2 Commits

Author SHA1 Message Date
Juergen Kunz
0b2a058550 fix(core): improve SmartPdf lifecycle management and update dependencies
Some checks failed
Default (tags) / security (push) Failing after 19s
Default (tags) / test (push) Failing after 16s
Default (tags) / release (push) Has been skipped
Default (tags) / metadata (push) Has been skipped
2025-08-01 18:25:46 +00:00
Juergen Kunz
88d15c89e5 0.5.6
Some checks failed
Default (tags) / security (push) Failing after 24s
Default (tags) / test (push) Failing after 13s
Default (tags) / release (push) Has been skipped
Default (tags) / metadata (push) Has been skipped
2025-07-26 16:17:11 +00:00
11 changed files with 875 additions and 436 deletions

View File

@@ -1,5 +1,20 @@
# Changelog # Changelog
## 2025-08-01 - 0.5.8 - fix(core)
Fix SmartPdf lifecycle management and update dependencies
- Moved SmartPdf instance management to the MultiModalModel base class for better resource sharing
- Fixed memory leaks by properly implementing cleanup in the base class stop() method
- Updated SmartAi class to properly stop all providers on shutdown
- Updated @push.rocks/smartrequest from v2.1.0 to v4.2.1 with migration to new API
- Enhanced readme with professional documentation and feature matrix
## 2025-07-26 - 0.5.7 - fix(provider.openai)
Fix stream type mismatch in audio method
- Fixed type error where OpenAI SDK returns a web ReadableStream but the audio method needs to return a Node.js ReadableStream
- Added conversion using Node.js's built-in Readable.fromWeb() method
## 2025-07-25 - 0.5.5 - feat(documentation) ## 2025-07-25 - 0.5.5 - feat(documentation)
Comprehensive documentation enhancement and test improvements Comprehensive documentation enhancement and test improvements

View File

@@ -1,6 +1,6 @@
{ {
"name": "@push.rocks/smartai", "name": "@push.rocks/smartai",
"version": "0.5.5", "version": "0.5.8",
"private": false, "private": false,
"description": "SmartAi is a versatile TypeScript library designed to facilitate integration and interaction with various AI models, offering functionalities for chat, audio generation, document processing, and vision tasks.", "description": "SmartAi is a versatile TypeScript library designed to facilitate integration and interaction with various AI models, offering functionalities for chat, audio generation, document processing, and vision tasks.",
"main": "dist_ts/index.js", "main": "dist_ts/index.js",
@@ -26,12 +26,12 @@
"@anthropic-ai/sdk": "^0.57.0", "@anthropic-ai/sdk": "^0.57.0",
"@push.rocks/smartarray": "^1.1.0", "@push.rocks/smartarray": "^1.1.0",
"@push.rocks/smartfile": "^11.2.5", "@push.rocks/smartfile": "^11.2.5",
"@push.rocks/smartpath": "^5.0.18", "@push.rocks/smartpath": "^6.0.0",
"@push.rocks/smartpdf": "^3.2.2", "@push.rocks/smartpdf": "^3.3.0",
"@push.rocks/smartpromise": "^4.2.3", "@push.rocks/smartpromise": "^4.2.3",
"@push.rocks/smartrequest": "^2.1.0", "@push.rocks/smartrequest": "^4.2.1",
"@push.rocks/webstream": "^1.0.10", "@push.rocks/webstream": "^1.0.10",
"openai": "^5.10.2" "openai": "^5.11.0"
}, },
"repository": { "repository": {
"type": "git", "type": "git",

505
pnpm-lock.yaml generated

File diff suppressed because it is too large Load Diff

693
readme.md
View File

@@ -1,393 +1,476 @@
# @push.rocks/smartai # @push.rocks/smartai
**One API to rule them all** 🚀
SmartAi is a powerful TypeScript library that provides a unified interface for integrating with multiple AI providers including OpenAI, Anthropic, Perplexity, Ollama, Groq, XAI, and Exo. It offers comprehensive support for chat interactions, streaming conversations, text-to-speech, document analysis, and vision processing. [![npm version](https://img.shields.io/npm/v/@push.rocks/smartai.svg)](https://www.npmjs.com/package/@push.rocks/smartai)
[![TypeScript](https://img.shields.io/badge/TypeScript-5.x-blue.svg)](https://www.typescriptlang.org/)
[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
## Install SmartAI unifies the world's leading AI providers - OpenAI, Anthropic, Perplexity, Ollama, Groq, XAI, and Exo - under a single, elegant TypeScript interface. Build AI applications at lightning speed without vendor lock-in.
To install SmartAi into your project, use pnpm: ## 🎯 Why SmartAI?
- **🔌 Universal Interface**: Write once, run with any AI provider. Switch between GPT-4, Claude, Llama, or Grok with a single line change.
- **🛡️ Type-Safe**: Full TypeScript support with comprehensive type definitions for all operations
- **🌊 Streaming First**: Built for real-time applications with native streaming support
- **🎨 Multi-Modal**: Seamlessly work with text, images, audio, and documents
- **🏠 Local & Cloud**: Support for both cloud providers and local models via Ollama
- **⚡ Zero Lock-In**: Your code remains portable across all AI providers
## 🚀 Quick Start
```bash ```bash
pnpm install @push.rocks/smartai npm install @push.rocks/smartai
``` ```
## Usage
SmartAi provides a clean, consistent API across all supported AI providers. This documentation covers all features with practical examples for each provider and capability.
### Initialization
First, initialize SmartAi with the API tokens and configuration for the providers you want to use:
```typescript ```typescript
import { SmartAi } from '@push.rocks/smartai'; import { SmartAi } from '@push.rocks/smartai';
const smartAi = new SmartAi({ // Initialize with your favorite providers
// OpenAI - for GPT models, DALL-E, and TTS const ai = new SmartAi({
openaiToken: 'your-openai-api-key', openaiToken: 'sk-...',
anthropicToken: 'sk-ant-...'
// Anthropic - for Claude models
anthropicToken: 'your-anthropic-api-key',
// Perplexity - for research-focused AI
perplexityToken: 'your-perplexity-api-key',
// Groq - for fast inference
groqToken: 'your-groq-api-key',
// XAI - for Grok models
xaiToken: 'your-xai-api-key',
// Ollama - for local models
ollama: {
baseUrl: 'http://localhost:11434',
model: 'llama2', // default model for chat
visionModel: 'llava' // default model for vision
},
// Exo - for distributed inference
exo: {
baseUrl: 'http://localhost:8080/v1',
apiKey: 'your-exo-api-key'
}
}); });
// Start the SmartAi instance await ai.start();
await smartAi.start();
```
## Supported Providers // Same API, multiple providers
const response = await ai.openaiProvider.chat({
SmartAi supports the following AI providers:
| Provider | Use Case | Key Features |
|----------|----------|--------------|
| **OpenAI** | General purpose, GPT models | Chat, streaming, TTS, vision, documents |
| **Anthropic** | Claude models, safety-focused | Chat, streaming, vision, documents |
| **Perplexity** | Research and factual queries | Chat, streaming, documents |
| **Groq** | Fast inference | Chat, streaming |
| **XAI** | Grok models | Chat, streaming |
| **Ollama** | Local models | Chat, streaming, vision |
| **Exo** | Distributed inference | Chat, streaming |
## Core Features
### 1. Chat Interactions
SmartAi provides both synchronous and streaming chat capabilities across all supported providers.
#### Synchronous Chat
Simple request-response interactions with any provider:
```typescript
// OpenAI Example
const openAiResponse = await smartAi.openaiProvider.chat({
systemMessage: 'You are a helpful assistant.', systemMessage: 'You are a helpful assistant.',
userMessage: 'What is the capital of France?', userMessage: 'Explain quantum computing in simple terms',
messageHistory: [] messageHistory: []
}); });
console.log(openAiResponse.message); // "The capital of France is Paris."
// Anthropic Example
const anthropicResponse = await smartAi.anthropicProvider.chat({
systemMessage: 'You are a knowledgeable historian.',
userMessage: 'Tell me about the French Revolution',
messageHistory: []
});
console.log(anthropicResponse.message);
// Using message history for context
const contextualResponse = await smartAi.openaiProvider.chat({
systemMessage: 'You are a math tutor.',
userMessage: 'What about multiplication?',
messageHistory: [
{ role: 'user', content: 'Can you teach me math?' },
{ role: 'assistant', content: 'Of course! What would you like to learn?' }
]
});
``` ```
#### Streaming Chat ## 📊 Provider Capabilities Matrix
For real-time, token-by-token responses: Choose the right provider for your use case:
| Provider | Chat | Streaming | TTS | Vision | Documents | Highlights |
|----------|:----:|:---------:|:---:|:------:|:---------:|------------|
| **OpenAI** | ✅ | ✅ | ✅ | ✅ | ✅ | • GPT-4, DALL-E 3<br>• Industry standard<br>• Most features |
| **Anthropic** | ✅ | ✅ | ❌ | ✅ | ✅ | • Claude 3 Opus<br>• Superior reasoning<br>• 200k context |
| **Ollama** | ✅ | ✅ | ❌ | ✅ | ✅ | • 100% local<br>• Privacy-first<br>• No API costs |
| **XAI** | ✅ | ✅ | ❌ | ❌ | ✅ | • Grok models<br>• Real-time data<br>• Uncensored |
| **Perplexity** | ✅ | ✅ | ❌ | ❌ | ❌ | • Web-aware<br>• Research-focused<br>• Citations |
| **Groq** | ✅ | ✅ | ❌ | ❌ | ❌ | • 10x faster<br>• LPU inference<br>• Low latency |
| **Exo** | ✅ | ✅ | ❌ | ❌ | ❌ | • Distributed<br>• P2P compute<br>• Decentralized |
## 🎮 Core Features
### 💬 Universal Chat Interface
Works identically across all providers:
```typescript ```typescript
// Create a readable stream for input // Use GPT-4 for complex reasoning
const { readable, writable } = new TransformStream(); const gptResponse = await ai.openaiProvider.chat({
const writer = writable.getWriter(); systemMessage: 'You are a expert physicist.',
userMessage: 'Explain the implications of quantum entanglement',
messageHistory: []
});
// Send a message // Use Claude for safety-critical applications
const encoder = new TextEncoder(); const claudeResponse = await ai.anthropicProvider.chat({
await writer.write(encoder.encode(JSON.stringify({ systemMessage: 'You are a medical advisor.',
role: 'user', userMessage: 'Review this patient data for concerns',
content: 'Write a haiku about programming' messageHistory: []
}))); });
await writer.close();
// Get streaming response // Use Groq for lightning-fast responses
const responseStream = await smartAi.openaiProvider.chatStream(readable); const groqResponse = await ai.groqProvider.chat({
const reader = responseStream.getReader(); systemMessage: 'You are a code reviewer.',
const decoder = new TextDecoder(); userMessage: 'Quick! Find the bug in this code: ...',
messageHistory: []
});
```
// Read the stream ### 🌊 Real-Time Streaming
Build responsive chat interfaces with token-by-token streaming:
```typescript
// Create a chat stream
const stream = await ai.openaiProvider.chatStream(inputStream);
const reader = stream.getReader();
// Display responses as they arrive
while (true) { while (true) {
const { done, value } = await reader.read(); const { done, value } = await reader.read();
if (done) break; if (done) break;
process.stdout.write(value); // Print each chunk as it arrives
// Update UI in real-time
process.stdout.write(value);
} }
``` ```
### 2. Text-to-Speech (Audio Generation) ### 🎙️ Text-to-Speech
Convert text to natural-sounding speech (currently supported by OpenAI): Generate natural voices with OpenAI:
```typescript ```typescript
import * as fs from 'fs'; const audioStream = await ai.openaiProvider.audio({
message: 'Welcome to the future of AI development!'
// Generate speech from text
const audioStream = await smartAi.openaiProvider.audio({
message: 'Hello world! This is a test of the text-to-speech system.'
}); });
// Save to file // Stream directly to speakers
const writeStream = fs.createWriteStream('output.mp3'); audioStream.pipe(speakerOutput);
audioStream.pipe(writeStream);
// Or use in your application directly // Or save to file
audioStream.on('data', (chunk) => { audioStream.pipe(fs.createWriteStream('welcome.mp3'));
// Process audio chunks ```
### 👁️ Vision Analysis
Understand images with multiple providers:
```typescript
const image = fs.readFileSync('product-photo.jpg');
// OpenAI: General purpose vision
const gptVision = await ai.openaiProvider.vision({
image,
prompt: 'Describe this product and suggest marketing angles'
});
// Anthropic: Detailed analysis
const claudeVision = await ai.anthropicProvider.vision({
image,
prompt: 'Identify any safety concerns or defects'
});
// Ollama: Private, local analysis
const ollamaVision = await ai.ollamaProvider.vision({
image,
prompt: 'Extract all text and categorize the content'
}); });
``` ```
### 3. Vision Processing ### 📄 Document Intelligence
Analyze images and get detailed descriptions: Extract insights from PDFs with AI:
```typescript ```typescript
import * as fs from 'fs'; const contract = fs.readFileSync('contract.pdf');
const invoice = fs.readFileSync('invoice.pdf');
// Read an image file // Analyze documents
const imageBuffer = fs.readFileSync('image.jpg'); const analysis = await ai.openaiProvider.document({
// OpenAI Vision
const openAiVision = await smartAi.openaiProvider.vision({
image: imageBuffer,
prompt: 'What is in this image? Describe in detail.'
});
console.log('OpenAI:', openAiVision);
// Anthropic Vision
const anthropicVision = await smartAi.anthropicProvider.vision({
image: imageBuffer,
prompt: 'Analyze this image and identify any text or objects.'
});
console.log('Anthropic:', anthropicVision);
// Ollama Vision (using local model)
const ollamaVision = await smartAi.ollamaProvider.vision({
image: imageBuffer,
prompt: 'Describe the colors and composition of this image.'
});
console.log('Ollama:', ollamaVision);
```
### 4. Document Analysis
Process and analyze PDF documents with AI:
```typescript
import * as fs from 'fs';
// Read PDF documents
const pdfBuffer = fs.readFileSync('document.pdf');
// Analyze with OpenAI
const openAiAnalysis = await smartAi.openaiProvider.document({
systemMessage: 'You are a document analyst. Extract key information.',
userMessage: 'Summarize this document and list the main points.',
messageHistory: [],
pdfDocuments: [pdfBuffer]
});
console.log('OpenAI Analysis:', openAiAnalysis.message);
// Analyze with Anthropic
const anthropicAnalysis = await smartAi.anthropicProvider.document({
systemMessage: 'You are a legal expert.', systemMessage: 'You are a legal expert.',
userMessage: 'Identify any legal terms or implications in this document.', userMessage: 'Compare these documents and highlight key differences',
messageHistory: [], messageHistory: [],
pdfDocuments: [pdfBuffer] pdfDocuments: [contract, invoice]
}); });
console.log('Anthropic Analysis:', anthropicAnalysis.message);
// Process multiple documents // Multi-document analysis
const doc1 = fs.readFileSync('contract1.pdf'); const taxDocs = [form1099, w2, receipts];
const doc2 = fs.readFileSync('contract2.pdf'); const taxAnalysis = await ai.anthropicProvider.document({
systemMessage: 'You are a tax advisor.',
const comparison = await smartAi.openaiProvider.document({ userMessage: 'Prepare a tax summary from these documents',
systemMessage: 'You are a contract analyst.',
userMessage: 'Compare these two contracts and highlight the differences.',
messageHistory: [], messageHistory: [],
pdfDocuments: [doc1, doc2] pdfDocuments: taxDocs
}); });
console.log('Comparison:', comparison.message);
``` ```
### 5. Conversation Management ### 🔄 Persistent Conversations
Create persistent conversation sessions with any provider: Maintain context across interactions:
```typescript ```typescript
// Create a conversation with OpenAI // Create a coding assistant conversation
const conversation = smartAi.createConversation('openai'); const assistant = ai.createConversation('openai');
await assistant.setSystemMessage('You are an expert TypeScript developer.');
// Set the system message // First question
await conversation.setSystemMessage('You are a helpful coding assistant.'); const inputWriter = assistant.getInputStreamWriter();
await inputWriter.write('How do I implement a singleton pattern?');
// Get input and output streams
const inputWriter = conversation.getInputStreamWriter();
const outputStream = conversation.getOutputStream();
// Set up output reader
const reader = outputStream.getReader();
const decoder = new TextDecoder();
// Send messages
await inputWriter.write('How do I create a REST API in Node.js?');
// Read responses
while (true) {
const { done, value } = await reader.read();
if (done) break;
console.log('Assistant:', decoder.decode(value));
}
// Continue the conversation // Continue the conversation
await inputWriter.write('Can you show me an example with Express?'); await inputWriter.write('Now show me how to make it thread-safe');
// Create conversations with different providers // The assistant remembers the entire context
const anthropicConversation = smartAi.createConversation('anthropic');
const groqConversation = smartAi.createConversation('groq');
``` ```
## Advanced Usage ## 🚀 Real-World Examples
### Error Handling ### Build a Customer Support Bot
Always wrap AI operations in try-catch blocks for robust error handling:
```typescript ```typescript
try { const supportBot = new SmartAi({
const response = await smartAi.openaiProvider.chat({ anthropicToken: process.env.ANTHROPIC_KEY // Claude for empathetic responses
systemMessage: 'You are an assistant.', });
userMessage: 'Hello!',
async function handleCustomerQuery(query: string, history: ChatMessage[]) {
try {
const response = await supportBot.anthropicProvider.chat({
systemMessage: `You are a helpful customer support agent.
Be empathetic, professional, and solution-oriented.`,
userMessage: query,
messageHistory: history
});
return response.message;
} catch (error) {
// Fallback to another provider if needed
return await supportBot.openaiProvider.chat({...});
}
}
```
### Create a Code Review Assistant
```typescript
const codeReviewer = new SmartAi({
groqToken: process.env.GROQ_KEY // Groq for speed
});
async function reviewCode(code: string, language: string) {
const startTime = Date.now();
const review = await codeReviewer.groqProvider.chat({
systemMessage: `You are a ${language} expert. Review code for:
- Security vulnerabilities
- Performance issues
- Best practices
- Potential bugs`,
userMessage: `Review this code:\n\n${code}`,
messageHistory: [] messageHistory: []
}); });
console.log(response.message);
} catch (error) { console.log(`Review completed in ${Date.now() - startTime}ms`);
if (error.code === 'rate_limit_exceeded') { return review.message;
console.error('Rate limit hit, please retry later'); }
} else if (error.code === 'invalid_api_key') { ```
console.error('Invalid API key provided');
} else { ### Build a Research Assistant
console.error('Unexpected error:', error.message);
```typescript
const researcher = new SmartAi({
perplexityToken: process.env.PERPLEXITY_KEY
});
async function research(topic: string) {
// Perplexity excels at web-aware research
const findings = await researcher.perplexityProvider.chat({
systemMessage: 'You are a research assistant. Provide factual, cited information.',
userMessage: `Research the latest developments in ${topic}`,
messageHistory: []
});
return findings.message;
}
```
### Local AI for Sensitive Data
```typescript
const localAI = new SmartAi({
ollama: {
baseUrl: 'http://localhost:11434',
model: 'llama2',
visionModel: 'llava'
}
});
// Process sensitive documents without leaving your infrastructure
async function analyzeSensitiveDoc(pdfBuffer: Buffer) {
const analysis = await localAI.ollamaProvider.document({
systemMessage: 'Extract and summarize key information.',
userMessage: 'Analyze this confidential document',
messageHistory: [],
pdfDocuments: [pdfBuffer]
});
// Data never leaves your servers
return analysis.message;
}
```
## ⚡ Performance Tips
### 1. Provider Selection Strategy
```typescript
class SmartAIRouter {
constructor(private ai: SmartAi) {}
async query(message: string, requirements: {
speed?: boolean;
accuracy?: boolean;
cost?: boolean;
privacy?: boolean;
}) {
if (requirements.privacy) {
return this.ai.ollamaProvider.chat({...}); // Local only
}
if (requirements.speed) {
return this.ai.groqProvider.chat({...}); // 10x faster
}
if (requirements.accuracy) {
return this.ai.anthropicProvider.chat({...}); // Best reasoning
}
// Default fallback
return this.ai.openaiProvider.chat({...});
} }
} }
``` ```
### Streaming with Custom Processing ### 2. Streaming for Large Responses
Implement custom transformations on streaming responses:
```typescript ```typescript
// Create a custom transform stream // Don't wait for the entire response
const customTransform = new TransformStream({ async function streamResponse(userQuery: string) {
transform(chunk, controller) { const stream = await ai.openaiProvider.chatStream(createInputStream(userQuery));
// Example: Add timestamps to each chunk
const timestamp = new Date().toISOString(); // Process tokens as they arrive
controller.enqueue(`[${timestamp}] ${chunk}`); for await (const chunk of stream) {
updateUI(chunk); // Immediate feedback
await processChunk(chunk); // Parallel processing
} }
});
// Apply to streaming chat
const inputStream = new ReadableStream({
start(controller) {
controller.enqueue(new TextEncoder().encode(JSON.stringify({
role: 'user',
content: 'Tell me a story'
})));
controller.close();
}
});
const responseStream = await smartAi.openaiProvider.chatStream(inputStream);
const processedStream = responseStream.pipeThrough(customTransform);
// Read processed stream
const reader = processedStream.getReader();
while (true) {
const { done, value } = await reader.read();
if (done) break;
console.log(value);
} }
``` ```
### Provider-Specific Features ### 3. Parallel Multi-Provider Queries
Each provider may have unique capabilities. Here's how to leverage them:
```typescript ```typescript
// OpenAI - Use specific models // Get the best answer from multiple AIs
const gpt4Response = await smartAi.openaiProvider.chat({ async function consensusQuery(question: string) {
systemMessage: 'You are a helpful assistant.', const providers = [
userMessage: 'Explain quantum computing', ai.openaiProvider.chat({...}),
messageHistory: [] ai.anthropicProvider.chat({...}),
}); ai.perplexityProvider.chat({...})
];
// Anthropic - Use Claude's strength in analysis
const codeReview = await smartAi.anthropicProvider.chat({ const responses = await Promise.all(providers);
systemMessage: 'You are a code reviewer.', return synthesizeResponses(responses);
userMessage: 'Review this code for security issues: ...', }
messageHistory: []
});
// Perplexity - Best for research and current events
const research = await smartAi.perplexityProvider.chat({
systemMessage: 'You are a research assistant.',
userMessage: 'What are the latest developments in renewable energy?',
messageHistory: []
});
// Groq - Optimized for speed
const quickResponse = await smartAi.groqProvider.chat({
systemMessage: 'You are a quick helper.',
userMessage: 'Give me a one-line summary of photosynthesis',
messageHistory: []
});
``` ```
### Performance Optimization ## 🛠️ Advanced Features
Tips for optimal performance: ### Custom Streaming Transformations
```typescript ```typescript
// 1. Reuse providers instead of creating new instances // Add real-time translation
const smartAi = new SmartAi({ /* config */ }); const translationStream = new TransformStream({
await smartAi.start(); // Initialize once async transform(chunk, controller) {
const translated = await translateChunk(chunk);
controller.enqueue(translated);
}
});
// 2. Use streaming for long responses const responseStream = await ai.openaiProvider.chatStream(input);
// Streaming reduces time-to-first-token and memory usage const translatedStream = responseStream.pipeThrough(translationStream);
// 3. Batch operations when possible
const promises = [
smartAi.openaiProvider.chat({ /* ... */ }),
smartAi.anthropicProvider.chat({ /* ... */ })
];
const results = await Promise.all(promises);
// 4. Clean up resources
await smartAi.stop(); // When done
``` ```
### Error Handling & Fallbacks
```typescript
class ResilientAI {
private providers = ['openai', 'anthropic', 'groq'];
async query(opts: ChatOptions): Promise<ChatResponse> {
for (const provider of this.providers) {
try {
return await this.ai[`${provider}Provider`].chat(opts);
} catch (error) {
console.warn(`${provider} failed, trying next...`);
continue;
}
}
throw new Error('All providers failed');
}
}
```
### Token Counting & Cost Management
```typescript
// Track usage across providers
class UsageTracker {
async trackedChat(provider: string, options: ChatOptions) {
const start = Date.now();
const response = await ai[`${provider}Provider`].chat(options);
const usage = {
provider,
duration: Date.now() - start,
inputTokens: estimateTokens(options),
outputTokens: estimateTokens(response.message)
};
await this.logUsage(usage);
return response;
}
}
```
## 📦 Installation & Setup
### Prerequisites
- Node.js 16+
- TypeScript 4.5+
- API keys for your chosen providers
### Environment Setup
```bash
# Install
npm install @push.rocks/smartai
# Set up environment variables
export OPENAI_API_KEY=sk-...
export ANTHROPIC_API_KEY=sk-ant-...
export PERPLEXITY_API_KEY=pplx-...
# ... etc
```
### TypeScript Configuration
```json
{
"compilerOptions": {
"target": "ES2022",
"module": "NodeNext",
"lib": ["ES2022"],
"strict": true,
"esModuleInterop": true,
"skipLibCheck": true
}
}
```
## 🎯 Choosing the Right Provider
| Use Case | Recommended Provider | Why |
|----------|---------------------|-----|
| **General Purpose** | OpenAI | Most features, stable, well-documented |
| **Complex Reasoning** | Anthropic | Superior logical thinking, safer outputs |
| **Research & Facts** | Perplexity | Web-aware, provides citations |
| **Speed Critical** | Groq | 10x faster inference, sub-second responses |
| **Privacy Critical** | Ollama | 100% local, no data leaves your servers |
| **Real-time Data** | XAI | Access to current information |
| **Cost Sensitive** | Ollama/Exo | Free (local) or distributed compute |
## 🤝 Contributing
SmartAI is open source and welcomes contributions! Visit our [GitHub repository](https://code.foss.global/push.rocks/smartai) to:
- Report issues
- Submit pull requests
- Request features
- Join discussions
## 📈 Roadmap
- [ ] Streaming function calls
- [ ] Image generation support
- [ ] Voice input processing
- [ ] Fine-tuning integration
- [ ] Embedding support
- [ ] Agent framework
- [ ] More providers (Cohere, AI21, etc.)
## License and Legal Information ## License and Legal Information
This repository contains open-source code that is licensed under the MIT License. A copy of the MIT License can be found in the [license](license) file within this repository. This repository contains open-source code that is licensed under the MIT License. A copy of the MIT License can be found in the [license](license) file within this repository.
@@ -405,4 +488,4 @@ Registered at District court Bremen HRB 35230 HB, Germany
For any legal inquiries or if you require further information, please contact us via email at hello@task.vc. For any legal inquiries or if you require further information, please contact us via email at hello@task.vc.
By using this repository, you acknowledge that you have read this section, agree to comply with its terms, and understand that the licensing of the code does not imply endorsement by Task Venture Capital GmbH of any derivative works. By using this repository, you acknowledge that you have read this section, agree to comply with its terms, and understand that the licensing of the code does not imply endorsement by Task Venture Capital GmbH of any derivative works.

View File

@@ -29,12 +29,14 @@ tap.test('should create chat response with openai', async () => {
tap.test('should document a pdf', async () => { tap.test('should document a pdf', async () => {
const pdfUrl = 'https://www.w3.org/WAI/ER/tests/xhtml/testfiles/resources/pdf/dummy.pdf'; const pdfUrl = 'https://www.w3.org/WAI/ER/tests/xhtml/testfiles/resources/pdf/dummy.pdf';
const pdfResponse = await smartrequest.getBinary(pdfUrl); const pdfResponse = await smartrequest.SmartRequest.create()
.url(pdfUrl)
.get();
const result = await testSmartai.openaiProvider.document({ const result = await testSmartai.openaiProvider.document({
systemMessage: 'Classify the document. Only the following answers are allowed: "invoice", "bank account statement", "contract", "other". The answer should only contain the keyword for machine use.', systemMessage: 'Classify the document. Only the following answers are allowed: "invoice", "bank account statement", "contract", "other". The answer should only contain the keyword for machine use.',
userMessage: "Classify the document.", userMessage: "Classify the document.",
messageHistory: [], messageHistory: [],
pdfDocuments: [pdfResponse.body], pdfDocuments: [Buffer.from(await pdfResponse.arrayBuffer())],
}); });
console.log(result); console.log(result);
}); });

View File

@@ -1,3 +1,5 @@
import * as plugins from './plugins.js';
/** /**
* Message format for chat interactions * Message format for chat interactions
*/ */
@@ -28,17 +30,30 @@ export interface ChatResponse {
* Provides a common interface for different AI providers (OpenAI, Anthropic, Perplexity, Ollama) * Provides a common interface for different AI providers (OpenAI, Anthropic, Perplexity, Ollama)
*/ */
export abstract class MultiModalModel { export abstract class MultiModalModel {
/**
* SmartPdf instance for document processing
* Shared across all methods that need PDF functionality
*/
protected smartpdfInstance: plugins.smartpdf.SmartPdf;
/** /**
* Initializes the model and any necessary resources * Initializes the model and any necessary resources
* Should be called before using any other methods * Should be called before using any other methods
*/ */
abstract start(): Promise<void>; public async start(): Promise<void> {
this.smartpdfInstance = new plugins.smartpdf.SmartPdf();
await this.smartpdfInstance.start();
}
/** /**
* Cleans up any resources used by the model * Cleans up any resources used by the model
* Should be called when the model is no longer needed * Should be called when the model is no longer needed
*/ */
abstract stop(): Promise<void>; public async stop(): Promise<void> {
if (this.smartpdfInstance) {
await this.smartpdfInstance.stop();
}
}
/** /**
* Synchronous chat interaction with the model * Synchronous chat interaction with the model

View File

@@ -91,7 +91,29 @@ export class SmartAi {
} }
} }
public async stop() {} public async stop() {
if (this.openaiProvider) {
await this.openaiProvider.stop();
}
if (this.anthropicProvider) {
await this.anthropicProvider.stop();
}
if (this.perplexityProvider) {
await this.perplexityProvider.stop();
}
if (this.groqProvider) {
await this.groqProvider.stop();
}
if (this.xaiProvider) {
await this.xaiProvider.stop();
}
if (this.ollamaProvider) {
await this.ollamaProvider.stop();
}
if (this.exoProvider) {
await this.exoProvider.stop();
}
}
/** /**
* create a new conversation * create a new conversation

View File

@@ -20,12 +20,15 @@ export class AnthropicProvider extends MultiModalModel {
} }
async start() { async start() {
await super.start();
this.anthropicApiClient = new plugins.anthropic.default({ this.anthropicApiClient = new plugins.anthropic.default({
apiKey: this.options.anthropicToken, apiKey: this.options.anthropicToken,
}); });
} }
async stop() {} async stop() {
await super.stop();
}
public async chatStream(input: ReadableStream<Uint8Array>): Promise<ReadableStream<string>> { public async chatStream(input: ReadableStream<Uint8Array>): Promise<ReadableStream<string>> {
// Create a TextDecoder to handle incoming chunks // Create a TextDecoder to handle incoming chunks
@@ -178,11 +181,10 @@ export class AnthropicProvider extends MultiModalModel {
messageHistory: ChatMessage[]; messageHistory: ChatMessage[];
}): Promise<{ message: any }> { }): Promise<{ message: any }> {
// Convert PDF documents to images using SmartPDF // Convert PDF documents to images using SmartPDF
const smartpdfInstance = new plugins.smartpdf.SmartPdf();
let documentImageBytesArray: Uint8Array[] = []; let documentImageBytesArray: Uint8Array[] = [];
for (const pdfDocument of optionsArg.pdfDocuments) { for (const pdfDocument of optionsArg.pdfDocuments) {
const documentImageArray = await smartpdfInstance.convertPDFToPngBytes(pdfDocument); const documentImageArray = await this.smartpdfInstance.convertPDFToPngBytes(pdfDocument);
documentImageBytesArray = documentImageBytesArray.concat(documentImageArray); documentImageBytesArray = documentImageBytesArray.concat(documentImageArray);
} }

View File

@@ -24,6 +24,7 @@ export class OllamaProvider extends MultiModalModel {
} }
async start() { async start() {
await super.start();
// Verify Ollama is running // Verify Ollama is running
try { try {
const response = await fetch(`${this.baseUrl}/api/tags`); const response = await fetch(`${this.baseUrl}/api/tags`);
@@ -35,7 +36,9 @@ export class OllamaProvider extends MultiModalModel {
} }
} }
async stop() {} async stop() {
await super.stop();
}
public async chatStream(input: ReadableStream<Uint8Array>): Promise<ReadableStream<string>> { public async chatStream(input: ReadableStream<Uint8Array>): Promise<ReadableStream<string>> {
// Create a TextDecoder to handle incoming chunks // Create a TextDecoder to handle incoming chunks
@@ -205,11 +208,10 @@ export class OllamaProvider extends MultiModalModel {
messageHistory: ChatMessage[]; messageHistory: ChatMessage[];
}): Promise<{ message: any }> { }): Promise<{ message: any }> {
// Convert PDF documents to images using SmartPDF // Convert PDF documents to images using SmartPDF
const smartpdfInstance = new plugins.smartpdf.SmartPdf();
let documentImageBytesArray: Uint8Array[] = []; let documentImageBytesArray: Uint8Array[] = [];
for (const pdfDocument of optionsArg.pdfDocuments) { for (const pdfDocument of optionsArg.pdfDocuments) {
const documentImageArray = await smartpdfInstance.convertPDFToPngBytes(pdfDocument); const documentImageArray = await this.smartpdfInstance.convertPDFToPngBytes(pdfDocument);
documentImageBytesArray = documentImageBytesArray.concat(documentImageArray); documentImageBytesArray = documentImageBytesArray.concat(documentImageArray);
} }

View File

@@ -1,5 +1,6 @@
import * as plugins from './plugins.js'; import * as plugins from './plugins.js';
import * as paths from './paths.js'; import * as paths from './paths.js';
import { Readable } from 'stream';
// Custom type definition for chat completion messages // Custom type definition for chat completion messages
export type TChatCompletionRequestMessage = { export type TChatCompletionRequestMessage = {
@@ -20,7 +21,6 @@ export interface IOpenaiProviderOptions {
export class OpenAiProvider extends MultiModalModel { export class OpenAiProvider extends MultiModalModel {
private options: IOpenaiProviderOptions; private options: IOpenaiProviderOptions;
public openAiApiClient: plugins.openai.default; public openAiApiClient: plugins.openai.default;
public smartpdfInstance: plugins.smartpdf.SmartPdf;
constructor(optionsArg: IOpenaiProviderOptions) { constructor(optionsArg: IOpenaiProviderOptions) {
super(); super();
@@ -28,14 +28,16 @@ export class OpenAiProvider extends MultiModalModel {
} }
public async start() { public async start() {
await super.start();
this.openAiApiClient = new plugins.openai.default({ this.openAiApiClient = new plugins.openai.default({
apiKey: this.options.openaiToken, apiKey: this.options.openaiToken,
dangerouslyAllowBrowser: true, dangerouslyAllowBrowser: true,
}); });
this.smartpdfInstance = new plugins.smartpdf.SmartPdf();
} }
public async stop() {} public async stop() {
await super.stop();
}
public async chatStream(input: ReadableStream<Uint8Array>): Promise<ReadableStream<string>> { public async chatStream(input: ReadableStream<Uint8Array>): Promise<ReadableStream<string>> {
// Create a TextDecoder to handle incoming chunks // Create a TextDecoder to handle incoming chunks
@@ -148,7 +150,8 @@ export class OpenAiProvider extends MultiModalModel {
speed: 1, speed: 1,
}); });
const stream = result.body; const stream = result.body;
done.resolve(stream); const nodeStream = Readable.fromWeb(stream as any);
done.resolve(nodeStream);
return done.promise; return done.promise;
} }
@@ -164,13 +167,10 @@ export class OpenAiProvider extends MultiModalModel {
let pdfDocumentImageBytesArray: Uint8Array[] = []; let pdfDocumentImageBytesArray: Uint8Array[] = [];
// Convert each PDF into one or more image byte arrays. // Convert each PDF into one or more image byte arrays.
const smartpdfInstance = new plugins.smartpdf.SmartPdf();
await smartpdfInstance.start();
for (const pdfDocument of optionsArg.pdfDocuments) { for (const pdfDocument of optionsArg.pdfDocuments) {
const documentImageArray = await smartpdfInstance.convertPDFToPngBytes(pdfDocument); const documentImageArray = await this.smartpdfInstance.convertPDFToPngBytes(pdfDocument);
pdfDocumentImageBytesArray = pdfDocumentImageBytesArray.concat(documentImageArray); pdfDocumentImageBytesArray = pdfDocumentImageBytesArray.concat(documentImageArray);
} }
await smartpdfInstance.stop();
console.log(`image smartfile array`); console.log(`image smartfile array`);
console.log(pdfDocumentImageBytesArray.map((smartfile) => smartfile.length)); console.log(pdfDocumentImageBytesArray.map((smartfile) => smartfile.length));

View File

@@ -11,7 +11,6 @@ export interface IXAIProviderOptions {
export class XAIProvider extends MultiModalModel { export class XAIProvider extends MultiModalModel {
private options: IXAIProviderOptions; private options: IXAIProviderOptions;
public openAiApiClient: plugins.openai.default; public openAiApiClient: plugins.openai.default;
public smartpdfInstance: plugins.smartpdf.SmartPdf;
constructor(optionsArg: IXAIProviderOptions) { constructor(optionsArg: IXAIProviderOptions) {
super(); super();
@@ -19,14 +18,16 @@ export class XAIProvider extends MultiModalModel {
} }
public async start() { public async start() {
await super.start();
this.openAiApiClient = new plugins.openai.default({ this.openAiApiClient = new plugins.openai.default({
apiKey: this.options.xaiToken, apiKey: this.options.xaiToken,
baseURL: 'https://api.x.ai/v1', baseURL: 'https://api.x.ai/v1',
}); });
this.smartpdfInstance = new plugins.smartpdf.SmartPdf();
} }
public async stop() {} public async stop() {
await super.stop();
}
public async chatStream(input: ReadableStream<Uint8Array>): Promise<ReadableStream<string>> { public async chatStream(input: ReadableStream<Uint8Array>): Promise<ReadableStream<string>> {
// Create a TextDecoder to handle incoming chunks // Create a TextDecoder to handle incoming chunks