2024-03-31 01:32:37 +01:00
|
|
|
import * as plugins from './plugins.js';
|
|
|
|
import * as paths from './paths.js';
|
|
|
|
|
2025-02-25 13:01:23 +00:00
|
|
|
// Custom type definition for chat completion messages
|
|
|
|
export type TChatCompletionRequestMessage = {
|
|
|
|
role: "system" | "user" | "assistant";
|
|
|
|
content: string;
|
|
|
|
};
|
|
|
|
|
2024-04-04 02:47:44 +02:00
|
|
|
import { MultiModalModel } from './abstract.classes.multimodal.js';
|
2024-03-31 01:32:37 +01:00
|
|
|
|
2024-04-27 12:47:49 +02:00
|
|
|
export interface IOpenaiProviderOptions {
|
|
|
|
openaiToken: string;
|
2025-02-25 13:01:23 +00:00
|
|
|
chatModel?: string;
|
|
|
|
audioModel?: string;
|
|
|
|
visionModel?: string;
|
|
|
|
// Optionally add more model options (e.g., documentModel) if needed.
|
2024-04-27 12:47:49 +02:00
|
|
|
}
|
|
|
|
|
2024-04-04 02:47:44 +02:00
|
|
|
export class OpenAiProvider extends MultiModalModel {
|
2024-04-27 12:47:49 +02:00
|
|
|
private options: IOpenaiProviderOptions;
|
2024-03-31 01:32:37 +01:00
|
|
|
public openAiApiClient: plugins.openai.default;
|
2024-04-27 12:47:49 +02:00
|
|
|
public smartpdfInstance: plugins.smartpdf.SmartPdf;
|
2024-03-31 01:32:37 +01:00
|
|
|
|
2024-04-27 12:47:49 +02:00
|
|
|
constructor(optionsArg: IOpenaiProviderOptions) {
|
2024-03-31 01:32:37 +01:00
|
|
|
super();
|
2024-04-27 12:47:49 +02:00
|
|
|
this.options = optionsArg;
|
2024-03-31 01:32:37 +01:00
|
|
|
}
|
|
|
|
|
2024-04-27 12:47:49 +02:00
|
|
|
public async start() {
|
2024-03-31 01:32:37 +01:00
|
|
|
this.openAiApiClient = new plugins.openai.default({
|
2024-04-27 12:47:49 +02:00
|
|
|
apiKey: this.options.openaiToken,
|
2024-03-31 01:32:37 +01:00
|
|
|
dangerouslyAllowBrowser: true,
|
|
|
|
});
|
2024-04-27 12:47:49 +02:00
|
|
|
this.smartpdfInstance = new plugins.smartpdf.SmartPdf();
|
2024-03-31 01:32:37 +01:00
|
|
|
}
|
|
|
|
|
2024-04-27 12:47:49 +02:00
|
|
|
public async stop() {}
|
2024-03-31 01:32:37 +01:00
|
|
|
|
2025-02-03 15:16:58 +01:00
|
|
|
public async chatStream(input: ReadableStream<Uint8Array>): Promise<ReadableStream<string>> {
|
|
|
|
// Create a TextDecoder to handle incoming chunks
|
|
|
|
const decoder = new TextDecoder();
|
|
|
|
let buffer = '';
|
2025-02-25 13:01:23 +00:00
|
|
|
let currentMessage: {
|
|
|
|
role: "function" | "user" | "system" | "assistant" | "tool" | "developer";
|
|
|
|
content: string;
|
|
|
|
} | null = null;
|
2024-03-31 01:32:37 +01:00
|
|
|
|
2025-02-03 15:16:58 +01:00
|
|
|
// Create a TransformStream to process the input
|
|
|
|
const transform = new TransformStream<Uint8Array, string>({
|
2025-02-25 13:01:23 +00:00
|
|
|
transform: async (chunk, controller) => {
|
2025-02-03 15:16:58 +01:00
|
|
|
buffer += decoder.decode(chunk, { stream: true });
|
|
|
|
|
|
|
|
// Try to parse complete JSON messages from the buffer
|
|
|
|
while (true) {
|
|
|
|
const newlineIndex = buffer.indexOf('\n');
|
|
|
|
if (newlineIndex === -1) break;
|
|
|
|
|
|
|
|
const line = buffer.slice(0, newlineIndex);
|
|
|
|
buffer = buffer.slice(newlineIndex + 1);
|
|
|
|
|
|
|
|
if (line.trim()) {
|
|
|
|
try {
|
|
|
|
const message = JSON.parse(line);
|
|
|
|
currentMessage = {
|
2025-02-25 13:01:23 +00:00
|
|
|
role: (message.role || 'user') as "function" | "user" | "system" | "assistant" | "tool" | "developer",
|
2025-02-03 15:16:58 +01:00
|
|
|
content: message.content || '',
|
|
|
|
};
|
|
|
|
} catch (e) {
|
|
|
|
console.error('Failed to parse message:', e);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// If we have a complete message, send it to OpenAI
|
|
|
|
if (currentMessage) {
|
2025-02-25 13:01:23 +00:00
|
|
|
const messageToSend = { role: "user" as const, content: currentMessage.content };
|
2025-02-25 18:23:28 +00:00
|
|
|
const chatModel = this.options.chatModel ?? 'o3-mini';
|
|
|
|
const requestParams: any = {
|
|
|
|
model: chatModel,
|
2025-02-25 13:01:23 +00:00
|
|
|
messages: [messageToSend],
|
2025-02-03 15:16:58 +01:00
|
|
|
stream: true,
|
2025-02-25 18:23:28 +00:00
|
|
|
};
|
|
|
|
// Temperature is omitted since the model does not support it.
|
|
|
|
const stream = await this.openAiApiClient.chat.completions.create(requestParams);
|
|
|
|
// Explicitly cast the stream as an async iterable to satisfy TypeScript.
|
|
|
|
const streamAsyncIterable = stream as unknown as AsyncIterableIterator<any>;
|
2025-02-03 15:16:58 +01:00
|
|
|
// Process each chunk from OpenAI
|
2025-02-25 18:23:28 +00:00
|
|
|
for await (const chunk of streamAsyncIterable) {
|
2025-02-03 15:16:58 +01:00
|
|
|
const content = chunk.choices[0]?.delta?.content;
|
|
|
|
if (content) {
|
|
|
|
controller.enqueue(content);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
currentMessage = null;
|
|
|
|
}
|
|
|
|
},
|
|
|
|
|
|
|
|
flush(controller) {
|
|
|
|
if (buffer) {
|
|
|
|
try {
|
|
|
|
const message = JSON.parse(buffer);
|
|
|
|
controller.enqueue(message.content || '');
|
|
|
|
} catch (e) {
|
|
|
|
console.error('Failed to parse remaining buffer:', e);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
});
|
|
|
|
|
|
|
|
// Connect the input to our transform stream
|
|
|
|
return input.pipeThrough(transform);
|
2024-03-31 01:32:37 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
// Implementing the synchronous chat interaction
|
2024-04-27 12:47:49 +02:00
|
|
|
public async chat(optionsArg: {
|
|
|
|
systemMessage: string;
|
|
|
|
userMessage: string;
|
|
|
|
messageHistory: {
|
|
|
|
role: 'assistant' | 'user';
|
|
|
|
content: string;
|
|
|
|
}[];
|
|
|
|
}) {
|
2025-02-25 18:23:28 +00:00
|
|
|
const chatModel = this.options.chatModel ?? 'o3-mini';
|
|
|
|
const requestParams: any = {
|
|
|
|
model: chatModel,
|
2024-03-31 01:32:37 +01:00
|
|
|
messages: [
|
2024-04-25 10:49:07 +02:00
|
|
|
{ role: 'system', content: optionsArg.systemMessage },
|
|
|
|
...optionsArg.messageHistory,
|
|
|
|
{ role: 'user', content: optionsArg.userMessage },
|
2024-03-31 01:32:37 +01:00
|
|
|
],
|
2025-02-25 18:23:28 +00:00
|
|
|
};
|
|
|
|
// Temperature parameter removed to avoid unsupported error.
|
|
|
|
const result = await this.openAiApiClient.chat.completions.create(requestParams);
|
2024-03-31 01:32:37 +01:00
|
|
|
return {
|
2024-04-29 11:18:40 +02:00
|
|
|
role: result.choices[0].message.role as 'assistant',
|
|
|
|
message: result.choices[0].message.content,
|
2024-03-31 01:32:37 +01:00
|
|
|
};
|
|
|
|
}
|
|
|
|
|
2024-04-25 10:49:07 +02:00
|
|
|
public async audio(optionsArg: { message: string }): Promise<NodeJS.ReadableStream> {
|
|
|
|
const done = plugins.smartpromise.defer<NodeJS.ReadableStream>();
|
2024-03-31 01:32:37 +01:00
|
|
|
const result = await this.openAiApiClient.audio.speech.create({
|
2025-02-25 19:15:32 +00:00
|
|
|
model: this.options.audioModel ?? 'tts-1-hd',
|
2024-04-25 10:49:07 +02:00
|
|
|
input: optionsArg.message,
|
2024-03-31 01:32:37 +01:00
|
|
|
voice: 'nova',
|
|
|
|
response_format: 'mp3',
|
|
|
|
speed: 1,
|
|
|
|
});
|
2024-04-25 10:49:07 +02:00
|
|
|
const stream = result.body;
|
|
|
|
done.resolve(stream);
|
2024-03-31 01:32:37 +01:00
|
|
|
return done.promise;
|
|
|
|
}
|
2024-04-25 10:49:07 +02:00
|
|
|
|
|
|
|
public async document(optionsArg: {
|
2024-04-27 12:47:49 +02:00
|
|
|
systemMessage: string;
|
|
|
|
userMessage: string;
|
|
|
|
pdfDocuments: Uint8Array[];
|
2024-04-25 10:49:07 +02:00
|
|
|
messageHistory: {
|
|
|
|
role: 'assistant' | 'user';
|
|
|
|
content: any;
|
|
|
|
}[];
|
|
|
|
}) {
|
2024-04-27 12:47:49 +02:00
|
|
|
let pdfDocumentImageBytesArray: Uint8Array[] = [];
|
|
|
|
|
2025-02-25 18:23:28 +00:00
|
|
|
// Convert each PDF into one or more image byte arrays.
|
|
|
|
const smartpdfInstance = new plugins.smartpdf.SmartPdf();
|
|
|
|
await smartpdfInstance.start();
|
2024-04-27 12:47:49 +02:00
|
|
|
for (const pdfDocument of optionsArg.pdfDocuments) {
|
2025-02-25 18:23:28 +00:00
|
|
|
const documentImageArray = await smartpdfInstance.convertPDFToPngBytes(pdfDocument);
|
2024-04-27 12:47:49 +02:00
|
|
|
pdfDocumentImageBytesArray = pdfDocumentImageBytesArray.concat(documentImageArray);
|
|
|
|
}
|
2025-02-25 18:23:28 +00:00
|
|
|
await smartpdfInstance.stop();
|
2024-04-27 12:47:49 +02:00
|
|
|
|
|
|
|
console.log(`image smartfile array`);
|
|
|
|
console.log(pdfDocumentImageBytesArray.map((smartfile) => smartfile.length));
|
|
|
|
|
2025-02-25 18:23:28 +00:00
|
|
|
// Filter out any empty buffers to avoid sending invalid image URLs.
|
|
|
|
const validImageBytesArray = pdfDocumentImageBytesArray.filter(imageBytes => imageBytes && imageBytes.length > 0);
|
|
|
|
const imageAttachments = validImageBytesArray.map(imageBytes => ({
|
|
|
|
type: 'image_url',
|
|
|
|
image_url: {
|
|
|
|
url: 'data:image/png;base64,' + Buffer.from(imageBytes).toString('base64'),
|
|
|
|
},
|
|
|
|
}));
|
2024-04-27 12:47:49 +02:00
|
|
|
|
2025-02-25 18:23:28 +00:00
|
|
|
const chatModel = this.options.chatModel ?? 'gpt-4o';
|
|
|
|
const requestParams: any = {
|
|
|
|
model: chatModel,
|
2024-04-25 10:49:07 +02:00
|
|
|
messages: [
|
|
|
|
{ role: 'system', content: optionsArg.systemMessage },
|
|
|
|
...optionsArg.messageHistory,
|
2024-04-27 12:47:49 +02:00
|
|
|
{
|
|
|
|
role: 'user',
|
|
|
|
content: [
|
|
|
|
{ type: 'text', text: optionsArg.userMessage },
|
2025-02-25 18:23:28 +00:00
|
|
|
...imageAttachments,
|
2024-04-27 12:47:49 +02:00
|
|
|
],
|
|
|
|
},
|
2024-04-25 10:49:07 +02:00
|
|
|
],
|
2025-02-25 18:23:28 +00:00
|
|
|
};
|
|
|
|
// Temperature parameter removed.
|
|
|
|
const result = await this.openAiApiClient.chat.completions.create(requestParams);
|
2024-04-25 10:49:07 +02:00
|
|
|
return {
|
|
|
|
message: result.choices[0].message,
|
|
|
|
};
|
|
|
|
}
|
2025-02-03 15:26:00 +01:00
|
|
|
|
|
|
|
public async vision(optionsArg: { image: Buffer; prompt: string }): Promise<string> {
|
2025-02-25 18:23:28 +00:00
|
|
|
const visionModel = this.options.visionModel ?? 'gpt-4o';
|
|
|
|
const requestParams: any = {
|
|
|
|
model: visionModel,
|
2025-02-03 15:26:00 +01:00
|
|
|
messages: [
|
|
|
|
{
|
|
|
|
role: 'user',
|
|
|
|
content: [
|
|
|
|
{ type: 'text', text: optionsArg.prompt },
|
|
|
|
{
|
|
|
|
type: 'image_url',
|
|
|
|
image_url: {
|
|
|
|
url: `data:image/jpeg;base64,${optionsArg.image.toString('base64')}`
|
|
|
|
}
|
|
|
|
}
|
|
|
|
]
|
|
|
|
}
|
|
|
|
],
|
|
|
|
max_tokens: 300
|
2025-02-25 18:23:28 +00:00
|
|
|
};
|
|
|
|
const result = await this.openAiApiClient.chat.completions.create(requestParams);
|
2025-02-03 15:26:00 +01:00
|
|
|
return result.choices[0].message.content || '';
|
|
|
|
}
|
2025-02-25 13:01:23 +00:00
|
|
|
}
|