672 lines
21 KiB
TypeScript
672 lines
21 KiB
TypeScript
/**
|
||
* Bank statement extraction using Nanonets-OCR-s + GPT-OSS 20B (sequential two-stage pipeline)
|
||
*
|
||
* Stage 1: Nanonets-OCR-s converts ALL document pages to markdown (stop after completion)
|
||
* Stage 2: GPT-OSS 20B extracts structured JSON from saved markdown (after Nanonets stops)
|
||
*
|
||
* This approach avoids GPU contention by running services sequentially.
|
||
*/
|
||
import { tap, expect } from '@git.zone/tstest/tapbundle';
|
||
import * as fs from 'fs';
|
||
import * as path from 'path';
|
||
import { execSync } from 'child_process';
|
||
import * as os from 'os';
|
||
import { ensureNanonetsOcr, ensureMiniCpm, removeContainer, isContainerRunning } from './helpers/docker.js';
|
||
|
||
const NANONETS_URL = 'http://localhost:8000/v1';
|
||
const NANONETS_MODEL = 'nanonets/Nanonets-OCR-s';
|
||
|
||
const OLLAMA_URL = 'http://localhost:11434';
|
||
const EXTRACTION_MODEL = 'gpt-oss:20b';
|
||
|
||
// Temp directory for storing markdown between stages
|
||
const TEMP_MD_DIR = path.join(os.tmpdir(), 'nanonets-markdown');
|
||
|
||
interface ITransaction {
|
||
date: string;
|
||
counterparty: string;
|
||
amount: number;
|
||
}
|
||
|
||
interface IImageData {
|
||
base64: string;
|
||
width: number;
|
||
height: number;
|
||
pageNum: number;
|
||
}
|
||
|
||
interface ITestCase {
|
||
name: string;
|
||
pdfPath: string;
|
||
jsonPath: string;
|
||
markdownPath?: string;
|
||
images?: IImageData[];
|
||
}
|
||
|
||
// Nanonets-specific prompt for document OCR to markdown
|
||
const NANONETS_OCR_PROMPT = `Extract the text from the above document as if you were reading it naturally.
|
||
Return the tables in html format.
|
||
Return the equations in LaTeX representation.
|
||
If there is an image in the document and image caption is not present, add a small description inside <img></img> tag.
|
||
Watermarks should be wrapped in brackets. Ex: <watermark>OFFICIAL COPY</watermark>.
|
||
Page numbers should be wrapped in brackets. Ex: <page_number>14</page_number>.`;
|
||
|
||
// JSON extraction prompt for GPT-OSS 20B
|
||
const JSON_EXTRACTION_PROMPT = `Extract ALL transactions from this bank statement as JSON array. Each transaction: {"date": "YYYY-MM-DD", "counterparty": "NAME", "amount": -25.99}. Amount negative for debits, positive for credits. Only include actual transactions, not balances. Return ONLY JSON array, no explanation.
|
||
|
||
STATEMENT:
|
||
`;
|
||
|
||
// Constants for smart batching
|
||
const MAX_VISUAL_TOKENS = 28000; // ~32K context minus prompt/output headroom
|
||
const PATCH_SIZE = 14; // Qwen2.5-VL uses 14x14 patches
|
||
|
||
/**
|
||
* Estimate visual tokens for an image based on dimensions
|
||
*/
|
||
function estimateVisualTokens(width: number, height: number): number {
|
||
return Math.ceil((width * height) / (PATCH_SIZE * PATCH_SIZE));
|
||
}
|
||
|
||
/**
|
||
* Batch images to fit within context window
|
||
*/
|
||
function batchImages(images: IImageData[]): IImageData[][] {
|
||
const batches: IImageData[][] = [];
|
||
let currentBatch: IImageData[] = [];
|
||
let currentTokens = 0;
|
||
|
||
for (const img of images) {
|
||
const imgTokens = estimateVisualTokens(img.width, img.height);
|
||
|
||
if (currentTokens + imgTokens > MAX_VISUAL_TOKENS && currentBatch.length > 0) {
|
||
batches.push(currentBatch);
|
||
currentBatch = [img];
|
||
currentTokens = imgTokens;
|
||
} else {
|
||
currentBatch.push(img);
|
||
currentTokens += imgTokens;
|
||
}
|
||
}
|
||
if (currentBatch.length > 0) batches.push(currentBatch);
|
||
|
||
return batches;
|
||
}
|
||
|
||
/**
|
||
* Convert PDF to JPEG images using ImageMagick with dimension tracking
|
||
*/
|
||
function convertPdfToImages(pdfPath: string): IImageData[] {
|
||
const tempDir = fs.mkdtempSync(path.join(os.tmpdir(), 'pdf-convert-'));
|
||
const outputPattern = path.join(tempDir, 'page-%d.jpg');
|
||
|
||
try {
|
||
execSync(
|
||
`convert -density 150 -quality 90 "${pdfPath}" -background white -alpha remove "${outputPattern}"`,
|
||
{ stdio: 'pipe' }
|
||
);
|
||
|
||
const files = fs.readdirSync(tempDir).filter((f: string) => f.endsWith('.jpg')).sort();
|
||
const images: IImageData[] = [];
|
||
|
||
for (let i = 0; i < files.length; i++) {
|
||
const file = files[i];
|
||
const imagePath = path.join(tempDir, file);
|
||
const imageData = fs.readFileSync(imagePath);
|
||
|
||
// Get image dimensions using identify command
|
||
const dimensions = execSync(`identify -format "%w %h" "${imagePath}"`, { encoding: 'utf-8' }).trim();
|
||
const [width, height] = dimensions.split(' ').map(Number);
|
||
|
||
images.push({
|
||
base64: imageData.toString('base64'),
|
||
width,
|
||
height,
|
||
pageNum: i + 1,
|
||
});
|
||
}
|
||
|
||
return images;
|
||
} finally {
|
||
fs.rmSync(tempDir, { recursive: true, force: true });
|
||
}
|
||
}
|
||
|
||
/**
|
||
* Convert a batch of pages to markdown using Nanonets-OCR-s
|
||
*/
|
||
async function convertBatchToMarkdown(batch: IImageData[]): Promise<string> {
|
||
const startTime = Date.now();
|
||
const pageNums = batch.map(img => img.pageNum).join(', ');
|
||
|
||
// Build content array with all images first, then the prompt
|
||
const content: Array<{ type: string; image_url?: { url: string }; text?: string }> = [];
|
||
|
||
for (const img of batch) {
|
||
content.push({
|
||
type: 'image_url',
|
||
image_url: { url: `data:image/jpeg;base64,${img.base64}` },
|
||
});
|
||
}
|
||
|
||
// Add prompt with page separator instruction if multiple pages
|
||
const promptText = batch.length > 1
|
||
? `${NANONETS_OCR_PROMPT}\n\nPlease clearly separate each page's content with "--- PAGE N ---" markers, where N is the page number starting from ${batch[0].pageNum}.`
|
||
: NANONETS_OCR_PROMPT;
|
||
|
||
content.push({ type: 'text', text: promptText });
|
||
|
||
const response = await fetch(`${NANONETS_URL}/chat/completions`, {
|
||
method: 'POST',
|
||
headers: {
|
||
'Content-Type': 'application/json',
|
||
'Authorization': 'Bearer dummy',
|
||
},
|
||
body: JSON.stringify({
|
||
model: NANONETS_MODEL,
|
||
messages: [{
|
||
role: 'user',
|
||
content,
|
||
}],
|
||
max_tokens: 4096 * batch.length, // Scale output tokens with batch size
|
||
temperature: 0.0,
|
||
}),
|
||
});
|
||
|
||
const elapsed = ((Date.now() - startTime) / 1000).toFixed(1);
|
||
|
||
if (!response.ok) {
|
||
const errorText = await response.text();
|
||
throw new Error(`Nanonets API error: ${response.status} - ${errorText}`);
|
||
}
|
||
|
||
const data = await response.json();
|
||
let responseContent = (data.choices?.[0]?.message?.content || '').trim();
|
||
|
||
// For single-page batches, add page marker if not present
|
||
if (batch.length === 1 && !responseContent.includes('--- PAGE')) {
|
||
responseContent = `--- PAGE ${batch[0].pageNum} ---\n${responseContent}`;
|
||
}
|
||
|
||
console.log(` Pages [${pageNums}]: ${responseContent.length} chars (${elapsed}s)`);
|
||
return responseContent;
|
||
}
|
||
|
||
/**
|
||
* Convert all pages of a document to markdown using smart batching
|
||
*/
|
||
async function convertDocumentToMarkdown(images: IImageData[], docName: string): Promise<string> {
|
||
const batches = batchImages(images);
|
||
console.log(` [${docName}] Processing ${images.length} page(s) in ${batches.length} batch(es)...`);
|
||
|
||
const markdownParts: string[] = [];
|
||
|
||
for (let i = 0; i < batches.length; i++) {
|
||
const batch = batches[i];
|
||
const batchTokens = batch.reduce((sum, img) => sum + estimateVisualTokens(img.width, img.height), 0);
|
||
console.log(` Batch ${i + 1}: ${batch.length} page(s), ~${batchTokens} tokens`);
|
||
const markdown = await convertBatchToMarkdown(batch);
|
||
markdownParts.push(markdown);
|
||
}
|
||
|
||
const fullMarkdown = markdownParts.join('\n\n');
|
||
console.log(` [${docName}] Complete: ${fullMarkdown.length} chars total`);
|
||
return fullMarkdown;
|
||
}
|
||
|
||
/**
|
||
* Stop Nanonets container
|
||
*/
|
||
function stopNanonets(): void {
|
||
console.log(' [Docker] Stopping Nanonets container...');
|
||
try {
|
||
execSync('docker stop nanonets-test 2>/dev/null || true', { stdio: 'pipe' });
|
||
// Wait for GPU memory to be released
|
||
execSync('sleep 5', { stdio: 'pipe' });
|
||
console.log(' [Docker] Nanonets stopped');
|
||
} catch {
|
||
console.log(' [Docker] Nanonets was not running');
|
||
}
|
||
}
|
||
|
||
/**
|
||
* Ensure GPT-OSS 20B model is available and warmed up
|
||
*/
|
||
async function ensureExtractionModel(): Promise<boolean> {
|
||
try {
|
||
const response = await fetch(`${OLLAMA_URL}/api/tags`);
|
||
if (response.ok) {
|
||
const data = await response.json();
|
||
const models = data.models || [];
|
||
if (models.some((m: { name: string }) => m.name === EXTRACTION_MODEL)) {
|
||
console.log(` [Ollama] Model available: ${EXTRACTION_MODEL}`);
|
||
return true;
|
||
}
|
||
}
|
||
} catch {
|
||
return false;
|
||
}
|
||
|
||
console.log(` [Ollama] Pulling ${EXTRACTION_MODEL}...`);
|
||
const pullResponse = await fetch(`${OLLAMA_URL}/api/pull`, {
|
||
method: 'POST',
|
||
headers: { 'Content-Type': 'application/json' },
|
||
body: JSON.stringify({ name: EXTRACTION_MODEL, stream: false }),
|
||
});
|
||
|
||
return pullResponse.ok;
|
||
}
|
||
|
||
/**
|
||
* Extract transactions from markdown using GPT-OSS 20B (streaming)
|
||
*/
|
||
async function extractTransactionsFromMarkdown(markdown: string, queryId: string): Promise<ITransaction[]> {
|
||
const startTime = Date.now();
|
||
const fullPrompt = JSON_EXTRACTION_PROMPT + markdown;
|
||
|
||
// Log exact prompt
|
||
console.log(`\n [${queryId}] ===== PROMPT =====`);
|
||
console.log(fullPrompt);
|
||
console.log(` [${queryId}] ===== END PROMPT (${fullPrompt.length} chars) =====\n`);
|
||
|
||
const response = await fetch(`${OLLAMA_URL}/api/chat`, {
|
||
method: 'POST',
|
||
headers: { 'Content-Type': 'application/json' },
|
||
body: JSON.stringify({
|
||
model: EXTRACTION_MODEL,
|
||
messages: [
|
||
{ role: 'user', content: 'Hi there, how are you?' },
|
||
{ role: 'assistant', content: 'Good, how can I help you today?' },
|
||
{ role: 'user', content: fullPrompt },
|
||
],
|
||
stream: true,
|
||
}),
|
||
signal: AbortSignal.timeout(600000), // 10 minute timeout
|
||
});
|
||
|
||
if (!response.ok) {
|
||
const elapsed = ((Date.now() - startTime) / 1000).toFixed(1);
|
||
console.log(` [${queryId}] ERROR: ${response.status} (${elapsed}s)`);
|
||
throw new Error(`Ollama API error: ${response.status}`);
|
||
}
|
||
|
||
// Stream the response
|
||
let content = '';
|
||
let thinkingContent = '';
|
||
let thinkingStarted = false;
|
||
let outputStarted = false;
|
||
const reader = response.body!.getReader();
|
||
const decoder = new TextDecoder();
|
||
|
||
try {
|
||
while (true) {
|
||
const { done, value } = await reader.read();
|
||
if (done) break;
|
||
|
||
const chunk = decoder.decode(value, { stream: true });
|
||
|
||
// Each line is a JSON object
|
||
for (const line of chunk.split('\n').filter(l => l.trim())) {
|
||
try {
|
||
const json = JSON.parse(line);
|
||
|
||
// Stream thinking tokens
|
||
const thinking = json.message?.thinking || '';
|
||
if (thinking) {
|
||
if (!thinkingStarted) {
|
||
process.stdout.write(` [${queryId}] THINKING: `);
|
||
thinkingStarted = true;
|
||
}
|
||
process.stdout.write(thinking);
|
||
thinkingContent += thinking;
|
||
}
|
||
|
||
// Stream content tokens
|
||
const token = json.message?.content || '';
|
||
if (token) {
|
||
if (!outputStarted) {
|
||
if (thinkingStarted) process.stdout.write('\n');
|
||
process.stdout.write(` [${queryId}] OUTPUT: `);
|
||
outputStarted = true;
|
||
}
|
||
process.stdout.write(token);
|
||
content += token;
|
||
}
|
||
} catch {
|
||
// Ignore parse errors for partial chunks
|
||
}
|
||
}
|
||
}
|
||
} finally {
|
||
if (thinkingStarted || outputStarted) process.stdout.write('\n');
|
||
}
|
||
|
||
const elapsed = ((Date.now() - startTime) / 1000).toFixed(1);
|
||
console.log(` [${queryId}] Done: ${thinkingContent.length} thinking chars, ${content.length} output chars (${elapsed}s)`);
|
||
|
||
return parseJsonResponse(content, queryId);
|
||
}
|
||
|
||
/**
|
||
* Sanitize JSON string
|
||
*/
|
||
function sanitizeJson(jsonStr: string): string {
|
||
let s = jsonStr;
|
||
s = s.replace(/"amount"\s*:\s*\+/g, '"amount": ');
|
||
s = s.replace(/:\s*\+(\d)/g, ': $1');
|
||
s = s.replace(/"amount"\s*:\s*(-?)(\d{1,3})\.(\d{3})\.(\d{2})\b/g, '"amount": $1$2$3.$4');
|
||
s = s.replace(/,\s*([}\]])/g, '$1');
|
||
s = s.replace(/"([^"\\]*)\n([^"]*)"/g, '"$1 $2"');
|
||
s = s.replace(/"([^"\\]*)\t([^"]*)"/g, '"$1 $2"');
|
||
s = s.replace(/[\x00-\x08\x0B\x0C\x0E-\x1F]/g, ' ');
|
||
return s;
|
||
}
|
||
|
||
/**
|
||
* Parse amount from various formats
|
||
*/
|
||
function parseAmount(value: unknown): number {
|
||
if (typeof value === 'number') return value;
|
||
if (typeof value !== 'string') return 0;
|
||
|
||
let s = value.replace(/[€$£\s]/g, '').replace('−', '-').replace('–', '-');
|
||
if (s.includes(',') && s.indexOf(',') > s.lastIndexOf('.')) {
|
||
s = s.replace(/\./g, '').replace(',', '.');
|
||
} else {
|
||
s = s.replace(/,/g, '');
|
||
}
|
||
return parseFloat(s) || 0;
|
||
}
|
||
|
||
/**
|
||
* Parse JSON response into transactions
|
||
*/
|
||
function parseJsonResponse(response: string, queryId: string): ITransaction[] {
|
||
// Remove thinking tags if present
|
||
let cleanResponse = response.replace(/<think>[\s\S]*?<\/think>/g, '').trim();
|
||
|
||
// Debug: show what we're working with
|
||
console.log(` [${queryId}] Response preview: ${cleanResponse.substring(0, 300)}...`);
|
||
|
||
const codeBlockMatch = cleanResponse.match(/```(?:json)?\s*([\s\S]*?)```/);
|
||
let jsonStr = codeBlockMatch ? codeBlockMatch[1].trim() : cleanResponse;
|
||
jsonStr = sanitizeJson(jsonStr);
|
||
|
||
try {
|
||
const parsed = JSON.parse(jsonStr);
|
||
if (Array.isArray(parsed)) {
|
||
const txs = parsed.map(tx => ({
|
||
date: String(tx.date || ''),
|
||
counterparty: String(tx.counterparty || tx.description || ''),
|
||
amount: parseAmount(tx.amount),
|
||
}));
|
||
console.log(` [${queryId}] Parsed ${txs.length} transactions`);
|
||
return txs;
|
||
}
|
||
} catch (e) {
|
||
// Try to find a JSON array in the text
|
||
const arrayMatch = jsonStr.match(/\[[\s\S]*\]/);
|
||
if (arrayMatch) {
|
||
console.log(` [${queryId}] Array match found: ${arrayMatch[0].length} chars`);
|
||
try {
|
||
const parsed = JSON.parse(sanitizeJson(arrayMatch[0]));
|
||
if (Array.isArray(parsed)) {
|
||
const txs = parsed.map(tx => ({
|
||
date: String(tx.date || ''),
|
||
counterparty: String(tx.counterparty || tx.description || ''),
|
||
amount: parseAmount(tx.amount),
|
||
}));
|
||
console.log(` [${queryId}] Parsed ${txs.length} transactions (array match)`);
|
||
return txs;
|
||
}
|
||
} catch (innerErr) {
|
||
console.log(` [${queryId}] Array parse error: ${(innerErr as Error).message}`);
|
||
}
|
||
} else {
|
||
console.log(` [${queryId}] No JSON array found in response`);
|
||
}
|
||
}
|
||
|
||
console.log(` [${queryId}] PARSE FAILED`);
|
||
return [];
|
||
}
|
||
|
||
/**
|
||
* Extract transactions (single pass)
|
||
*/
|
||
async function extractTransactions(markdown: string, docName: string): Promise<ITransaction[]> {
|
||
console.log(` [${docName}] Extracting...`);
|
||
const txs = await extractTransactionsFromMarkdown(markdown, docName);
|
||
console.log(` [${docName}] Extracted ${txs.length} transactions`);
|
||
return txs;
|
||
}
|
||
|
||
/**
|
||
* Compare transactions
|
||
*/
|
||
function compareTransactions(
|
||
extracted: ITransaction[],
|
||
expected: ITransaction[]
|
||
): { matches: number; total: number; errors: string[] } {
|
||
const errors: string[] = [];
|
||
let matches = 0;
|
||
|
||
for (let i = 0; i < expected.length; i++) {
|
||
const exp = expected[i];
|
||
const ext = extracted[i];
|
||
|
||
if (!ext) {
|
||
errors.push(`Missing tx ${i}: ${exp.date} ${exp.counterparty}`);
|
||
continue;
|
||
}
|
||
|
||
const dateMatch = ext.date === exp.date;
|
||
const amountMatch = Math.abs(ext.amount - exp.amount) < 0.01;
|
||
|
||
if (dateMatch && amountMatch) {
|
||
matches++;
|
||
} else {
|
||
errors.push(`Mismatch ${i}: exp ${exp.date}/${exp.amount}, got ${ext.date}/${ext.amount}`);
|
||
}
|
||
}
|
||
|
||
if (extracted.length > expected.length) {
|
||
errors.push(`Extra transactions: ${extracted.length - expected.length}`);
|
||
}
|
||
|
||
return { matches, total: expected.length, errors };
|
||
}
|
||
|
||
/**
|
||
* Find all test cases
|
||
*/
|
||
function findTestCases(): ITestCase[] {
|
||
const testDir = path.join(process.cwd(), '.nogit');
|
||
if (!fs.existsSync(testDir)) return [];
|
||
|
||
const files = fs.readdirSync(testDir);
|
||
const testCases: ITestCase[] = [];
|
||
|
||
for (const pdf of files.filter((f: string) => f.endsWith('.pdf'))) {
|
||
const baseName = pdf.replace('.pdf', '');
|
||
const jsonFile = `${baseName}.json`;
|
||
if (files.includes(jsonFile)) {
|
||
testCases.push({
|
||
name: baseName,
|
||
pdfPath: path.join(testDir, pdf),
|
||
jsonPath: path.join(testDir, jsonFile),
|
||
});
|
||
}
|
||
}
|
||
|
||
return testCases.sort((a, b) => a.name.localeCompare(b.name));
|
||
}
|
||
|
||
// ============ TESTS ============
|
||
|
||
const testCases = findTestCases();
|
||
console.log(`\nFound ${testCases.length} bank statement test cases\n`);
|
||
|
||
// Ensure temp directory exists
|
||
if (!fs.existsSync(TEMP_MD_DIR)) {
|
||
fs.mkdirSync(TEMP_MD_DIR, { recursive: true });
|
||
}
|
||
|
||
// -------- STAGE 1: OCR with Nanonets --------
|
||
|
||
// Check if all markdown files already exist
|
||
function allMarkdownFilesExist(): boolean {
|
||
for (const tc of testCases) {
|
||
const mdPath = path.join(TEMP_MD_DIR, `${tc.name}.md`);
|
||
if (!fs.existsSync(mdPath)) {
|
||
return false;
|
||
}
|
||
}
|
||
return true;
|
||
}
|
||
|
||
// Track whether we need to run Stage 1
|
||
let stage1Needed = !allMarkdownFilesExist();
|
||
|
||
tap.test('Stage 1: Setup Nanonets', async () => {
|
||
console.log('\n========== STAGE 1: Nanonets OCR ==========\n');
|
||
|
||
if (!stage1Needed) {
|
||
console.log(' [SKIP] All markdown files already exist, skipping Nanonets setup');
|
||
return;
|
||
}
|
||
|
||
const ok = await ensureNanonetsOcr();
|
||
expect(ok).toBeTrue();
|
||
});
|
||
|
||
tap.test('Stage 1: Convert all documents to markdown', async () => {
|
||
if (!stage1Needed) {
|
||
console.log(' [SKIP] Using existing markdown files from previous run\n');
|
||
// Load existing markdown paths
|
||
for (const tc of testCases) {
|
||
tc.markdownPath = path.join(TEMP_MD_DIR, `${tc.name}.md`);
|
||
console.log(` Loaded: ${tc.markdownPath}`);
|
||
}
|
||
return;
|
||
}
|
||
|
||
console.log('\n Converting all PDFs to markdown with Nanonets-OCR-s...\n');
|
||
|
||
for (const tc of testCases) {
|
||
console.log(`\n === ${tc.name} ===`);
|
||
|
||
// Convert PDF to images
|
||
const images = convertPdfToImages(tc.pdfPath);
|
||
console.log(` Pages: ${images.length}`);
|
||
|
||
// Convert to markdown
|
||
const markdown = await convertDocumentToMarkdown(images, tc.name);
|
||
|
||
// Save markdown to temp file
|
||
const mdPath = path.join(TEMP_MD_DIR, `${tc.name}.md`);
|
||
fs.writeFileSync(mdPath, markdown);
|
||
tc.markdownPath = mdPath;
|
||
console.log(` Saved: ${mdPath}`);
|
||
}
|
||
|
||
console.log('\n Stage 1 complete: All documents converted to markdown\n');
|
||
});
|
||
|
||
tap.test('Stage 1: Stop Nanonets', async () => {
|
||
if (!stage1Needed) {
|
||
console.log(' [SKIP] Nanonets was not started');
|
||
return;
|
||
}
|
||
|
||
stopNanonets();
|
||
// Verify it's stopped
|
||
await new Promise(resolve => setTimeout(resolve, 3000));
|
||
expect(isContainerRunning('nanonets-test')).toBeFalse();
|
||
});
|
||
|
||
// -------- STAGE 2: Extraction with GPT-OSS 20B --------
|
||
|
||
tap.test('Stage 2: Setup Ollama + GPT-OSS 20B', async () => {
|
||
console.log('\n========== STAGE 2: GPT-OSS 20B Extraction ==========\n');
|
||
|
||
const ollamaOk = await ensureMiniCpm();
|
||
expect(ollamaOk).toBeTrue();
|
||
|
||
const extractionOk = await ensureExtractionModel();
|
||
expect(extractionOk).toBeTrue();
|
||
});
|
||
|
||
let passedCount = 0;
|
||
let failedCount = 0;
|
||
|
||
for (const tc of testCases) {
|
||
tap.test(`Stage 2: Extract ${tc.name}`, async () => {
|
||
const expected: ITransaction[] = JSON.parse(fs.readFileSync(tc.jsonPath, 'utf-8'));
|
||
console.log(`\n === ${tc.name} ===`);
|
||
console.log(` Expected: ${expected.length} transactions`);
|
||
|
||
// Load saved markdown
|
||
const mdPath = path.join(TEMP_MD_DIR, `${tc.name}.md`);
|
||
if (!fs.existsSync(mdPath)) {
|
||
throw new Error(`Markdown not found: ${mdPath}. Run Stage 1 first.`);
|
||
}
|
||
const markdown = fs.readFileSync(mdPath, 'utf-8');
|
||
console.log(` Markdown: ${markdown.length} chars`);
|
||
|
||
// Extract transactions (single pass)
|
||
const extracted = await extractTransactions(markdown, tc.name);
|
||
|
||
// Log results
|
||
console.log(` Extracted: ${extracted.length} transactions`);
|
||
for (let i = 0; i < Math.min(extracted.length, 5); i++) {
|
||
const tx = extracted[i];
|
||
console.log(` ${i + 1}. ${tx.date} | ${tx.counterparty.substring(0, 25).padEnd(25)} | ${tx.amount >= 0 ? '+' : ''}${tx.amount.toFixed(2)}`);
|
||
}
|
||
if (extracted.length > 5) {
|
||
console.log(` ... and ${extracted.length - 5} more`);
|
||
}
|
||
|
||
// Compare
|
||
const result = compareTransactions(extracted, expected);
|
||
const pass = result.matches === result.total && extracted.length === expected.length;
|
||
|
||
if (pass) {
|
||
passedCount++;
|
||
console.log(` Result: PASS (${result.matches}/${result.total})`);
|
||
} else {
|
||
failedCount++;
|
||
console.log(` Result: FAIL (${result.matches}/${result.total})`);
|
||
result.errors.slice(0, 5).forEach(e => console.log(` - ${e}`));
|
||
}
|
||
|
||
expect(result.matches).toEqual(result.total);
|
||
expect(extracted.length).toEqual(expected.length);
|
||
});
|
||
}
|
||
|
||
tap.test('Summary', async () => {
|
||
console.log(`\n======================================================`);
|
||
console.log(` Bank Statement Summary (Nanonets + GPT-OSS 20B Sequential)`);
|
||
console.log(`======================================================`);
|
||
console.log(` Stage 1: Nanonets-OCR-s (document -> markdown)`);
|
||
console.log(` Stage 2: GPT-OSS 20B (markdown -> JSON)`);
|
||
console.log(` Passed: ${passedCount}/${testCases.length}`);
|
||
console.log(` Failed: ${failedCount}/${testCases.length}`);
|
||
console.log(`======================================================\n`);
|
||
|
||
// Only cleanup temp files if ALL tests passed
|
||
if (failedCount === 0 && passedCount === testCases.length) {
|
||
try {
|
||
fs.rmSync(TEMP_MD_DIR, { recursive: true, force: true });
|
||
console.log(` Cleaned up temp directory: ${TEMP_MD_DIR}\n`);
|
||
} catch {
|
||
// Ignore
|
||
}
|
||
} else {
|
||
console.log(` Keeping temp directory for debugging: ${TEMP_MD_DIR}\n`);
|
||
}
|
||
});
|
||
|
||
export default tap.start();
|