixed(1)}s)`);
|
|
} else {
|
|
failedCount++;
|
|
console.log(` Result: MISMATCH (${(elapsedMs / 1000).toFixed(1)}s)`);
|
|
result.errors.forEach((e) => console.log(` - ${e}`));
|
|
}
|
|
|
|
expect(result.match).toBeTrue();
|
|
});
|
|
}
|
|
|
|
tap.test('summary', async () => {
|
|
const totalInvoices = testCases.length;
|
|
const accuracy = totalInvoices > 0 ? (passedCount / totalInvoices) * 100 : 0;
|
|
const totalTimeMs = processingTimes.reduce((a, b) => a + b, 0);
|
|
const avgTimeSec = processingTimes.length > 0 ? totalTimeMs / processingTimes.length / 1000 : 0;
|
|
|
|
console.log(`\n========================================`);
|
|
console.log(` Invoice Extraction Summary`);
|
|
console.log(` (Nanonets + Qwen3 Pipeline)`);
|
|
console.log(`========================================`);
|
|
console.log(` Stage 1: Nanonets-OCR-s (doc -> md)`);
|
|
console.log(` Stage 2: Qwen3 8B (md -> JSON)`);
|
|
console.log(` Passed: ${passedCount}/${totalInvoices}`);
|
|
console.log(` Failed: ${failedCount}/${totalInvoices}`);
|
|
console.log(` Accuracy: ${accuracy.toFixed(1)}%`);
|
|
console.log(`----------------------------------------`);
|
|
console.log(` Total time: ${(totalTimeMs / 1000).toFixed(1)}s`);
|
|
console.log(` Avg per inv: ${avgTimeSec.toFixed(1)}s`);
|
|
console.log(`========================================\n`);
|
|
});
|
|
|
|
export default tap.start();
|