Files
ht-docker-ai/readme.hints.md

261 lines
6.9 KiB
Markdown

# Technical Notes - ht-docker-ai
## Architecture
This project uses **Ollama** and **vLLM** as runtime frameworks for serving AI models:
### Ollama-based Images (MiniCPM-V, Qwen3-VL)
- Automatic model download and caching
- Unified REST API (compatible with OpenAI format)
- Built-in quantization support
- GPU auto-detection
### vLLM-based Images (Nanonets-OCR)
- High-performance inference server
- OpenAI-compatible API
- Optimized for VLM workloads
## Model Details
### MiniCPM-V 4.5
- **Source**: OpenBMB (https://github.com/OpenBMB/MiniCPM-V)
- **Base Models**: Qwen3-8B + SigLIP2-400M
- **Total Parameters**: 8B
- **Ollama Model Name**: `minicpm-v`
### VRAM Usage
| Mode | VRAM Required |
|------|---------------|
| Full precision (bf16) | 18GB |
| int4 quantized | 9GB |
## Container Startup Flow
### Ollama-based containers
1. `docker-entrypoint.sh` starts Ollama server in background
2. Waits for server to be ready
3. Checks if model already exists in volume
4. Pulls model if not present
5. Keeps container running
### vLLM-based containers
1. vLLM server starts with model auto-download
2. Health check endpoint available at `/health`
3. OpenAI-compatible API at `/v1/chat/completions`
## Volume Persistence
### Ollama volumes
Mount `/root/.ollama` to persist downloaded models:
```bash
-v ollama-data:/root/.ollama
```
Without this volume, the model will be re-downloaded on each container start (~5GB download).
### vLLM/HuggingFace volumes
Mount `/root/.cache/huggingface` for model caching:
```bash
-v hf-cache:/root/.cache/huggingface
```
## API Endpoints
### Ollama API (MiniCPM-V, Qwen3-VL)
| Endpoint | Method | Description |
|----------|--------|-------------|
| `/api/tags` | GET | List available models |
| `/api/generate` | POST | Generate completion |
| `/api/chat` | POST | Chat completion |
| `/api/pull` | POST | Pull a model |
| `/api/show` | POST | Show model info |
### vLLM API (Nanonets-OCR)
| Endpoint | Method | Description |
|----------|--------|-------------|
| `/health` | GET | Health check |
| `/v1/models` | GET | List available models |
| `/v1/chat/completions` | POST | OpenAI-compatible chat completions |
## Health Checks
All containers include Docker health checks:
```dockerfile
HEALTHCHECK --interval=30s --timeout=10s --start-period=60s --retries=3 \
CMD curl -f http://localhost:11434/api/tags || exit 1
```
---
## Nanonets-OCR-s
### Overview
Nanonets-OCR-s is a Qwen2.5-VL-3B model fine-tuned specifically for document OCR tasks. It outputs structured markdown with semantic tags.
**Key features:**
- Based on Qwen2.5-VL-3B (~4B parameters)
- Fine-tuned for document OCR
- Outputs markdown with semantic HTML tags
- ~10GB VRAM
### Docker Images
| Tag | Description |
|-----|-------------|
| `nanonets-ocr` | GPU variant using vLLM (OpenAI-compatible API) |
### API Endpoints (OpenAI-compatible via vLLM)
| Endpoint | Method | Description |
|----------|--------|-------------|
| `/health` | GET | Health check |
| `/v1/models` | GET | List available models |
| `/v1/chat/completions` | POST | OpenAI-compatible chat completions |
### Request/Response Format
**POST /v1/chat/completions (OpenAI-compatible)**
```json
{
"model": "nanonets/Nanonets-OCR-s",
"messages": [
{
"role": "user",
"content": [
{"type": "image_url", "image_url": {"url": "data:image/png;base64,..."}},
{"type": "text", "text": "Extract the text from the above document..."}
]
}
],
"temperature": 0.0,
"max_tokens": 4096
}
```
### Nanonets OCR Prompt
The model is designed to work with a specific prompt format:
```
Extract the text from the above document as if you were reading it naturally.
Return the tables in html format.
Return the equations in LaTeX representation.
If there is an image in the document and image caption is not present, add a small description inside <img></img> tag.
Watermarks should be wrapped in brackets. Ex: <watermark>OFFICIAL COPY</watermark>.
Page numbers should be wrapped in brackets. Ex: <page_number>14</page_number>.
```
### Performance
- **GPU (vLLM)**: ~3-8 seconds per page
- **VRAM usage**: ~10GB
### Two-Stage Pipeline (Nanonets + Qwen3)
The Nanonets tests use a two-stage pipeline:
1. **Stage 1**: Nanonets-OCR-s converts images to markdown (via vLLM on port 8000)
2. **Stage 2**: Qwen3 8B extracts structured JSON from markdown (via Ollama on port 11434)
**GPU Limitation**: Both vLLM and Ollama require significant GPU memory. On a single GPU system:
- Running both simultaneously causes memory contention
- For single GPU: Run services sequentially (stop Nanonets before Qwen3)
- For multi-GPU: Assign each service to a different GPU
**Sequential Execution**:
```bash
# Step 1: Run Nanonets OCR (converts to markdown)
docker start nanonets-test
# ... perform OCR ...
docker stop nanonets-test
# Step 2: Run Qwen3 extraction (from markdown)
docker start minicpm-test
# ... extract JSON ...
```
---
## Multi-Pass Extraction Strategy
The bank statement extraction uses a dual-VLM consensus approach:
### Architecture: Dual-VLM Consensus
| VLM | Model | Purpose |
|-----|-------|---------|
| **MiniCPM-V 4.5** | 8B params | Primary visual extraction |
| **Nanonets-OCR-s** | ~4B params | Document OCR with semantic output |
### Extraction Strategy
1. **Pass 1**: MiniCPM-V visual extraction (images → JSON)
2. **Pass 2**: Nanonets-OCR semantic extraction (images → markdown → JSON)
3. **Consensus**: If Pass 1 == Pass 2 → Done (fast path)
4. **Pass 3+**: MiniCPM-V visual if no consensus
### Why Dual-VLM Works
- **Different architectures**: Two independent models cross-check each other
- **Specialized strengths**: Nanonets-OCR-s optimized for document structure, MiniCPM-V for general vision
- **No structure loss**: Both VLMs see the original images directly
- **Fast consensus**: Most documents complete in 2 passes when VLMs agree
---
## Adding New Models
To add a new model variant:
1. Create `Dockerfile_<modelname>_<runtime>_<hardware>_VRAM<size>`
2. Set `MODEL_NAME` environment variable
3. Update `build-images.sh` with new build target
4. Add documentation to `readme.md`
## Troubleshooting
### Model download hangs
Check container logs:
```bash
docker logs -f <container-name>
```
The model download is ~5GB and may take several minutes.
### Out of memory
- GPU: Use a lighter model variant or upgrade VRAM
- Add more GPU memory: Consider multi-GPU setup
### API not responding
1. Check if container is healthy: `docker ps`
2. Check logs for errors: `docker logs <container>`
3. Verify port mapping: `curl localhost:11434/api/tags`
## CI/CD Integration
Build and push using npmci:
```bash
npmci docker login
npmci docker build
npmci docker push code.foss.global
```
---
## Related Resources
- [Ollama Documentation](https://ollama.ai/docs)
- [MiniCPM-V GitHub](https://github.com/OpenBMB/MiniCPM-V)
- [Ollama API Reference](https://github.com/ollama/ollama/blob/main/docs/api.md)
- [Nanonets-OCR-s on HuggingFace](https://huggingface.co/nanonets/Nanonets-OCR-s)