Compare commits
33 Commits
Author | SHA1 | Date | |
---|---|---|---|
e34bf19698 | |||
f70353e6ca | |||
0403443634 | |||
e2ed429aac | |||
5c856ec3ed | |||
052f37294d | |||
93bb375059 | |||
574f7a594c | |||
0b2a058550 | |||
88d15c89e5 | |||
4bf7113334 | |||
6bdbeae144 | |||
09c27379cb | |||
2bc6f7ee5e | |||
0ac50d647d | |||
5f9ffc7356 | |||
502b665224 | |||
bda0d7ed7e | |||
de2a60d12f | |||
5b3a93a43a | |||
6b241f8889 | |||
0a80ac0a8a | |||
6ce442354e | |||
9b38a3c06e | |||
5dead05324 | |||
6916dd9e2a | |||
f89888a542 | |||
d93b198b09 | |||
9e390d0fdb | |||
8329ee861e | |||
b8585a0afb | |||
c96f5118cf | |||
17e1a1f1e1 |
139
changelog.md
139
changelog.md
@@ -1,5 +1,144 @@
|
||||
# Changelog
|
||||
|
||||
## 2025-09-28 - 0.6.1 - fix(provider.anthropic)
|
||||
Fix Anthropic research tool identifier and add tests + local Claude permissions
|
||||
|
||||
- Replace Anthropic research tool type from 'computer_20241022' to 'web_search_20250305' to match the expected web-search tool schema.
|
||||
- Add comprehensive test suites and fixtures for providers and research features (new/updated tests under test/ including anthropic, openai, research.* and stubs).
|
||||
- Fix test usage of XAI provider class name (use XAIProvider) and adjust basic provider test expectations (provider instantiation moved to start()).
|
||||
- Add .claude/settings.local.json with local Claude permissions to allow common CI/dev commands and web search during testing.
|
||||
|
||||
## 2025-09-28 - 0.6.0 - feat(research)
|
||||
Introduce research API with provider implementations, docs and tests
|
||||
|
||||
- Add ResearchOptions and ResearchResponse interfaces and a new abstract research() method to MultiModalModel
|
||||
- Implement research() for OpenAiProvider (deep research model selection, optional web search/tools, background flag, source extraction)
|
||||
- Implement research() for AnthropicProvider (web search tool support, domain filters, citation extraction)
|
||||
- Implement research() for PerplexityProvider (sonar / sonar-pro model usage and citation parsing)
|
||||
- Add research() stubs to Exo, Groq, Ollama and XAI providers that throw a clear 'not yet supported' error to preserve interface compatibility
|
||||
- Add tests for research interfaces and provider research methods (test files updated/added)
|
||||
- Add documentation: readme.research.md describing the research API, usage and configuration
|
||||
- Export additional providers from ts/index.ts and update provider typings/imports across files
|
||||
- Add a 'typecheck' script to package.json
|
||||
- Add .claude/settings.local.json (local agent permissions for CI/dev tasks)
|
||||
|
||||
## 2025-08-12 - 0.5.11 - fix(openaiProvider)
|
||||
Update default chat model to gpt-5-mini and bump dependency versions
|
||||
|
||||
- Changed default chat model in OpenAiProvider from 'o3-mini' and 'o4-mini' to 'gpt-5-mini'
|
||||
- Upgraded @anthropic-ai/sdk from ^0.57.0 to ^0.59.0
|
||||
- Upgraded openai from ^5.11.0 to ^5.12.2
|
||||
- Added new local Claude settings configuration (.claude/settings.local.json)
|
||||
|
||||
## 2025-08-03 - 0.5.10 - fix(dependencies)
|
||||
Update SmartPdf to v4.1.1 for enhanced PDF processing capabilities
|
||||
|
||||
- Updated @push.rocks/smartpdf from ^3.3.0 to ^4.1.1
|
||||
- Enhanced PDF conversion with improved scale options and quality controls
|
||||
- Dependency updates for better performance and compatibility
|
||||
|
||||
## 2025-08-01 - 0.5.9 - fix(documentation)
|
||||
Remove contribution section from readme
|
||||
|
||||
- Removed the contribution section from readme.md as requested
|
||||
- Kept the roadmap section for future development plans
|
||||
|
||||
## 2025-08-01 - 0.5.8 - fix(core)
|
||||
Fix SmartPdf lifecycle management and update dependencies
|
||||
|
||||
- Moved SmartPdf instance management to the MultiModalModel base class for better resource sharing
|
||||
- Fixed memory leaks by properly implementing cleanup in the base class stop() method
|
||||
- Updated SmartAi class to properly stop all providers on shutdown
|
||||
- Updated @push.rocks/smartrequest from v2.1.0 to v4.2.1 with migration to new API
|
||||
- Enhanced readme with professional documentation and feature matrix
|
||||
|
||||
## 2025-07-26 - 0.5.7 - fix(provider.openai)
|
||||
Fix stream type mismatch in audio method
|
||||
|
||||
- Fixed type error where OpenAI SDK returns a web ReadableStream but the audio method needs to return a Node.js ReadableStream
|
||||
- Added conversion using Node.js's built-in Readable.fromWeb() method
|
||||
|
||||
## 2025-07-25 - 0.5.5 - feat(documentation)
|
||||
Comprehensive documentation enhancement and test improvements
|
||||
|
||||
- Completely rewrote readme.md with detailed provider comparisons, advanced usage examples, and performance tips
|
||||
- Added comprehensive examples for all supported providers (OpenAI, Anthropic, Perplexity, Groq, XAI, Ollama, Exo)
|
||||
- Included detailed sections on chat interactions, streaming, TTS, vision processing, and document analysis
|
||||
- Added verbose flag to test script for better debugging
|
||||
|
||||
## 2025-05-13 - 0.5.4 - fix(provider.openai)
|
||||
Update dependency versions, clean test imports, and adjust default OpenAI model configurations
|
||||
|
||||
- Bump dependency versions in package.json (@git.zone/tsbuild, @push.rocks/tapbundle, openai, etc.)
|
||||
- Change default chatModel from 'gpt-4o' to 'o4-mini' and visionModel from 'gpt-4o' to '04-mini' in provider.openai.ts
|
||||
- Remove unused 'expectAsync' import from test file
|
||||
|
||||
## 2025-04-03 - 0.5.3 - fix(package.json)
|
||||
Add explicit packageManager field to package.json
|
||||
|
||||
- Include the packageManager property to specify the pnpm version and checksum.
|
||||
- Align package metadata with current standards.
|
||||
|
||||
## 2025-04-03 - 0.5.2 - fix(readme)
|
||||
Remove redundant conclusion section from README to streamline documentation.
|
||||
|
||||
- Eliminated the conclusion block describing SmartAi's capabilities and documentation pointers.
|
||||
|
||||
## 2025-02-25 - 0.5.1 - fix(OpenAiProvider)
|
||||
Corrected audio model ID in OpenAiProvider
|
||||
|
||||
- Fixed audio model identifier from 'o3-mini' to 'tts-1-hd' in the OpenAiProvider's audio method.
|
||||
- Addressed minor code formatting issues in test suite for better readability.
|
||||
- Corrected spelling errors in test documentation and comments.
|
||||
|
||||
## 2025-02-25 - 0.5.0 - feat(documentation and configuration)
|
||||
Enhanced package and README documentation
|
||||
|
||||
- Expanded the package description to better reflect the library's capabilities.
|
||||
- Improved README with detailed usage examples for initialization, chat interactions, streaming chat, audio generation, document analysis, and vision processing.
|
||||
- Provided error handling strategies and advanced streaming customization examples.
|
||||
|
||||
## 2025-02-25 - 0.4.2 - fix(core)
|
||||
Fix OpenAI chat streaming and PDF document processing logic.
|
||||
|
||||
- Updated OpenAI chat streaming to handle new async iterable format.
|
||||
- Improved PDF document processing by filtering out empty image buffers.
|
||||
- Removed unsupported temperature options from OpenAI requests.
|
||||
|
||||
## 2025-02-25 - 0.4.1 - fix(provider)
|
||||
Fix provider modules for consistency
|
||||
|
||||
- Updated TypeScript interfaces and options in provider modules for better type safety.
|
||||
- Modified transform stream handlers in Exo, Groq, and Ollama providers for consistency.
|
||||
- Added optional model options to OpenAI provider for custom model usage.
|
||||
|
||||
## 2025-02-08 - 0.4.0 - feat(core)
|
||||
Added support for Exo AI provider
|
||||
|
||||
- Introduced ExoProvider with chat functionalities.
|
||||
- Updated SmartAi class to initialize ExoProvider.
|
||||
- Extended Conversation class to support ExoProvider.
|
||||
|
||||
## 2025-02-05 - 0.3.3 - fix(documentation)
|
||||
Update readme with detailed license and legal information.
|
||||
|
||||
- Added explicit section on License and Legal Information in the README.
|
||||
- Clarified the use of trademarks and company information.
|
||||
|
||||
## 2025-02-05 - 0.3.2 - fix(documentation)
|
||||
Remove redundant badges from readme
|
||||
|
||||
- Removed Build Status badge from the readme file.
|
||||
- Removed License badge from the readme file.
|
||||
|
||||
## 2025-02-05 - 0.3.1 - fix(documentation)
|
||||
Updated README structure and added detailed usage examples
|
||||
|
||||
- Introduced a Table of Contents
|
||||
- Included comprehensive sections for chat, streaming chat, audio generation, document processing, and vision processing
|
||||
- Added example code and detailed configuration steps for supported AI providers
|
||||
- Clarified the development setup with instructions for running tests and building the project
|
||||
|
||||
## 2025-02-05 - 0.3.0 - feat(integration-xai)
|
||||
Add support for X.AI provider with chat and document processing capabilities.
|
||||
|
||||
|
@@ -5,20 +5,33 @@
|
||||
"githost": "code.foss.global",
|
||||
"gitscope": "push.rocks",
|
||||
"gitrepo": "smartai",
|
||||
"description": "A TypeScript library for integrating and interacting with multiple AI models, offering capabilities for chat and potentially audio responses.",
|
||||
"description": "SmartAi is a versatile TypeScript library designed to facilitate integration and interaction with various AI models, offering functionalities for chat, audio generation, document processing, and vision tasks.",
|
||||
"npmPackagename": "@push.rocks/smartai",
|
||||
"license": "MIT",
|
||||
"projectDomain": "push.rocks",
|
||||
"keywords": [
|
||||
"AI integration",
|
||||
"chatbot",
|
||||
"TypeScript",
|
||||
"chatbot",
|
||||
"OpenAI",
|
||||
"Anthropic",
|
||||
"multi-model support",
|
||||
"audio responses",
|
||||
"multi-model",
|
||||
"audio generation",
|
||||
"text-to-speech",
|
||||
"streaming chat"
|
||||
"document processing",
|
||||
"vision processing",
|
||||
"streaming chat",
|
||||
"API",
|
||||
"multiple providers",
|
||||
"AI models",
|
||||
"synchronous chat",
|
||||
"asynchronous chat",
|
||||
"real-time interaction",
|
||||
"content analysis",
|
||||
"image description",
|
||||
"document classification",
|
||||
"AI toolkit",
|
||||
"provider switching"
|
||||
]
|
||||
}
|
||||
},
|
||||
|
67
package.json
67
package.json
@@ -1,37 +1,38 @@
|
||||
{
|
||||
"name": "@push.rocks/smartai",
|
||||
"version": "0.3.0",
|
||||
"version": "0.6.1",
|
||||
"private": false,
|
||||
"description": "A TypeScript library for integrating and interacting with multiple AI models, offering capabilities for chat and potentially audio responses.",
|
||||
"description": "SmartAi is a versatile TypeScript library designed to facilitate integration and interaction with various AI models, offering functionalities for chat, audio generation, document processing, and vision tasks.",
|
||||
"main": "dist_ts/index.js",
|
||||
"typings": "dist_ts/index.d.ts",
|
||||
"type": "module",
|
||||
"author": "Task Venture Capital GmbH",
|
||||
"license": "MIT",
|
||||
"scripts": {
|
||||
"test": "(tstest test/ --web)",
|
||||
"test": "(tstest test/ --web --verbose)",
|
||||
"typecheck": "tsbuild check",
|
||||
"build": "(tsbuild --web --allowimplicitany)",
|
||||
"buildDocs": "(tsdoc)"
|
||||
},
|
||||
"devDependencies": {
|
||||
"@git.zone/tsbuild": "^2.1.84",
|
||||
"@git.zone/tsbundle": "^2.0.5",
|
||||
"@git.zone/tsrun": "^1.2.49",
|
||||
"@git.zone/tstest": "^1.0.90",
|
||||
"@push.rocks/qenv": "^6.0.5",
|
||||
"@push.rocks/tapbundle": "^5.3.0",
|
||||
"@types/node": "^22.5.5"
|
||||
"@git.zone/tsbuild": "^2.6.4",
|
||||
"@git.zone/tsbundle": "^2.5.1",
|
||||
"@git.zone/tsrun": "^1.3.3",
|
||||
"@git.zone/tstest": "^2.3.2",
|
||||
"@push.rocks/qenv": "^6.1.0",
|
||||
"@push.rocks/tapbundle": "^6.0.3",
|
||||
"@types/node": "^22.15.17"
|
||||
},
|
||||
"dependencies": {
|
||||
"@anthropic-ai/sdk": "^0.27.3",
|
||||
"@push.rocks/smartarray": "^1.0.8",
|
||||
"@push.rocks/smartfile": "^11.0.21",
|
||||
"@push.rocks/smartpath": "^5.0.18",
|
||||
"@push.rocks/smartpdf": "^3.1.6",
|
||||
"@push.rocks/smartpromise": "^4.0.4",
|
||||
"@push.rocks/smartrequest": "^2.0.22",
|
||||
"@anthropic-ai/sdk": "^0.59.0",
|
||||
"@push.rocks/smartarray": "^1.1.0",
|
||||
"@push.rocks/smartfile": "^11.2.5",
|
||||
"@push.rocks/smartpath": "^6.0.0",
|
||||
"@push.rocks/smartpdf": "^4.1.1",
|
||||
"@push.rocks/smartpromise": "^4.2.3",
|
||||
"@push.rocks/smartrequest": "^4.2.1",
|
||||
"@push.rocks/webstream": "^1.0.10",
|
||||
"openai": "^4.62.1"
|
||||
"openai": "^5.12.2"
|
||||
},
|
||||
"repository": {
|
||||
"type": "git",
|
||||
@@ -58,13 +59,33 @@
|
||||
],
|
||||
"keywords": [
|
||||
"AI integration",
|
||||
"chatbot",
|
||||
"TypeScript",
|
||||
"chatbot",
|
||||
"OpenAI",
|
||||
"Anthropic",
|
||||
"multi-model support",
|
||||
"audio responses",
|
||||
"multi-model",
|
||||
"audio generation",
|
||||
"text-to-speech",
|
||||
"streaming chat"
|
||||
]
|
||||
"document processing",
|
||||
"vision processing",
|
||||
"streaming chat",
|
||||
"API",
|
||||
"multiple providers",
|
||||
"AI models",
|
||||
"synchronous chat",
|
||||
"asynchronous chat",
|
||||
"real-time interaction",
|
||||
"content analysis",
|
||||
"image description",
|
||||
"document classification",
|
||||
"AI toolkit",
|
||||
"provider switching"
|
||||
],
|
||||
"pnpm": {
|
||||
"onlyBuiltDependencies": [
|
||||
"esbuild",
|
||||
"puppeteer"
|
||||
]
|
||||
},
|
||||
"packageManager": "pnpm@10.7.0+sha512.6b865ad4b62a1d9842b61d674a393903b871d9244954f652b8842c2b553c72176b278f64c463e52d40fff8aba385c235c8c9ecf5cc7de4fd78b8bb6d49633ab6"
|
||||
}
|
||||
|
9009
pnpm-lock.yaml
generated
9009
pnpm-lock.yaml
generated
File diff suppressed because it is too large
Load Diff
562
readme.md
562
readme.md
@@ -1,235 +1,467 @@
|
||||
# @push.rocks/smartai
|
||||
**One API to rule them all** 🚀
|
||||
|
||||
Provides a standardized interface for integrating and conversing with multiple AI models, supporting operations like chat, streaming interactions, and audio responses.
|
||||
[](https://www.npmjs.com/package/@push.rocks/smartai)
|
||||
[](https://www.typescriptlang.org/)
|
||||
[](https://opensource.org/licenses/MIT)
|
||||
|
||||
## Install
|
||||
SmartAI unifies the world's leading AI providers - OpenAI, Anthropic, Perplexity, Ollama, Groq, XAI, and Exo - under a single, elegant TypeScript interface. Build AI applications at lightning speed without vendor lock-in.
|
||||
|
||||
To add @push.rocks/smartai to your project, run the following command in your terminal:
|
||||
## 🎯 Why SmartAI?
|
||||
|
||||
- **🔌 Universal Interface**: Write once, run with any AI provider. Switch between GPT-4, Claude, Llama, or Grok with a single line change.
|
||||
- **🛡️ Type-Safe**: Full TypeScript support with comprehensive type definitions for all operations
|
||||
- **🌊 Streaming First**: Built for real-time applications with native streaming support
|
||||
- **🎨 Multi-Modal**: Seamlessly work with text, images, audio, and documents
|
||||
- **🏠 Local & Cloud**: Support for both cloud providers and local models via Ollama
|
||||
- **⚡ Zero Lock-In**: Your code remains portable across all AI providers
|
||||
|
||||
## 🚀 Quick Start
|
||||
|
||||
```bash
|
||||
npm install @push.rocks/smartai
|
||||
```
|
||||
|
||||
This command installs the package and adds it to your project's dependencies.
|
||||
|
||||
## Supported AI Providers
|
||||
|
||||
@push.rocks/smartai supports multiple AI providers, each with its own unique capabilities:
|
||||
|
||||
### OpenAI
|
||||
- Models: GPT-4, GPT-3.5-turbo, GPT-4-vision-preview
|
||||
- Features: Chat, Streaming, Audio Generation, Vision, Document Processing
|
||||
- Configuration:
|
||||
```typescript
|
||||
openaiToken: 'your-openai-token'
|
||||
```
|
||||
|
||||
### X.AI
|
||||
- Models: Grok-2-latest
|
||||
- Features: Chat, Streaming, Document Processing
|
||||
- Configuration:
|
||||
```typescript
|
||||
xaiToken: 'your-xai-token'
|
||||
```
|
||||
|
||||
### Anthropic
|
||||
- Models: Claude-3-opus-20240229
|
||||
- Features: Chat, Streaming, Vision, Document Processing
|
||||
- Configuration:
|
||||
```typescript
|
||||
anthropicToken: 'your-anthropic-token'
|
||||
```
|
||||
|
||||
### Perplexity
|
||||
- Models: Mixtral-8x7b-instruct
|
||||
- Features: Chat, Streaming
|
||||
- Configuration:
|
||||
```typescript
|
||||
perplexityToken: 'your-perplexity-token'
|
||||
```
|
||||
|
||||
### Groq
|
||||
- Models: Llama-3.3-70b-versatile
|
||||
- Features: Chat, Streaming
|
||||
- Configuration:
|
||||
```typescript
|
||||
groqToken: 'your-groq-token'
|
||||
```
|
||||
|
||||
### Ollama
|
||||
- Models: Configurable (default: llama2, llava for vision/documents)
|
||||
- Features: Chat, Streaming, Vision, Document Processing
|
||||
- Configuration:
|
||||
```typescript
|
||||
baseUrl: 'http://localhost:11434' // Optional
|
||||
model: 'llama2' // Optional
|
||||
visionModel: 'llava' // Optional, for vision and document tasks
|
||||
```
|
||||
|
||||
## Usage
|
||||
|
||||
The `@push.rocks/smartai` package is a comprehensive solution for integrating and interacting with various AI models, designed to support operations ranging from chat interactions to audio responses. This documentation will guide you through the process of utilizing `@push.rocks/smartai` in your applications.
|
||||
|
||||
### Getting Started
|
||||
|
||||
Before you begin, ensure you have installed the package as described in the **Install** section above. Once installed, you can start integrating AI functionalities into your application.
|
||||
|
||||
### Initializing SmartAi
|
||||
|
||||
The first step is to import and initialize the `SmartAi` class with appropriate options for the AI services you plan to use:
|
||||
|
||||
```typescript
|
||||
import { SmartAi } from '@push.rocks/smartai';
|
||||
|
||||
const smartAi = new SmartAi({
|
||||
openaiToken: 'your-openai-token',
|
||||
xaiToken: 'your-xai-token',
|
||||
anthropicToken: 'your-anthropic-token',
|
||||
perplexityToken: 'your-perplexity-token',
|
||||
groqToken: 'your-groq-token',
|
||||
ollama: {
|
||||
baseUrl: 'http://localhost:11434',
|
||||
model: 'llama2'
|
||||
}
|
||||
// Initialize with your favorite providers
|
||||
const ai = new SmartAi({
|
||||
openaiToken: 'sk-...',
|
||||
anthropicToken: 'sk-ant-...'
|
||||
});
|
||||
|
||||
await smartAi.start();
|
||||
```
|
||||
await ai.start();
|
||||
|
||||
### Chat Interactions
|
||||
|
||||
#### Synchronous Chat
|
||||
|
||||
For simple question-answer interactions:
|
||||
|
||||
```typescript
|
||||
const response = await smartAi.openaiProvider.chat({
|
||||
// Same API, multiple providers
|
||||
const response = await ai.openaiProvider.chat({
|
||||
systemMessage: 'You are a helpful assistant.',
|
||||
userMessage: 'What is the capital of France?',
|
||||
messageHistory: [] // Previous messages in the conversation
|
||||
userMessage: 'Explain quantum computing in simple terms',
|
||||
messageHistory: []
|
||||
});
|
||||
|
||||
console.log(response.message);
|
||||
```
|
||||
|
||||
#### Streaming Chat
|
||||
## 📊 Provider Capabilities Matrix
|
||||
|
||||
For real-time, streaming interactions:
|
||||
Choose the right provider for your use case:
|
||||
|
||||
| Provider | Chat | Streaming | TTS | Vision | Documents | Highlights |
|
||||
|----------|:----:|:---------:|:---:|:------:|:---------:|------------|
|
||||
| **OpenAI** | ✅ | ✅ | ✅ | ✅ | ✅ | • GPT-4, DALL-E 3<br>• Industry standard<br>• Most features |
|
||||
| **Anthropic** | ✅ | ✅ | ❌ | ✅ | ✅ | • Claude 3 Opus<br>• Superior reasoning<br>• 200k context |
|
||||
| **Ollama** | ✅ | ✅ | ❌ | ✅ | ✅ | • 100% local<br>• Privacy-first<br>• No API costs |
|
||||
| **XAI** | ✅ | ✅ | ❌ | ❌ | ✅ | • Grok models<br>• Real-time data<br>• Uncensored |
|
||||
| **Perplexity** | ✅ | ✅ | ❌ | ❌ | ❌ | • Web-aware<br>• Research-focused<br>• Citations |
|
||||
| **Groq** | ✅ | ✅ | ❌ | ❌ | ❌ | • 10x faster<br>• LPU inference<br>• Low latency |
|
||||
| **Exo** | ✅ | ✅ | ❌ | ❌ | ❌ | • Distributed<br>• P2P compute<br>• Decentralized |
|
||||
|
||||
## 🎮 Core Features
|
||||
|
||||
### 💬 Universal Chat Interface
|
||||
|
||||
Works identically across all providers:
|
||||
|
||||
```typescript
|
||||
const textEncoder = new TextEncoder();
|
||||
const textDecoder = new TextDecoder();
|
||||
// Use GPT-4 for complex reasoning
|
||||
const gptResponse = await ai.openaiProvider.chat({
|
||||
systemMessage: 'You are a expert physicist.',
|
||||
userMessage: 'Explain the implications of quantum entanglement',
|
||||
messageHistory: []
|
||||
});
|
||||
|
||||
// Create input and output streams
|
||||
const { writable, readable } = new TransformStream();
|
||||
const writer = writable.getWriter();
|
||||
// Use Claude for safety-critical applications
|
||||
const claudeResponse = await ai.anthropicProvider.chat({
|
||||
systemMessage: 'You are a medical advisor.',
|
||||
userMessage: 'Review this patient data for concerns',
|
||||
messageHistory: []
|
||||
});
|
||||
|
||||
// Send a message
|
||||
const message = {
|
||||
role: 'user',
|
||||
content: 'Tell me a story about a brave knight'
|
||||
};
|
||||
// Use Groq for lightning-fast responses
|
||||
const groqResponse = await ai.groqProvider.chat({
|
||||
systemMessage: 'You are a code reviewer.',
|
||||
userMessage: 'Quick! Find the bug in this code: ...',
|
||||
messageHistory: []
|
||||
});
|
||||
```
|
||||
|
||||
writer.write(textEncoder.encode(JSON.stringify(message) + '\n'));
|
||||
### 🌊 Real-Time Streaming
|
||||
|
||||
// Process the response stream
|
||||
const stream = await smartAi.openaiProvider.chatStream(readable);
|
||||
Build responsive chat interfaces with token-by-token streaming:
|
||||
|
||||
```typescript
|
||||
// Create a chat stream
|
||||
const stream = await ai.openaiProvider.chatStream(inputStream);
|
||||
const reader = stream.getReader();
|
||||
|
||||
// Display responses as they arrive
|
||||
while (true) {
|
||||
const { done, value } = await reader.read();
|
||||
if (done) break;
|
||||
console.log('AI:', value); // Process each chunk of the response
|
||||
|
||||
// Update UI in real-time
|
||||
process.stdout.write(value);
|
||||
}
|
||||
```
|
||||
|
||||
### Audio Generation
|
||||
### 🎙️ Text-to-Speech
|
||||
|
||||
For providers that support audio generation (currently OpenAI):
|
||||
Generate natural voices with OpenAI:
|
||||
|
||||
```typescript
|
||||
const audioStream = await smartAi.openaiProvider.audio({
|
||||
message: 'Hello, this is a test of text-to-speech'
|
||||
const audioStream = await ai.openaiProvider.audio({
|
||||
message: 'Welcome to the future of AI development!'
|
||||
});
|
||||
|
||||
// Handle the audio stream (e.g., save to file or play)
|
||||
// Stream directly to speakers
|
||||
audioStream.pipe(speakerOutput);
|
||||
|
||||
// Or save to file
|
||||
audioStream.pipe(fs.createWriteStream('welcome.mp3'));
|
||||
```
|
||||
|
||||
### Document Processing
|
||||
### 👁️ Vision Analysis
|
||||
|
||||
For providers that support document processing (OpenAI, Ollama, and Anthropic):
|
||||
Understand images with multiple providers:
|
||||
|
||||
```typescript
|
||||
// Using OpenAI
|
||||
const result = await smartAi.openaiProvider.document({
|
||||
systemMessage: 'Classify the document type',
|
||||
userMessage: 'What type of document is this?',
|
||||
messageHistory: [],
|
||||
pdfDocuments: [pdfBuffer] // Uint8Array of PDF content
|
||||
const image = fs.readFileSync('product-photo.jpg');
|
||||
|
||||
// OpenAI: General purpose vision
|
||||
const gptVision = await ai.openaiProvider.vision({
|
||||
image,
|
||||
prompt: 'Describe this product and suggest marketing angles'
|
||||
});
|
||||
|
||||
// Using Ollama with llava
|
||||
const analysis = await smartAi.ollamaProvider.document({
|
||||
systemMessage: 'You are a document analysis assistant',
|
||||
userMessage: 'Extract the key information from this document',
|
||||
messageHistory: [],
|
||||
pdfDocuments: [pdfBuffer] // Uint8Array of PDF content
|
||||
// Anthropic: Detailed analysis
|
||||
const claudeVision = await ai.anthropicProvider.vision({
|
||||
image,
|
||||
prompt: 'Identify any safety concerns or defects'
|
||||
});
|
||||
|
||||
// Using Anthropic with Claude 3
|
||||
const anthropicAnalysis = await smartAi.anthropicProvider.document({
|
||||
systemMessage: 'You are a document analysis assistant',
|
||||
userMessage: 'Please analyze this document and extract key information',
|
||||
messageHistory: [],
|
||||
pdfDocuments: [pdfBuffer] // Uint8Array of PDF content
|
||||
// Ollama: Private, local analysis
|
||||
const ollamaVision = await ai.ollamaProvider.vision({
|
||||
image,
|
||||
prompt: 'Extract all text and categorize the content'
|
||||
});
|
||||
```
|
||||
|
||||
Both providers will:
|
||||
1. Convert PDF documents to images
|
||||
2. Process each page using their vision models
|
||||
3. Return a comprehensive analysis based on the system message and user query
|
||||
### 📄 Document Intelligence
|
||||
|
||||
### Vision Processing
|
||||
|
||||
For providers that support vision tasks (OpenAI, Ollama, and Anthropic):
|
||||
Extract insights from PDFs with AI:
|
||||
|
||||
```typescript
|
||||
// Using OpenAI's GPT-4 Vision
|
||||
const description = await smartAi.openaiProvider.vision({
|
||||
image: imageBuffer, // Buffer containing the image data
|
||||
prompt: 'What do you see in this image?'
|
||||
const contract = fs.readFileSync('contract.pdf');
|
||||
const invoice = fs.readFileSync('invoice.pdf');
|
||||
|
||||
// Analyze documents
|
||||
const analysis = await ai.openaiProvider.document({
|
||||
systemMessage: 'You are a legal expert.',
|
||||
userMessage: 'Compare these documents and highlight key differences',
|
||||
messageHistory: [],
|
||||
pdfDocuments: [contract, invoice]
|
||||
});
|
||||
|
||||
// Using Ollama's Llava model
|
||||
const analysis = await smartAi.ollamaProvider.vision({
|
||||
image: imageBuffer,
|
||||
prompt: 'Analyze this image in detail'
|
||||
});
|
||||
|
||||
// Using Anthropic's Claude 3
|
||||
const anthropicAnalysis = await smartAi.anthropicProvider.vision({
|
||||
image: imageBuffer,
|
||||
prompt: 'Please analyze this image and describe what you see'
|
||||
// Multi-document analysis
|
||||
const taxDocs = [form1099, w2, receipts];
|
||||
const taxAnalysis = await ai.anthropicProvider.document({
|
||||
systemMessage: 'You are a tax advisor.',
|
||||
userMessage: 'Prepare a tax summary from these documents',
|
||||
messageHistory: [],
|
||||
pdfDocuments: taxDocs
|
||||
});
|
||||
```
|
||||
|
||||
## Error Handling
|
||||
### 🔄 Persistent Conversations
|
||||
|
||||
All providers implement proper error handling. It's recommended to wrap API calls in try-catch blocks:
|
||||
Maintain context across interactions:
|
||||
|
||||
```typescript
|
||||
try {
|
||||
const response = await smartAi.openaiProvider.chat({
|
||||
systemMessage: 'You are a helpful assistant.',
|
||||
userMessage: 'Hello!',
|
||||
// Create a coding assistant conversation
|
||||
const assistant = ai.createConversation('openai');
|
||||
await assistant.setSystemMessage('You are an expert TypeScript developer.');
|
||||
|
||||
// First question
|
||||
const inputWriter = assistant.getInputStreamWriter();
|
||||
await inputWriter.write('How do I implement a singleton pattern?');
|
||||
|
||||
// Continue the conversation
|
||||
await inputWriter.write('Now show me how to make it thread-safe');
|
||||
|
||||
// The assistant remembers the entire context
|
||||
```
|
||||
|
||||
## 🚀 Real-World Examples
|
||||
|
||||
### Build a Customer Support Bot
|
||||
|
||||
```typescript
|
||||
const supportBot = new SmartAi({
|
||||
anthropicToken: process.env.ANTHROPIC_KEY // Claude for empathetic responses
|
||||
});
|
||||
|
||||
async function handleCustomerQuery(query: string, history: ChatMessage[]) {
|
||||
try {
|
||||
const response = await supportBot.anthropicProvider.chat({
|
||||
systemMessage: `You are a helpful customer support agent.
|
||||
Be empathetic, professional, and solution-oriented.`,
|
||||
userMessage: query,
|
||||
messageHistory: history
|
||||
});
|
||||
|
||||
return response.message;
|
||||
} catch (error) {
|
||||
// Fallback to another provider if needed
|
||||
return await supportBot.openaiProvider.chat({...});
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
### Create a Code Review Assistant
|
||||
|
||||
```typescript
|
||||
const codeReviewer = new SmartAi({
|
||||
groqToken: process.env.GROQ_KEY // Groq for speed
|
||||
});
|
||||
|
||||
async function reviewCode(code: string, language: string) {
|
||||
const startTime = Date.now();
|
||||
|
||||
const review = await codeReviewer.groqProvider.chat({
|
||||
systemMessage: `You are a ${language} expert. Review code for:
|
||||
- Security vulnerabilities
|
||||
- Performance issues
|
||||
- Best practices
|
||||
- Potential bugs`,
|
||||
userMessage: `Review this code:\n\n${code}`,
|
||||
messageHistory: []
|
||||
});
|
||||
} catch (error) {
|
||||
console.error('AI provider error:', error.message);
|
||||
|
||||
console.log(`Review completed in ${Date.now() - startTime}ms`);
|
||||
return review.message;
|
||||
}
|
||||
```
|
||||
|
||||
### Build a Research Assistant
|
||||
|
||||
```typescript
|
||||
const researcher = new SmartAi({
|
||||
perplexityToken: process.env.PERPLEXITY_KEY
|
||||
});
|
||||
|
||||
async function research(topic: string) {
|
||||
// Perplexity excels at web-aware research
|
||||
const findings = await researcher.perplexityProvider.chat({
|
||||
systemMessage: 'You are a research assistant. Provide factual, cited information.',
|
||||
userMessage: `Research the latest developments in ${topic}`,
|
||||
messageHistory: []
|
||||
});
|
||||
|
||||
return findings.message;
|
||||
}
|
||||
```
|
||||
|
||||
### Local AI for Sensitive Data
|
||||
|
||||
```typescript
|
||||
const localAI = new SmartAi({
|
||||
ollama: {
|
||||
baseUrl: 'http://localhost:11434',
|
||||
model: 'llama2',
|
||||
visionModel: 'llava'
|
||||
}
|
||||
});
|
||||
|
||||
// Process sensitive documents without leaving your infrastructure
|
||||
async function analyzeSensitiveDoc(pdfBuffer: Buffer) {
|
||||
const analysis = await localAI.ollamaProvider.document({
|
||||
systemMessage: 'Extract and summarize key information.',
|
||||
userMessage: 'Analyze this confidential document',
|
||||
messageHistory: [],
|
||||
pdfDocuments: [pdfBuffer]
|
||||
});
|
||||
|
||||
// Data never leaves your servers
|
||||
return analysis.message;
|
||||
}
|
||||
```
|
||||
|
||||
## ⚡ Performance Tips
|
||||
|
||||
### 1. Provider Selection Strategy
|
||||
|
||||
```typescript
|
||||
class SmartAIRouter {
|
||||
constructor(private ai: SmartAi) {}
|
||||
|
||||
async query(message: string, requirements: {
|
||||
speed?: boolean;
|
||||
accuracy?: boolean;
|
||||
cost?: boolean;
|
||||
privacy?: boolean;
|
||||
}) {
|
||||
if (requirements.privacy) {
|
||||
return this.ai.ollamaProvider.chat({...}); // Local only
|
||||
}
|
||||
if (requirements.speed) {
|
||||
return this.ai.groqProvider.chat({...}); // 10x faster
|
||||
}
|
||||
if (requirements.accuracy) {
|
||||
return this.ai.anthropicProvider.chat({...}); // Best reasoning
|
||||
}
|
||||
// Default fallback
|
||||
return this.ai.openaiProvider.chat({...});
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
### 2. Streaming for Large Responses
|
||||
|
||||
```typescript
|
||||
// Don't wait for the entire response
|
||||
async function streamResponse(userQuery: string) {
|
||||
const stream = await ai.openaiProvider.chatStream(createInputStream(userQuery));
|
||||
|
||||
// Process tokens as they arrive
|
||||
for await (const chunk of stream) {
|
||||
updateUI(chunk); // Immediate feedback
|
||||
await processChunk(chunk); // Parallel processing
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
### 3. Parallel Multi-Provider Queries
|
||||
|
||||
```typescript
|
||||
// Get the best answer from multiple AIs
|
||||
async function consensusQuery(question: string) {
|
||||
const providers = [
|
||||
ai.openaiProvider.chat({...}),
|
||||
ai.anthropicProvider.chat({...}),
|
||||
ai.perplexityProvider.chat({...})
|
||||
];
|
||||
|
||||
const responses = await Promise.all(providers);
|
||||
return synthesizeResponses(responses);
|
||||
}
|
||||
```
|
||||
|
||||
## 🛠️ Advanced Features
|
||||
|
||||
### Custom Streaming Transformations
|
||||
|
||||
```typescript
|
||||
// Add real-time translation
|
||||
const translationStream = new TransformStream({
|
||||
async transform(chunk, controller) {
|
||||
const translated = await translateChunk(chunk);
|
||||
controller.enqueue(translated);
|
||||
}
|
||||
});
|
||||
|
||||
const responseStream = await ai.openaiProvider.chatStream(input);
|
||||
const translatedStream = responseStream.pipeThrough(translationStream);
|
||||
```
|
||||
|
||||
### Error Handling & Fallbacks
|
||||
|
||||
```typescript
|
||||
class ResilientAI {
|
||||
private providers = ['openai', 'anthropic', 'groq'];
|
||||
|
||||
async query(opts: ChatOptions): Promise<ChatResponse> {
|
||||
for (const provider of this.providers) {
|
||||
try {
|
||||
return await this.ai[`${provider}Provider`].chat(opts);
|
||||
} catch (error) {
|
||||
console.warn(`${provider} failed, trying next...`);
|
||||
continue;
|
||||
}
|
||||
}
|
||||
throw new Error('All providers failed');
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
### Token Counting & Cost Management
|
||||
|
||||
```typescript
|
||||
// Track usage across providers
|
||||
class UsageTracker {
|
||||
async trackedChat(provider: string, options: ChatOptions) {
|
||||
const start = Date.now();
|
||||
const response = await ai[`${provider}Provider`].chat(options);
|
||||
|
||||
const usage = {
|
||||
provider,
|
||||
duration: Date.now() - start,
|
||||
inputTokens: estimateTokens(options),
|
||||
outputTokens: estimateTokens(response.message)
|
||||
};
|
||||
|
||||
await this.logUsage(usage);
|
||||
return response;
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
## 📦 Installation & Setup
|
||||
|
||||
### Prerequisites
|
||||
|
||||
- Node.js 16+
|
||||
- TypeScript 4.5+
|
||||
- API keys for your chosen providers
|
||||
|
||||
### Environment Setup
|
||||
|
||||
```bash
|
||||
# Install
|
||||
npm install @push.rocks/smartai
|
||||
|
||||
# Set up environment variables
|
||||
export OPENAI_API_KEY=sk-...
|
||||
export ANTHROPIC_API_KEY=sk-ant-...
|
||||
export PERPLEXITY_API_KEY=pplx-...
|
||||
# ... etc
|
||||
```
|
||||
|
||||
### TypeScript Configuration
|
||||
|
||||
```json
|
||||
{
|
||||
"compilerOptions": {
|
||||
"target": "ES2022",
|
||||
"module": "NodeNext",
|
||||
"lib": ["ES2022"],
|
||||
"strict": true,
|
||||
"esModuleInterop": true,
|
||||
"skipLibCheck": true
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
## 🎯 Choosing the Right Provider
|
||||
|
||||
| Use Case | Recommended Provider | Why |
|
||||
|----------|---------------------|-----|
|
||||
| **General Purpose** | OpenAI | Most features, stable, well-documented |
|
||||
| **Complex Reasoning** | Anthropic | Superior logical thinking, safer outputs |
|
||||
| **Research & Facts** | Perplexity | Web-aware, provides citations |
|
||||
| **Speed Critical** | Groq | 10x faster inference, sub-second responses |
|
||||
| **Privacy Critical** | Ollama | 100% local, no data leaves your servers |
|
||||
| **Real-time Data** | XAI | Access to current information |
|
||||
| **Cost Sensitive** | Ollama/Exo | Free (local) or distributed compute |
|
||||
|
||||
## 📈 Roadmap
|
||||
|
||||
- [ ] Streaming function calls
|
||||
- [ ] Image generation support
|
||||
- [ ] Voice input processing
|
||||
- [ ] Fine-tuning integration
|
||||
- [ ] Embedding support
|
||||
- [ ] Agent framework
|
||||
- [ ] More providers (Cohere, AI21, etc.)
|
||||
|
||||
## License and Legal Information
|
||||
|
||||
This repository contains open-source code that is licensed under the MIT License. A copy of the MIT License can be found in the [license](license) file within this repository.
|
||||
|
177
readme.research.md
Normal file
177
readme.research.md
Normal file
@@ -0,0 +1,177 @@
|
||||
# SmartAI Research API Implementation
|
||||
|
||||
This document describes the new research capabilities added to the SmartAI library, enabling web search and deep research features for OpenAI and Anthropic providers.
|
||||
|
||||
## Features Added
|
||||
|
||||
### 1. Research Method Interface
|
||||
|
||||
Added a new `research()` method to the `MultiModalModel` abstract class with the following interfaces:
|
||||
|
||||
```typescript
|
||||
interface ResearchOptions {
|
||||
query: string;
|
||||
searchDepth?: 'basic' | 'advanced' | 'deep';
|
||||
maxSources?: number;
|
||||
includeWebSearch?: boolean;
|
||||
background?: boolean;
|
||||
}
|
||||
|
||||
interface ResearchResponse {
|
||||
answer: string;
|
||||
sources: Array<{
|
||||
url: string;
|
||||
title: string;
|
||||
snippet: string;
|
||||
}>;
|
||||
searchQueries?: string[];
|
||||
metadata?: any;
|
||||
}
|
||||
```
|
||||
|
||||
### 2. OpenAI Provider Research Implementation
|
||||
|
||||
The OpenAI provider now supports:
|
||||
- **Deep Research API** with models:
|
||||
- `o3-deep-research-2025-06-26` (comprehensive analysis)
|
||||
- `o4-mini-deep-research-2025-06-26` (lightweight, faster)
|
||||
- **Web Search** for standard models (gpt-5, o3, o3-pro, o4-mini)
|
||||
- **Background processing** for async deep research tasks
|
||||
|
||||
### 3. Anthropic Provider Research Implementation
|
||||
|
||||
The Anthropic provider now supports:
|
||||
- **Web Search API** with Claude models
|
||||
- **Domain filtering** (allow/block lists)
|
||||
- **Progressive searches** for comprehensive research
|
||||
- **Citation extraction** from responses
|
||||
|
||||
### 4. Perplexity Provider Research Implementation
|
||||
|
||||
The Perplexity provider implements research using:
|
||||
- **Sonar models** for standard searches
|
||||
- **Sonar Pro** for deep research
|
||||
- Built-in citation support
|
||||
|
||||
### 5. Other Providers
|
||||
|
||||
Added research method stubs to:
|
||||
- Groq Provider
|
||||
- Ollama Provider
|
||||
- xAI Provider
|
||||
- Exo Provider
|
||||
|
||||
These providers throw a "not yet supported" error when research is called, maintaining interface compatibility.
|
||||
|
||||
## Usage Examples
|
||||
|
||||
### Basic Research with OpenAI
|
||||
|
||||
```typescript
|
||||
import { OpenAiProvider } from '@push.rocks/smartai';
|
||||
|
||||
const openai = new OpenAiProvider({
|
||||
openaiToken: 'your-api-key',
|
||||
researchModel: 'o4-mini-deep-research-2025-06-26'
|
||||
});
|
||||
|
||||
await openai.start();
|
||||
|
||||
const result = await openai.research({
|
||||
query: 'What are the latest developments in quantum computing?',
|
||||
searchDepth: 'basic',
|
||||
includeWebSearch: true
|
||||
});
|
||||
|
||||
console.log(result.answer);
|
||||
console.log('Sources:', result.sources);
|
||||
```
|
||||
|
||||
### Deep Research with OpenAI
|
||||
|
||||
```typescript
|
||||
const deepResult = await openai.research({
|
||||
query: 'Comprehensive analysis of climate change mitigation strategies',
|
||||
searchDepth: 'deep',
|
||||
background: true
|
||||
});
|
||||
```
|
||||
|
||||
### Research with Anthropic
|
||||
|
||||
```typescript
|
||||
import { AnthropicProvider } from '@push.rocks/smartai';
|
||||
|
||||
const anthropic = new AnthropicProvider({
|
||||
anthropicToken: 'your-api-key',
|
||||
enableWebSearch: true,
|
||||
searchDomainAllowList: ['nature.com', 'science.org']
|
||||
});
|
||||
|
||||
await anthropic.start();
|
||||
|
||||
const result = await anthropic.research({
|
||||
query: 'Latest breakthroughs in CRISPR gene editing',
|
||||
searchDepth: 'advanced'
|
||||
});
|
||||
```
|
||||
|
||||
### Research with Perplexity
|
||||
|
||||
```typescript
|
||||
import { PerplexityProvider } from '@push.rocks/smartai';
|
||||
|
||||
const perplexity = new PerplexityProvider({
|
||||
perplexityToken: 'your-api-key'
|
||||
});
|
||||
|
||||
const result = await perplexity.research({
|
||||
query: 'Current state of autonomous vehicle technology',
|
||||
searchDepth: 'deep' // Uses Sonar Pro model
|
||||
});
|
||||
```
|
||||
|
||||
## Configuration Options
|
||||
|
||||
### OpenAI Provider
|
||||
- `researchModel`: Specify deep research model (default: `o4-mini-deep-research-2025-06-26`)
|
||||
- `enableWebSearch`: Enable web search for standard models
|
||||
|
||||
### Anthropic Provider
|
||||
- `enableWebSearch`: Enable web search capabilities
|
||||
- `searchDomainAllowList`: Array of allowed domains
|
||||
- `searchDomainBlockList`: Array of blocked domains
|
||||
|
||||
## API Pricing
|
||||
|
||||
- **OpenAI Deep Research**: $10 per 1,000 calls
|
||||
- **Anthropic Web Search**: $10 per 1,000 searches + standard token costs
|
||||
- **Perplexity Sonar**: $5 per 1,000 searches (Sonar Pro)
|
||||
|
||||
## Testing
|
||||
|
||||
Run the test suite:
|
||||
|
||||
```bash
|
||||
pnpm test test/test.research.ts
|
||||
```
|
||||
|
||||
All providers have been tested to ensure:
|
||||
- Research methods are properly exposed
|
||||
- Interfaces are correctly typed
|
||||
- Unsupported providers throw appropriate errors
|
||||
|
||||
## Next Steps
|
||||
|
||||
Future enhancements could include:
|
||||
1. Implementing Google Gemini Grounding API support
|
||||
2. Adding Brave Search API integration
|
||||
3. Implementing retry logic for rate limits
|
||||
4. Adding caching for repeated queries
|
||||
5. Supporting batch research operations
|
||||
|
||||
## Notes
|
||||
|
||||
- The implementation maintains backward compatibility
|
||||
- All existing methods continue to work unchanged
|
||||
- Research capabilities are optional and don't affect existing functionality
|
160
test/test.anthropic.ts
Normal file
160
test/test.anthropic.ts
Normal file
@@ -0,0 +1,160 @@
|
||||
import { expect, tap } from '@push.rocks/tapbundle';
|
||||
import * as qenv from '@push.rocks/qenv';
|
||||
import * as smartrequest from '@push.rocks/smartrequest';
|
||||
import * as smartfile from '@push.rocks/smartfile';
|
||||
|
||||
const testQenv = new qenv.Qenv('./', './.nogit/');
|
||||
|
||||
import * as smartai from '../ts/index.js';
|
||||
|
||||
let anthropicProvider: smartai.AnthropicProvider;
|
||||
|
||||
tap.test('Anthropic: should create and start Anthropic provider', async () => {
|
||||
anthropicProvider = new smartai.AnthropicProvider({
|
||||
anthropicToken: await testQenv.getEnvVarOnDemand('ANTHROPIC_TOKEN'),
|
||||
});
|
||||
await anthropicProvider.start();
|
||||
expect(anthropicProvider).toBeInstanceOf(smartai.AnthropicProvider);
|
||||
});
|
||||
|
||||
tap.test('Anthropic: should create chat response', async () => {
|
||||
const userMessage = 'What is the capital of France? Answer in one word.';
|
||||
const response = await anthropicProvider.chat({
|
||||
systemMessage: 'You are a helpful assistant. Be concise.',
|
||||
userMessage: userMessage,
|
||||
messageHistory: [],
|
||||
});
|
||||
console.log(`Anthropic Chat - User: ${userMessage}`);
|
||||
console.log(`Anthropic Chat - Response: ${response.message}`);
|
||||
|
||||
expect(response.role).toEqual('assistant');
|
||||
expect(response.message).toBeTruthy();
|
||||
expect(response.message.toLowerCase()).toInclude('paris');
|
||||
});
|
||||
|
||||
tap.test('Anthropic: should handle message history', async () => {
|
||||
const messageHistory: smartai.ChatMessage[] = [
|
||||
{ role: 'user', content: 'My name is Claude Test' },
|
||||
{ role: 'assistant', content: 'Nice to meet you, Claude Test!' }
|
||||
];
|
||||
|
||||
const response = await anthropicProvider.chat({
|
||||
systemMessage: 'You are a helpful assistant with good memory.',
|
||||
userMessage: 'What is my name?',
|
||||
messageHistory: messageHistory,
|
||||
});
|
||||
|
||||
console.log(`Anthropic Memory Test - Response: ${response.message}`);
|
||||
expect(response.message.toLowerCase()).toInclude('claude test');
|
||||
});
|
||||
|
||||
tap.test('Anthropic: should process vision tasks', async () => {
|
||||
// Create a simple test image (1x1 red pixel JPEG)
|
||||
// This is a valid 1x1 JPEG image
|
||||
const redPixelBase64 = '/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAABAAEDASIAAhEBAxEB/8QAFQABAQAAAAAAAAAAAAAAAAAAAAv/xAAUEAEAAAAAAAAAAAAAAAAAAAAA/8QAFQEBAQAAAAAAAAAAAAAAAAAAAAX/xAAUEQEAAAAAAAAAAAAAAAAAAAAA/9oADAMBAAIRAxEAPwCwAA8A/9k=';
|
||||
const imageBuffer = Buffer.from(redPixelBase64, 'base64');
|
||||
|
||||
const result = await anthropicProvider.vision({
|
||||
image: imageBuffer,
|
||||
prompt: 'What color is this image? Answer with just the color name.'
|
||||
});
|
||||
|
||||
console.log(`Anthropic Vision - Result: ${result}`);
|
||||
expect(result).toBeTruthy();
|
||||
expect(typeof result).toEqual('string');
|
||||
});
|
||||
|
||||
tap.test('Anthropic: should document a PDF', async () => {
|
||||
const pdfUrl = 'https://www.w3.org/WAI/ER/tests/xhtml/testfiles/resources/pdf/dummy.pdf';
|
||||
const pdfResponse = await smartrequest.SmartRequest.create()
|
||||
.url(pdfUrl)
|
||||
.get();
|
||||
|
||||
const result = await anthropicProvider.document({
|
||||
systemMessage: 'Classify the document. Only the following answers are allowed: "invoice", "bank account statement", "contract", "test document", "other". The answer should only contain the keyword for machine use.',
|
||||
userMessage: 'Classify this document.',
|
||||
messageHistory: [],
|
||||
pdfDocuments: [Buffer.from(await pdfResponse.arrayBuffer())],
|
||||
});
|
||||
|
||||
console.log(`Anthropic Document - Result:`, result);
|
||||
expect(result).toBeTruthy();
|
||||
expect(result.message).toBeTruthy();
|
||||
});
|
||||
|
||||
tap.test('Anthropic: should handle complex document analysis', async () => {
|
||||
// Test with the demo PDF if it exists
|
||||
const pdfPath = './.nogit/demo_without_textlayer.pdf';
|
||||
let pdfBuffer: Uint8Array;
|
||||
|
||||
try {
|
||||
pdfBuffer = await smartfile.fs.toBuffer(pdfPath);
|
||||
} catch (error) {
|
||||
// If the file doesn't exist, use the dummy PDF
|
||||
console.log('Demo PDF not found, using dummy PDF instead');
|
||||
const pdfUrl = 'https://www.w3.org/WAI/ER/tests/xhtml/testfiles/resources/pdf/dummy.pdf';
|
||||
const pdfResponse = await smartrequest.SmartRequest.create()
|
||||
.url(pdfUrl)
|
||||
.get();
|
||||
pdfBuffer = Buffer.from(await pdfResponse.arrayBuffer());
|
||||
}
|
||||
|
||||
const result = await anthropicProvider.document({
|
||||
systemMessage: `
|
||||
Analyze this document and provide a JSON response with the following structure:
|
||||
{
|
||||
"documentType": "string",
|
||||
"hasText": boolean,
|
||||
"summary": "string"
|
||||
}
|
||||
`,
|
||||
userMessage: 'Analyze this document.',
|
||||
messageHistory: [],
|
||||
pdfDocuments: [pdfBuffer],
|
||||
});
|
||||
|
||||
console.log(`Anthropic Complex Document Analysis:`, result);
|
||||
expect(result).toBeTruthy();
|
||||
expect(result.message).toBeTruthy();
|
||||
});
|
||||
|
||||
tap.test('Anthropic: should handle errors gracefully', async () => {
|
||||
// Test with invalid message (empty)
|
||||
let errorCaught = false;
|
||||
|
||||
try {
|
||||
await anthropicProvider.chat({
|
||||
systemMessage: '',
|
||||
userMessage: '',
|
||||
messageHistory: [],
|
||||
});
|
||||
} catch (error) {
|
||||
errorCaught = true;
|
||||
console.log('Expected error caught:', error.message);
|
||||
}
|
||||
|
||||
// Anthropic might handle empty messages, so we don't assert error
|
||||
console.log(`Error handling test - Error caught: ${errorCaught}`);
|
||||
});
|
||||
|
||||
tap.test('Anthropic: audio should throw not supported error', async () => {
|
||||
let errorCaught = false;
|
||||
|
||||
try {
|
||||
await anthropicProvider.audio({
|
||||
message: 'This should fail'
|
||||
});
|
||||
} catch (error) {
|
||||
errorCaught = true;
|
||||
expect(error.message).toInclude('not yet supported');
|
||||
}
|
||||
|
||||
expect(errorCaught).toBeTrue();
|
||||
});
|
||||
|
||||
tap.test('Anthropic: should stop the provider', async () => {
|
||||
await anthropicProvider.stop();
|
||||
console.log('Anthropic provider stopped successfully');
|
||||
});
|
||||
|
||||
export default tap.start();
|
93
test/test.basic.ts
Normal file
93
test/test.basic.ts
Normal file
@@ -0,0 +1,93 @@
|
||||
import { tap, expect } from '@push.rocks/tapbundle';
|
||||
import * as smartai from '../ts/index.js';
|
||||
|
||||
// Basic instantiation tests that don't require API tokens
|
||||
// These tests can run in CI/CD environments without credentials
|
||||
|
||||
tap.test('Basic: should create SmartAi instance', async () => {
|
||||
const testSmartai = new smartai.SmartAi({
|
||||
openaiToken: 'dummy-token-for-testing'
|
||||
});
|
||||
expect(testSmartai).toBeInstanceOf(smartai.SmartAi);
|
||||
// Provider is only created after calling start()
|
||||
expect(testSmartai.options.openaiToken).toEqual('dummy-token-for-testing');
|
||||
});
|
||||
|
||||
tap.test('Basic: should instantiate OpenAI provider', async () => {
|
||||
const openaiProvider = new smartai.OpenAiProvider({
|
||||
openaiToken: 'dummy-token'
|
||||
});
|
||||
expect(openaiProvider).toBeInstanceOf(smartai.OpenAiProvider);
|
||||
expect(typeof openaiProvider.chat).toEqual('function');
|
||||
expect(typeof openaiProvider.audio).toEqual('function');
|
||||
expect(typeof openaiProvider.vision).toEqual('function');
|
||||
expect(typeof openaiProvider.document).toEqual('function');
|
||||
expect(typeof openaiProvider.research).toEqual('function');
|
||||
});
|
||||
|
||||
tap.test('Basic: should instantiate Anthropic provider', async () => {
|
||||
const anthropicProvider = new smartai.AnthropicProvider({
|
||||
anthropicToken: 'dummy-token'
|
||||
});
|
||||
expect(anthropicProvider).toBeInstanceOf(smartai.AnthropicProvider);
|
||||
expect(typeof anthropicProvider.chat).toEqual('function');
|
||||
expect(typeof anthropicProvider.audio).toEqual('function');
|
||||
expect(typeof anthropicProvider.vision).toEqual('function');
|
||||
expect(typeof anthropicProvider.document).toEqual('function');
|
||||
expect(typeof anthropicProvider.research).toEqual('function');
|
||||
});
|
||||
|
||||
tap.test('Basic: should instantiate Perplexity provider', async () => {
|
||||
const perplexityProvider = new smartai.PerplexityProvider({
|
||||
perplexityToken: 'dummy-token'
|
||||
});
|
||||
expect(perplexityProvider).toBeInstanceOf(smartai.PerplexityProvider);
|
||||
expect(typeof perplexityProvider.chat).toEqual('function');
|
||||
expect(typeof perplexityProvider.research).toEqual('function');
|
||||
});
|
||||
|
||||
tap.test('Basic: should instantiate Groq provider', async () => {
|
||||
const groqProvider = new smartai.GroqProvider({
|
||||
groqToken: 'dummy-token'
|
||||
});
|
||||
expect(groqProvider).toBeInstanceOf(smartai.GroqProvider);
|
||||
expect(typeof groqProvider.chat).toEqual('function');
|
||||
expect(typeof groqProvider.research).toEqual('function');
|
||||
});
|
||||
|
||||
tap.test('Basic: should instantiate Ollama provider', async () => {
|
||||
const ollamaProvider = new smartai.OllamaProvider({
|
||||
baseUrl: 'http://localhost:11434'
|
||||
});
|
||||
expect(ollamaProvider).toBeInstanceOf(smartai.OllamaProvider);
|
||||
expect(typeof ollamaProvider.chat).toEqual('function');
|
||||
expect(typeof ollamaProvider.research).toEqual('function');
|
||||
});
|
||||
|
||||
tap.test('Basic: should instantiate xAI provider', async () => {
|
||||
const xaiProvider = new smartai.XAIProvider({
|
||||
xaiToken: 'dummy-token'
|
||||
});
|
||||
expect(xaiProvider).toBeInstanceOf(smartai.XAIProvider);
|
||||
expect(typeof xaiProvider.chat).toEqual('function');
|
||||
expect(typeof xaiProvider.research).toEqual('function');
|
||||
});
|
||||
|
||||
tap.test('Basic: should instantiate Exo provider', async () => {
|
||||
const exoProvider = new smartai.ExoProvider({
|
||||
exoBaseUrl: 'http://localhost:8000'
|
||||
});
|
||||
expect(exoProvider).toBeInstanceOf(smartai.ExoProvider);
|
||||
expect(typeof exoProvider.chat).toEqual('function');
|
||||
expect(typeof exoProvider.research).toEqual('function');
|
||||
});
|
||||
|
||||
tap.test('Basic: all providers should extend MultiModalModel', async () => {
|
||||
const openai = new smartai.OpenAiProvider({ openaiToken: 'test' });
|
||||
const anthropic = new smartai.AnthropicProvider({ anthropicToken: 'test' });
|
||||
|
||||
expect(openai).toBeInstanceOf(smartai.MultiModalModel);
|
||||
expect(anthropic).toBeInstanceOf(smartai.MultiModalModel);
|
||||
});
|
||||
|
||||
export default tap.start();
|
140
test/test.interfaces.ts
Normal file
140
test/test.interfaces.ts
Normal file
@@ -0,0 +1,140 @@
|
||||
import { tap, expect } from '@push.rocks/tapbundle';
|
||||
import * as smartai from '../ts/index.js';
|
||||
|
||||
// Test interface exports and type checking
|
||||
// These tests verify that all interfaces are properly exported and usable
|
||||
|
||||
tap.test('Interfaces: ResearchOptions should be properly typed', async () => {
|
||||
const testOptions: smartai.ResearchOptions = {
|
||||
query: 'test query',
|
||||
searchDepth: 'basic',
|
||||
maxSources: 10,
|
||||
includeWebSearch: true,
|
||||
background: false
|
||||
};
|
||||
|
||||
expect(testOptions).toBeInstanceOf(Object);
|
||||
expect(testOptions.query).toEqual('test query');
|
||||
expect(testOptions.searchDepth).toEqual('basic');
|
||||
});
|
||||
|
||||
tap.test('Interfaces: ResearchResponse should be properly typed', async () => {
|
||||
const testResponse: smartai.ResearchResponse = {
|
||||
answer: 'test answer',
|
||||
sources: [
|
||||
{
|
||||
url: 'https://example.com',
|
||||
title: 'Example Source',
|
||||
snippet: 'This is a snippet'
|
||||
}
|
||||
],
|
||||
searchQueries: ['query1', 'query2'],
|
||||
metadata: {
|
||||
model: 'test-model',
|
||||
tokensUsed: 100
|
||||
}
|
||||
};
|
||||
|
||||
expect(testResponse).toBeInstanceOf(Object);
|
||||
expect(testResponse.answer).toEqual('test answer');
|
||||
expect(testResponse.sources).toBeArray();
|
||||
expect(testResponse.sources[0].url).toEqual('https://example.com');
|
||||
});
|
||||
|
||||
tap.test('Interfaces: ChatOptions should be properly typed', async () => {
|
||||
const testChatOptions: smartai.ChatOptions = {
|
||||
systemMessage: 'You are a helpful assistant',
|
||||
userMessage: 'Hello',
|
||||
messageHistory: [
|
||||
{ role: 'user', content: 'Previous message' },
|
||||
{ role: 'assistant', content: 'Previous response' }
|
||||
]
|
||||
};
|
||||
|
||||
expect(testChatOptions).toBeInstanceOf(Object);
|
||||
expect(testChatOptions.systemMessage).toBeTruthy();
|
||||
expect(testChatOptions.messageHistory).toBeArray();
|
||||
});
|
||||
|
||||
tap.test('Interfaces: ChatResponse should be properly typed', async () => {
|
||||
const testChatResponse: smartai.ChatResponse = {
|
||||
role: 'assistant',
|
||||
message: 'This is a response'
|
||||
};
|
||||
|
||||
expect(testChatResponse).toBeInstanceOf(Object);
|
||||
expect(testChatResponse.role).toEqual('assistant');
|
||||
expect(testChatResponse.message).toBeTruthy();
|
||||
});
|
||||
|
||||
tap.test('Interfaces: ChatMessage should be properly typed', async () => {
|
||||
const testMessage: smartai.ChatMessage = {
|
||||
role: 'user',
|
||||
content: 'Test message'
|
||||
};
|
||||
|
||||
expect(testMessage).toBeInstanceOf(Object);
|
||||
expect(testMessage.role).toBeOneOf(['user', 'assistant', 'system']);
|
||||
expect(testMessage.content).toBeTruthy();
|
||||
});
|
||||
|
||||
tap.test('Interfaces: Provider options should be properly typed', async () => {
|
||||
// OpenAI options
|
||||
const openaiOptions: smartai.IOpenaiProviderOptions = {
|
||||
openaiToken: 'test-token',
|
||||
chatModel: 'gpt-5-mini',
|
||||
audioModel: 'tts-1-hd',
|
||||
visionModel: '04-mini',
|
||||
researchModel: 'o4-mini-deep-research-2025-06-26',
|
||||
enableWebSearch: true
|
||||
};
|
||||
|
||||
expect(openaiOptions).toBeInstanceOf(Object);
|
||||
expect(openaiOptions.openaiToken).toBeTruthy();
|
||||
|
||||
// Anthropic options
|
||||
const anthropicOptions: smartai.IAnthropicProviderOptions = {
|
||||
anthropicToken: 'test-token',
|
||||
enableWebSearch: true,
|
||||
searchDomainAllowList: ['example.com'],
|
||||
searchDomainBlockList: ['blocked.com']
|
||||
};
|
||||
|
||||
expect(anthropicOptions).toBeInstanceOf(Object);
|
||||
expect(anthropicOptions.anthropicToken).toBeTruthy();
|
||||
});
|
||||
|
||||
tap.test('Interfaces: Search depth values should be valid', async () => {
|
||||
const validDepths: smartai.ResearchOptions['searchDepth'][] = ['basic', 'advanced', 'deep'];
|
||||
|
||||
for (const depth of validDepths) {
|
||||
const options: smartai.ResearchOptions = {
|
||||
query: 'test',
|
||||
searchDepth: depth
|
||||
};
|
||||
expect(options.searchDepth).toBeOneOf(['basic', 'advanced', 'deep', undefined]);
|
||||
}
|
||||
});
|
||||
|
||||
tap.test('Interfaces: Optional properties should work correctly', async () => {
|
||||
// Minimal ResearchOptions
|
||||
const minimalOptions: smartai.ResearchOptions = {
|
||||
query: 'test query'
|
||||
};
|
||||
|
||||
expect(minimalOptions.query).toBeTruthy();
|
||||
expect(minimalOptions.searchDepth).toBeUndefined();
|
||||
expect(minimalOptions.maxSources).toBeUndefined();
|
||||
|
||||
// Minimal ChatOptions
|
||||
const minimalChat: smartai.ChatOptions = {
|
||||
systemMessage: 'system',
|
||||
userMessage: 'user',
|
||||
messageHistory: []
|
||||
};
|
||||
|
||||
expect(minimalChat.messageHistory).toBeArray();
|
||||
expect(minimalChat.messageHistory.length).toEqual(0);
|
||||
});
|
||||
|
||||
export default tap.start();
|
@@ -1,4 +1,4 @@
|
||||
import { expect, expectAsync, tap } from '@push.rocks/tapbundle';
|
||||
import { expect, tap } from '@push.rocks/tapbundle';
|
||||
import * as qenv from '@push.rocks/qenv';
|
||||
import * as smartrequest from '@push.rocks/smartrequest';
|
||||
import * as smartfile from '@push.rocks/smartfile';
|
||||
@@ -9,38 +9,39 @@ import * as smartai from '../ts/index.js';
|
||||
|
||||
let testSmartai: smartai.SmartAi;
|
||||
|
||||
tap.test('should create a smartai instance', async () => {
|
||||
tap.test('OpenAI: should create a smartai instance with OpenAI provider', async () => {
|
||||
testSmartai = new smartai.SmartAi({
|
||||
openaiToken: await testQenv.getEnvVarOnDemand('OPENAI_TOKEN'),
|
||||
});
|
||||
await testSmartai.start();
|
||||
});
|
||||
|
||||
tap.test('should create chat response with openai', async () => {
|
||||
tap.test('OpenAI: should create chat response', async () => {
|
||||
const userMessage = 'How are you?';
|
||||
const response = await testSmartai.openaiProvider.chat({
|
||||
systemMessage: 'Hello',
|
||||
userMessage: userMessage,
|
||||
messageHistory: [
|
||||
],
|
||||
messageHistory: [],
|
||||
});
|
||||
console.log(`userMessage: ${userMessage}`);
|
||||
console.log(response.message);
|
||||
});
|
||||
|
||||
tap.test('should document a pdf', async () => {
|
||||
tap.test('OpenAI: should document a pdf', async () => {
|
||||
const pdfUrl = 'https://www.w3.org/WAI/ER/tests/xhtml/testfiles/resources/pdf/dummy.pdf';
|
||||
const pdfResponse = await smartrequest.getBinary(pdfUrl);
|
||||
const pdfResponse = await smartrequest.SmartRequest.create()
|
||||
.url(pdfUrl)
|
||||
.get();
|
||||
const result = await testSmartai.openaiProvider.document({
|
||||
systemMessage: 'Classify the document. Only the following answers are allowed: "invoice", "bank account statement", "contract", "other". The answer should only contain the keyword for machine use.',
|
||||
userMessage: "Classify the document.",
|
||||
messageHistory: [],
|
||||
pdfDocuments: [pdfResponse.body],
|
||||
pdfDocuments: [Buffer.from(await pdfResponse.arrayBuffer())],
|
||||
});
|
||||
console.log(result);
|
||||
});
|
||||
|
||||
tap.test('should recognize companies in a pdf', async () => {
|
||||
tap.test('OpenAI: should recognize companies in a pdf', async () => {
|
||||
const pdfBuffer = await smartfile.fs.toBuffer('./.nogit/demo_without_textlayer.pdf');
|
||||
const result = await testSmartai.openaiProvider.document({
|
||||
systemMessage: `
|
||||
@@ -55,7 +56,7 @@ tap.test('should recognize companies in a pdf', async () => {
|
||||
address: string;
|
||||
city: string;
|
||||
country: string;
|
||||
EU: boolean; // wether the entity is within EU
|
||||
EU: boolean; // whether the entity is within EU
|
||||
};
|
||||
entityReceiver: {
|
||||
type: 'official state entity' | 'company' | 'person';
|
||||
@@ -63,7 +64,7 @@ tap.test('should recognize companies in a pdf', async () => {
|
||||
address: string;
|
||||
city: string;
|
||||
country: string;
|
||||
EU: boolean; // wether the entity is within EU
|
||||
EU: boolean; // whether the entity is within EU
|
||||
};
|
||||
date: string; // the date of the document as YYYY-MM-DD
|
||||
title: string; // a short title, suitable for a filename
|
||||
@@ -75,9 +76,26 @@ tap.test('should recognize companies in a pdf', async () => {
|
||||
pdfDocuments: [pdfBuffer],
|
||||
});
|
||||
console.log(result);
|
||||
})
|
||||
});
|
||||
|
||||
tap.test('should stop the smartai instance', async () => {
|
||||
tap.test('OpenAI: should create audio response', async () => {
|
||||
// Call the audio method with a sample message.
|
||||
const audioStream = await testSmartai.openaiProvider.audio({
|
||||
message: 'This is a test of audio generation.',
|
||||
});
|
||||
// Read all chunks from the stream.
|
||||
const chunks: Uint8Array[] = [];
|
||||
for await (const chunk of audioStream) {
|
||||
chunks.push(chunk as Uint8Array);
|
||||
}
|
||||
const audioBuffer = Buffer.concat(chunks);
|
||||
await smartfile.fs.toFs(audioBuffer, './.nogit/testoutput.mp3');
|
||||
console.log(`Audio Buffer length: ${audioBuffer.length}`);
|
||||
// Assert that the resulting buffer is not empty.
|
||||
expect(audioBuffer.length).toBeGreaterThan(0);
|
||||
});
|
||||
|
||||
tap.test('OpenAI: should stop the smartai instance', async () => {
|
||||
await testSmartai.stop();
|
||||
});
|
||||
|
173
test/test.research.anthropic.ts
Normal file
173
test/test.research.anthropic.ts
Normal file
@@ -0,0 +1,173 @@
|
||||
import { expect, tap } from '@push.rocks/tapbundle';
|
||||
import * as qenv from '@push.rocks/qenv';
|
||||
import * as smartai from '../ts/index.js';
|
||||
|
||||
const testQenv = new qenv.Qenv('./', './.nogit/');
|
||||
|
||||
let anthropicProvider: smartai.AnthropicProvider;
|
||||
|
||||
tap.test('Anthropic Research: should initialize provider with web search', async () => {
|
||||
anthropicProvider = new smartai.AnthropicProvider({
|
||||
anthropicToken: await testQenv.getEnvVarOnDemand('ANTHROPIC_TOKEN'),
|
||||
enableWebSearch: true
|
||||
});
|
||||
|
||||
await anthropicProvider.start();
|
||||
expect(anthropicProvider).toBeInstanceOf(smartai.AnthropicProvider);
|
||||
expect(typeof anthropicProvider.research).toEqual('function');
|
||||
});
|
||||
|
||||
tap.test('Anthropic Research: should perform basic research query', async () => {
|
||||
const result = await anthropicProvider.research({
|
||||
query: 'What is machine learning and its main applications?',
|
||||
searchDepth: 'basic'
|
||||
});
|
||||
|
||||
console.log('Anthropic Basic Research:');
|
||||
console.log('- Answer length:', result.answer.length);
|
||||
console.log('- Sources found:', result.sources.length);
|
||||
console.log('- First 200 chars:', result.answer.substring(0, 200));
|
||||
|
||||
expect(result).toBeTruthy();
|
||||
expect(result.answer).toBeTruthy();
|
||||
expect(result.answer.toLowerCase()).toInclude('machine learning');
|
||||
expect(result.sources).toBeArray();
|
||||
expect(result.metadata).toBeTruthy();
|
||||
});
|
||||
|
||||
tap.test('Anthropic Research: should perform research with web search', async () => {
|
||||
const result = await anthropicProvider.research({
|
||||
query: 'What are the latest developments in renewable energy technology?',
|
||||
searchDepth: 'advanced',
|
||||
includeWebSearch: true,
|
||||
maxSources: 5
|
||||
});
|
||||
|
||||
console.log('Anthropic Web Search Research:');
|
||||
console.log('- Answer length:', result.answer.length);
|
||||
console.log('- Sources:', result.sources.length);
|
||||
if (result.searchQueries) {
|
||||
console.log('- Search queries:', result.searchQueries);
|
||||
}
|
||||
|
||||
expect(result.answer).toBeTruthy();
|
||||
expect(result.answer.toLowerCase()).toInclude('renewable');
|
||||
|
||||
// Check if sources were extracted
|
||||
if (result.sources.length > 0) {
|
||||
console.log('- Example source:', result.sources[0]);
|
||||
expect(result.sources[0]).toHaveProperty('url');
|
||||
}
|
||||
});
|
||||
|
||||
tap.test('Anthropic Research: should handle deep research queries', async () => {
|
||||
const result = await anthropicProvider.research({
|
||||
query: 'Explain the differences between REST and GraphQL APIs',
|
||||
searchDepth: 'deep'
|
||||
});
|
||||
|
||||
console.log('Anthropic Deep Research:');
|
||||
console.log('- Answer length:', result.answer.length);
|
||||
console.log('- Token usage:', result.metadata?.tokensUsed);
|
||||
|
||||
expect(result.answer).toBeTruthy();
|
||||
expect(result.answer.length).toBeGreaterThan(300);
|
||||
expect(result.answer.toLowerCase()).toInclude('rest');
|
||||
expect(result.answer.toLowerCase()).toInclude('graphql');
|
||||
});
|
||||
|
||||
tap.test('Anthropic Research: should extract citations from response', async () => {
|
||||
const result = await anthropicProvider.research({
|
||||
query: 'What is Docker and how does containerization work?',
|
||||
searchDepth: 'basic',
|
||||
maxSources: 3
|
||||
});
|
||||
|
||||
console.log('Anthropic Citation Extraction:');
|
||||
console.log('- Sources found:', result.sources.length);
|
||||
console.log('- Answer includes Docker:', result.answer.toLowerCase().includes('docker'));
|
||||
|
||||
expect(result.answer).toInclude('Docker');
|
||||
|
||||
// Check for URL extraction (both markdown and plain URLs)
|
||||
const hasUrls = result.answer.includes('http') || result.sources.length > 0;
|
||||
console.log('- Contains URLs or sources:', hasUrls);
|
||||
});
|
||||
|
||||
tap.test('Anthropic Research: should use domain filtering when configured', async () => {
|
||||
// Create a new provider with domain restrictions
|
||||
const filteredProvider = new smartai.AnthropicProvider({
|
||||
anthropicToken: await testQenv.getEnvVarOnDemand('ANTHROPIC_TOKEN'),
|
||||
enableWebSearch: true,
|
||||
searchDomainAllowList: ['wikipedia.org', 'docs.microsoft.com'],
|
||||
searchDomainBlockList: ['reddit.com']
|
||||
});
|
||||
|
||||
await filteredProvider.start();
|
||||
|
||||
const result = await filteredProvider.research({
|
||||
query: 'What is JavaScript?',
|
||||
searchDepth: 'basic'
|
||||
});
|
||||
|
||||
console.log('Anthropic Domain Filtering Test:');
|
||||
console.log('- Answer length:', result.answer.length);
|
||||
console.log('- Applied domain filters (allow: wikipedia, docs.microsoft)');
|
||||
|
||||
expect(result.answer).toBeTruthy();
|
||||
expect(result.answer.toLowerCase()).toInclude('javascript');
|
||||
|
||||
await filteredProvider.stop();
|
||||
});
|
||||
|
||||
tap.test('Anthropic Research: should handle errors gracefully', async () => {
|
||||
let errorCaught = false;
|
||||
|
||||
try {
|
||||
await anthropicProvider.research({
|
||||
query: '', // Empty query
|
||||
searchDepth: 'basic'
|
||||
});
|
||||
} catch (error) {
|
||||
errorCaught = true;
|
||||
console.log('Expected error for empty query:', error.message.substring(0, 100));
|
||||
}
|
||||
|
||||
// Anthropic might handle empty queries differently
|
||||
console.log(`Empty query error test - Error caught: ${errorCaught}`);
|
||||
});
|
||||
|
||||
tap.test('Anthropic Research: should handle different search depths', async () => {
|
||||
// Test basic search depth
|
||||
const basicResult = await anthropicProvider.research({
|
||||
query: 'What is Python?',
|
||||
searchDepth: 'basic'
|
||||
});
|
||||
|
||||
// Test advanced search depth
|
||||
const advancedResult = await anthropicProvider.research({
|
||||
query: 'What is Python?',
|
||||
searchDepth: 'advanced'
|
||||
});
|
||||
|
||||
console.log('Anthropic Search Depth Comparison:');
|
||||
console.log('- Basic answer length:', basicResult.answer.length);
|
||||
console.log('- Advanced answer length:', advancedResult.answer.length);
|
||||
console.log('- Basic tokens:', basicResult.metadata?.tokensUsed);
|
||||
console.log('- Advanced tokens:', advancedResult.metadata?.tokensUsed);
|
||||
|
||||
expect(basicResult.answer).toBeTruthy();
|
||||
expect(advancedResult.answer).toBeTruthy();
|
||||
|
||||
// Advanced search typically produces longer answers
|
||||
// But this isn't guaranteed, so we just check they exist
|
||||
expect(basicResult.answer.toLowerCase()).toInclude('python');
|
||||
expect(advancedResult.answer.toLowerCase()).toInclude('python');
|
||||
});
|
||||
|
||||
tap.test('Anthropic Research: should clean up provider', async () => {
|
||||
await anthropicProvider.stop();
|
||||
console.log('Anthropic research provider stopped successfully');
|
||||
});
|
||||
|
||||
export default tap.start();
|
151
test/test.research.openai.ts
Normal file
151
test/test.research.openai.ts
Normal file
@@ -0,0 +1,151 @@
|
||||
import { expect, tap } from '@push.rocks/tapbundle';
|
||||
import * as qenv from '@push.rocks/qenv';
|
||||
import * as smartai from '../ts/index.js';
|
||||
|
||||
const testQenv = new qenv.Qenv('./', './.nogit/');
|
||||
|
||||
let openaiProvider: smartai.OpenAiProvider;
|
||||
|
||||
tap.test('OpenAI Research: should initialize provider with research capabilities', async () => {
|
||||
openaiProvider = new smartai.OpenAiProvider({
|
||||
openaiToken: await testQenv.getEnvVarOnDemand('OPENAI_TOKEN'),
|
||||
researchModel: 'o4-mini-deep-research-2025-06-26',
|
||||
enableWebSearch: true
|
||||
});
|
||||
|
||||
await openaiProvider.start();
|
||||
expect(openaiProvider).toBeInstanceOf(smartai.OpenAiProvider);
|
||||
expect(typeof openaiProvider.research).toEqual('function');
|
||||
});
|
||||
|
||||
tap.test('OpenAI Research: should perform basic research query', async () => {
|
||||
const result = await openaiProvider.research({
|
||||
query: 'What is TypeScript and why is it useful for web development?',
|
||||
searchDepth: 'basic'
|
||||
});
|
||||
|
||||
console.log('OpenAI Basic Research:');
|
||||
console.log('- Answer length:', result.answer.length);
|
||||
console.log('- Sources found:', result.sources.length);
|
||||
console.log('- First 200 chars:', result.answer.substring(0, 200));
|
||||
|
||||
expect(result).toBeTruthy();
|
||||
expect(result.answer).toBeTruthy();
|
||||
expect(result.answer.toLowerCase()).toInclude('typescript');
|
||||
expect(result.sources).toBeArray();
|
||||
expect(result.metadata).toBeTruthy();
|
||||
expect(result.metadata.model).toBeTruthy();
|
||||
});
|
||||
|
||||
tap.test('OpenAI Research: should perform research with web search enabled', async () => {
|
||||
const result = await openaiProvider.research({
|
||||
query: 'What are the latest features in ECMAScript 2024?',
|
||||
searchDepth: 'advanced',
|
||||
includeWebSearch: true,
|
||||
maxSources: 5
|
||||
});
|
||||
|
||||
console.log('OpenAI Web Search Research:');
|
||||
console.log('- Answer length:', result.answer.length);
|
||||
console.log('- Sources:', result.sources.length);
|
||||
if (result.searchQueries) {
|
||||
console.log('- Search queries used:', result.searchQueries);
|
||||
}
|
||||
|
||||
expect(result.answer).toBeTruthy();
|
||||
expect(result.answer.toLowerCase()).toInclude('ecmascript');
|
||||
|
||||
// The model might include sources or search queries
|
||||
if (result.sources.length > 0) {
|
||||
expect(result.sources[0]).toHaveProperty('url');
|
||||
expect(result.sources[0]).toHaveProperty('title');
|
||||
}
|
||||
});
|
||||
|
||||
tap.test('OpenAI Research: should handle deep research for complex topics', async () => {
|
||||
// Skip this test if it takes too long or costs too much
|
||||
// You can enable it for thorough testing
|
||||
const skipDeepResearch = true;
|
||||
|
||||
if (skipDeepResearch) {
|
||||
console.log('Skipping deep research test to save API costs');
|
||||
return;
|
||||
}
|
||||
|
||||
const result = await openaiProvider.research({
|
||||
query: 'Compare the pros and cons of microservices vs monolithic architecture',
|
||||
searchDepth: 'deep',
|
||||
includeWebSearch: true
|
||||
});
|
||||
|
||||
console.log('OpenAI Deep Research:');
|
||||
console.log('- Answer length:', result.answer.length);
|
||||
console.log('- Token usage:', result.metadata?.tokensUsed);
|
||||
|
||||
expect(result.answer).toBeTruthy();
|
||||
expect(result.answer.length).toBeGreaterThan(500);
|
||||
expect(result.answer.toLowerCase()).toInclude('microservices');
|
||||
expect(result.answer.toLowerCase()).toInclude('monolithic');
|
||||
});
|
||||
|
||||
tap.test('OpenAI Research: should extract sources from markdown links', async () => {
|
||||
const result = await openaiProvider.research({
|
||||
query: 'What is Node.js and provide some official documentation links?',
|
||||
searchDepth: 'basic',
|
||||
maxSources: 3
|
||||
});
|
||||
|
||||
console.log('OpenAI Source Extraction:');
|
||||
console.log('- Sources found:', result.sources.length);
|
||||
|
||||
if (result.sources.length > 0) {
|
||||
console.log('- Example source:', result.sources[0]);
|
||||
expect(result.sources[0].url).toBeTruthy();
|
||||
expect(result.sources[0].title).toBeTruthy();
|
||||
}
|
||||
|
||||
expect(result.answer).toInclude('Node.js');
|
||||
});
|
||||
|
||||
tap.test('OpenAI Research: should handle research errors gracefully', async () => {
|
||||
// Test with an extremely long query that might cause issues
|
||||
const longQuery = 'a'.repeat(10000);
|
||||
|
||||
let errorCaught = false;
|
||||
try {
|
||||
await openaiProvider.research({
|
||||
query: longQuery,
|
||||
searchDepth: 'basic'
|
||||
});
|
||||
} catch (error) {
|
||||
errorCaught = true;
|
||||
console.log('Expected error for long query:', error.message.substring(0, 100));
|
||||
expect(error.message).toBeTruthy();
|
||||
}
|
||||
|
||||
// OpenAI might handle long queries, so we don't assert the error
|
||||
console.log(`Long query error test - Error caught: ${errorCaught}`);
|
||||
});
|
||||
|
||||
tap.test('OpenAI Research: should respect maxSources parameter', async () => {
|
||||
const maxSources = 3;
|
||||
const result = await openaiProvider.research({
|
||||
query: 'List popular JavaScript frameworks',
|
||||
searchDepth: 'basic',
|
||||
maxSources: maxSources
|
||||
});
|
||||
|
||||
console.log(`OpenAI Max Sources Test - Requested: ${maxSources}, Found: ${result.sources.length}`);
|
||||
|
||||
// The API might not always return exactly maxSources, but should respect it as a limit
|
||||
if (result.sources.length > 0) {
|
||||
expect(result.sources.length).toBeLessThanOrEqual(maxSources * 2); // Allow some flexibility
|
||||
}
|
||||
});
|
||||
|
||||
tap.test('OpenAI Research: should clean up provider', async () => {
|
||||
await openaiProvider.stop();
|
||||
console.log('OpenAI research provider stopped successfully');
|
||||
});
|
||||
|
||||
export default tap.start();
|
80
test/test.research.stubs.ts
Normal file
80
test/test.research.stubs.ts
Normal file
@@ -0,0 +1,80 @@
|
||||
import { tap, expect } from '@push.rocks/tapbundle';
|
||||
import * as smartai from '../ts/index.js';
|
||||
|
||||
// Test research method stubs for providers without full implementation
|
||||
// These providers have research methods that throw "not yet supported" errors
|
||||
|
||||
tap.test('Research Stubs: Perplexity provider should have research method', async () => {
|
||||
const perplexityProvider = new smartai.PerplexityProvider({
|
||||
perplexityToken: 'test-token'
|
||||
});
|
||||
|
||||
// Perplexity has a basic implementation with Sonar models
|
||||
expect(typeof perplexityProvider.research).toEqual('function');
|
||||
});
|
||||
|
||||
tap.test('Research Stubs: Groq provider should throw not supported error', async () => {
|
||||
const groqProvider = new smartai.GroqProvider({
|
||||
groqToken: 'test-token'
|
||||
});
|
||||
|
||||
expect(typeof groqProvider.research).toEqual('function');
|
||||
|
||||
let errorCaught = false;
|
||||
try {
|
||||
await groqProvider.research({ query: 'test' });
|
||||
} catch (error) {
|
||||
errorCaught = true;
|
||||
expect(error.message).toInclude('not yet supported');
|
||||
}
|
||||
expect(errorCaught).toBeTrue();
|
||||
});
|
||||
|
||||
tap.test('Research Stubs: Ollama provider should throw not supported error', async () => {
|
||||
const ollamaProvider = new smartai.OllamaProvider({});
|
||||
|
||||
expect(typeof ollamaProvider.research).toEqual('function');
|
||||
|
||||
let errorCaught = false;
|
||||
try {
|
||||
await ollamaProvider.research({ query: 'test' });
|
||||
} catch (error) {
|
||||
errorCaught = true;
|
||||
expect(error.message).toInclude('not yet supported');
|
||||
}
|
||||
expect(errorCaught).toBeTrue();
|
||||
});
|
||||
|
||||
tap.test('Research Stubs: xAI provider should throw not supported error', async () => {
|
||||
const xaiProvider = new smartai.XAIProvider({
|
||||
xaiToken: 'test-token'
|
||||
});
|
||||
|
||||
expect(typeof xaiProvider.research).toEqual('function');
|
||||
|
||||
let errorCaught = false;
|
||||
try {
|
||||
await xaiProvider.research({ query: 'test' });
|
||||
} catch (error) {
|
||||
errorCaught = true;
|
||||
expect(error.message).toInclude('not yet supported');
|
||||
}
|
||||
expect(errorCaught).toBeTrue();
|
||||
});
|
||||
|
||||
tap.test('Research Stubs: Exo provider should throw not supported error', async () => {
|
||||
const exoProvider = new smartai.ExoProvider({});
|
||||
|
||||
expect(typeof exoProvider.research).toEqual('function');
|
||||
|
||||
let errorCaught = false;
|
||||
try {
|
||||
await exoProvider.research({ query: 'test' });
|
||||
} catch (error) {
|
||||
errorCaught = true;
|
||||
expect(error.message).toInclude('not yet supported');
|
||||
}
|
||||
expect(errorCaught).toBeTrue();
|
||||
});
|
||||
|
||||
export default tap.start();
|
@@ -3,6 +3,6 @@
|
||||
*/
|
||||
export const commitinfo = {
|
||||
name: '@push.rocks/smartai',
|
||||
version: '0.3.0',
|
||||
description: 'A TypeScript library for integrating and interacting with multiple AI models, offering capabilities for chat and potentially audio responses.'
|
||||
version: '0.6.1',
|
||||
description: 'SmartAi is a versatile TypeScript library designed to facilitate integration and interaction with various AI models, offering functionalities for chat, audio generation, document processing, and vision tasks.'
|
||||
}
|
||||
|
@@ -1,3 +1,5 @@
|
||||
import * as plugins from './plugins.js';
|
||||
|
||||
/**
|
||||
* Message format for chat interactions
|
||||
*/
|
||||
@@ -23,22 +25,60 @@ export interface ChatResponse {
|
||||
message: string;
|
||||
}
|
||||
|
||||
/**
|
||||
* Options for research interactions
|
||||
*/
|
||||
export interface ResearchOptions {
|
||||
query: string;
|
||||
searchDepth?: 'basic' | 'advanced' | 'deep';
|
||||
maxSources?: number;
|
||||
includeWebSearch?: boolean;
|
||||
background?: boolean;
|
||||
}
|
||||
|
||||
/**
|
||||
* Response format for research interactions
|
||||
*/
|
||||
export interface ResearchResponse {
|
||||
answer: string;
|
||||
sources: Array<{
|
||||
url: string;
|
||||
title: string;
|
||||
snippet: string;
|
||||
}>;
|
||||
searchQueries?: string[];
|
||||
metadata?: any;
|
||||
}
|
||||
|
||||
/**
|
||||
* Abstract base class for multi-modal AI models.
|
||||
* Provides a common interface for different AI providers (OpenAI, Anthropic, Perplexity, Ollama)
|
||||
*/
|
||||
export abstract class MultiModalModel {
|
||||
/**
|
||||
* SmartPdf instance for document processing
|
||||
* Shared across all methods that need PDF functionality
|
||||
*/
|
||||
protected smartpdfInstance: plugins.smartpdf.SmartPdf;
|
||||
|
||||
/**
|
||||
* Initializes the model and any necessary resources
|
||||
* Should be called before using any other methods
|
||||
*/
|
||||
abstract start(): Promise<void>;
|
||||
public async start(): Promise<void> {
|
||||
this.smartpdfInstance = new plugins.smartpdf.SmartPdf();
|
||||
await this.smartpdfInstance.start();
|
||||
}
|
||||
|
||||
/**
|
||||
* Cleans up any resources used by the model
|
||||
* Should be called when the model is no longer needed
|
||||
*/
|
||||
abstract stop(): Promise<void>;
|
||||
public async stop(): Promise<void> {
|
||||
if (this.smartpdfInstance) {
|
||||
await this.smartpdfInstance.stop();
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Synchronous chat interaction with the model
|
||||
@@ -83,4 +123,12 @@ export abstract class MultiModalModel {
|
||||
pdfDocuments: Uint8Array[];
|
||||
messageHistory: ChatMessage[];
|
||||
}): Promise<{ message: any }>;
|
||||
|
||||
/**
|
||||
* Research and web search capabilities
|
||||
* @param optionsArg Options containing the research query and configuration
|
||||
* @returns Promise resolving to the research results with sources
|
||||
* @throws Error if the provider doesn't support research capabilities
|
||||
*/
|
||||
public abstract research(optionsArg: ResearchOptions): Promise<ResearchResponse>;
|
||||
}
|
||||
|
@@ -48,6 +48,18 @@ export class Conversation {
|
||||
return conversation;
|
||||
}
|
||||
|
||||
public static async createWithExo(smartaiRefArg: SmartAi) {
|
||||
if (!smartaiRefArg.exoProvider) {
|
||||
throw new Error('Exo provider not available');
|
||||
}
|
||||
const conversation = new Conversation(smartaiRefArg, {
|
||||
processFunction: async (input) => {
|
||||
return '' // TODO implement proper streaming
|
||||
}
|
||||
});
|
||||
return conversation;
|
||||
}
|
||||
|
||||
public static async createWithOllama(smartaiRefArg: SmartAi) {
|
||||
if (!smartaiRefArg.ollamaProvider) {
|
||||
throw new Error('Ollama provider not available');
|
||||
@@ -60,6 +72,30 @@ export class Conversation {
|
||||
return conversation;
|
||||
}
|
||||
|
||||
public static async createWithGroq(smartaiRefArg: SmartAi) {
|
||||
if (!smartaiRefArg.groqProvider) {
|
||||
throw new Error('Groq provider not available');
|
||||
}
|
||||
const conversation = new Conversation(smartaiRefArg, {
|
||||
processFunction: async (input) => {
|
||||
return '' // TODO implement proper streaming
|
||||
}
|
||||
});
|
||||
return conversation;
|
||||
}
|
||||
|
||||
public static async createWithXai(smartaiRefArg: SmartAi) {
|
||||
if (!smartaiRefArg.xaiProvider) {
|
||||
throw new Error('XAI provider not available');
|
||||
}
|
||||
const conversation = new Conversation(smartaiRefArg, {
|
||||
processFunction: async (input) => {
|
||||
return '' // TODO implement proper streaming
|
||||
}
|
||||
});
|
||||
return conversation;
|
||||
}
|
||||
|
||||
// INSTANCE
|
||||
smartaiRef: SmartAi
|
||||
private systemMessage: string;
|
||||
|
@@ -1,18 +1,32 @@
|
||||
import { Conversation } from './classes.conversation.js';
|
||||
import * as plugins from './plugins.js';
|
||||
import { AnthropicProvider } from './provider.anthropic.js';
|
||||
import type { OllamaProvider } from './provider.ollama.js';
|
||||
import { OllamaProvider } from './provider.ollama.js';
|
||||
import { OpenAiProvider } from './provider.openai.js';
|
||||
import type { PerplexityProvider } from './provider.perplexity.js';
|
||||
import { PerplexityProvider } from './provider.perplexity.js';
|
||||
import { ExoProvider } from './provider.exo.js';
|
||||
import { GroqProvider } from './provider.groq.js';
|
||||
import { XAIProvider } from './provider.xai.js';
|
||||
|
||||
|
||||
export interface ISmartAiOptions {
|
||||
openaiToken?: string;
|
||||
anthropicToken?: string;
|
||||
perplexityToken?: string;
|
||||
groqToken?: string;
|
||||
xaiToken?: string;
|
||||
exo?: {
|
||||
baseUrl?: string;
|
||||
apiKey?: string;
|
||||
};
|
||||
ollama?: {
|
||||
baseUrl?: string;
|
||||
model?: string;
|
||||
visionModel?: string;
|
||||
};
|
||||
}
|
||||
|
||||
export type TProvider = 'openai' | 'anthropic' | 'perplexity' | 'ollama';
|
||||
export type TProvider = 'openai' | 'anthropic' | 'perplexity' | 'ollama' | 'exo' | 'groq' | 'xai';
|
||||
|
||||
export class SmartAi {
|
||||
public options: ISmartAiOptions;
|
||||
@@ -21,6 +35,9 @@ export class SmartAi {
|
||||
public anthropicProvider: AnthropicProvider;
|
||||
public perplexityProvider: PerplexityProvider;
|
||||
public ollamaProvider: OllamaProvider;
|
||||
public exoProvider: ExoProvider;
|
||||
public groqProvider: GroqProvider;
|
||||
public xaiProvider: XAIProvider;
|
||||
|
||||
constructor(optionsArg: ISmartAiOptions) {
|
||||
this.options = optionsArg;
|
||||
@@ -37,16 +54,74 @@ export class SmartAi {
|
||||
this.anthropicProvider = new AnthropicProvider({
|
||||
anthropicToken: this.options.anthropicToken,
|
||||
});
|
||||
await this.anthropicProvider.start();
|
||||
}
|
||||
if (this.options.perplexityToken) {
|
||||
this.perplexityProvider = new PerplexityProvider({
|
||||
perplexityToken: this.options.perplexityToken,
|
||||
});
|
||||
await this.perplexityProvider.start();
|
||||
}
|
||||
if (this.options.groqToken) {
|
||||
this.groqProvider = new GroqProvider({
|
||||
groqToken: this.options.groqToken,
|
||||
});
|
||||
await this.groqProvider.start();
|
||||
}
|
||||
if (this.options.xaiToken) {
|
||||
this.xaiProvider = new XAIProvider({
|
||||
xaiToken: this.options.xaiToken,
|
||||
});
|
||||
await this.xaiProvider.start();
|
||||
}
|
||||
if (this.options.ollama) {
|
||||
this.ollamaProvider = new OllamaProvider({
|
||||
baseUrl: this.options.ollama.baseUrl,
|
||||
model: this.options.ollama.model,
|
||||
visionModel: this.options.ollama.visionModel,
|
||||
});
|
||||
await this.ollamaProvider.start();
|
||||
}
|
||||
if (this.options.exo) {
|
||||
this.exoProvider = new ExoProvider({
|
||||
exoBaseUrl: this.options.exo.baseUrl,
|
||||
apiKey: this.options.exo.apiKey,
|
||||
});
|
||||
await this.exoProvider.start();
|
||||
}
|
||||
}
|
||||
|
||||
public async stop() {}
|
||||
public async stop() {
|
||||
if (this.openaiProvider) {
|
||||
await this.openaiProvider.stop();
|
||||
}
|
||||
if (this.anthropicProvider) {
|
||||
await this.anthropicProvider.stop();
|
||||
}
|
||||
if (this.perplexityProvider) {
|
||||
await this.perplexityProvider.stop();
|
||||
}
|
||||
if (this.groqProvider) {
|
||||
await this.groqProvider.stop();
|
||||
}
|
||||
if (this.xaiProvider) {
|
||||
await this.xaiProvider.stop();
|
||||
}
|
||||
if (this.ollamaProvider) {
|
||||
await this.ollamaProvider.stop();
|
||||
}
|
||||
if (this.exoProvider) {
|
||||
await this.exoProvider.stop();
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* create a new conversation
|
||||
*/
|
||||
createConversation(provider: TProvider) {
|
||||
switch (provider) {
|
||||
case 'exo':
|
||||
return Conversation.createWithExo(this);
|
||||
case 'openai':
|
||||
return Conversation.createWithOpenAi(this);
|
||||
case 'anthropic':
|
||||
@@ -55,6 +130,10 @@ export class SmartAi {
|
||||
return Conversation.createWithPerplexity(this);
|
||||
case 'ollama':
|
||||
return Conversation.createWithOllama(this);
|
||||
case 'groq':
|
||||
return Conversation.createWithGroq(this);
|
||||
case 'xai':
|
||||
return Conversation.createWithXai(this);
|
||||
default:
|
||||
throw new Error('Provider not available');
|
||||
}
|
||||
|
@@ -1,3 +1,9 @@
|
||||
export * from './classes.smartai.js';
|
||||
export * from './abstract.classes.multimodal.js';
|
||||
export * from './provider.openai.js';
|
||||
export * from './provider.anthropic.js';
|
||||
export * from './provider.perplexity.js';
|
||||
export * from './provider.groq.js';
|
||||
export * from './provider.ollama.js';
|
||||
export * from './provider.xai.js';
|
||||
export * from './provider.exo.js';
|
||||
|
@@ -1,13 +1,16 @@
|
||||
import * as plugins from './plugins.js';
|
||||
import * as paths from './paths.js';
|
||||
import { MultiModalModel } from './abstract.classes.multimodal.js';
|
||||
import type { ChatOptions, ChatResponse, ChatMessage } from './abstract.classes.multimodal.js';
|
||||
import type { ChatOptions, ChatResponse, ChatMessage, ResearchOptions, ResearchResponse } from './abstract.classes.multimodal.js';
|
||||
import type { ImageBlockParam, TextBlockParam } from '@anthropic-ai/sdk/resources/messages';
|
||||
|
||||
type ContentBlock = ImageBlockParam | TextBlockParam;
|
||||
|
||||
export interface IAnthropicProviderOptions {
|
||||
anthropicToken: string;
|
||||
enableWebSearch?: boolean;
|
||||
searchDomainAllowList?: string[];
|
||||
searchDomainBlockList?: string[];
|
||||
}
|
||||
|
||||
export class AnthropicProvider extends MultiModalModel {
|
||||
@@ -20,12 +23,15 @@ export class AnthropicProvider extends MultiModalModel {
|
||||
}
|
||||
|
||||
async start() {
|
||||
await super.start();
|
||||
this.anthropicApiClient = new plugins.anthropic.default({
|
||||
apiKey: this.options.anthropicToken,
|
||||
});
|
||||
}
|
||||
|
||||
async stop() {}
|
||||
async stop() {
|
||||
await super.stop();
|
||||
}
|
||||
|
||||
public async chatStream(input: ReadableStream<Uint8Array>): Promise<ReadableStream<string>> {
|
||||
// Create a TextDecoder to handle incoming chunks
|
||||
@@ -178,11 +184,10 @@ export class AnthropicProvider extends MultiModalModel {
|
||||
messageHistory: ChatMessage[];
|
||||
}): Promise<{ message: any }> {
|
||||
// Convert PDF documents to images using SmartPDF
|
||||
const smartpdfInstance = new plugins.smartpdf.SmartPdf();
|
||||
let documentImageBytesArray: Uint8Array[] = [];
|
||||
|
||||
for (const pdfDocument of optionsArg.pdfDocuments) {
|
||||
const documentImageArray = await smartpdfInstance.convertPDFToPngBytes(pdfDocument);
|
||||
const documentImageArray = await this.smartpdfInstance.convertPDFToPngBytes(pdfDocument);
|
||||
documentImageBytesArray = documentImageBytesArray.concat(documentImageArray);
|
||||
}
|
||||
|
||||
@@ -237,4 +242,121 @@ export class AnthropicProvider extends MultiModalModel {
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
public async research(optionsArg: ResearchOptions): Promise<ResearchResponse> {
|
||||
// Prepare the messages for the research request
|
||||
const systemMessage = `You are a research assistant with web search capabilities.
|
||||
Provide comprehensive, well-researched answers with citations and sources.
|
||||
When searching the web, be thorough and cite your sources accurately.`;
|
||||
|
||||
try {
|
||||
// Build the tool configuration for web search
|
||||
const tools = this.options.enableWebSearch ? [
|
||||
{
|
||||
type: 'web_search_20250305' as const,
|
||||
name: 'web_search',
|
||||
description: 'Search the web for current information',
|
||||
input_schema: {
|
||||
type: 'object' as const,
|
||||
properties: {
|
||||
query: {
|
||||
type: 'string',
|
||||
description: 'The search query'
|
||||
}
|
||||
},
|
||||
required: ['query']
|
||||
}
|
||||
}
|
||||
] : [];
|
||||
|
||||
// Configure the request based on search depth
|
||||
const maxTokens = optionsArg.searchDepth === 'deep' ? 8192 :
|
||||
optionsArg.searchDepth === 'advanced' ? 6144 : 4096;
|
||||
|
||||
// Create the research request
|
||||
const requestParams: any = {
|
||||
model: 'claude-3-opus-20240229',
|
||||
system: systemMessage,
|
||||
messages: [
|
||||
{
|
||||
role: 'user' as const,
|
||||
content: optionsArg.query
|
||||
}
|
||||
],
|
||||
max_tokens: maxTokens,
|
||||
temperature: 0.7
|
||||
};
|
||||
|
||||
// Add tools if web search is enabled
|
||||
if (tools.length > 0) {
|
||||
requestParams.tools = tools;
|
||||
requestParams.tool_choice = { type: 'auto' };
|
||||
}
|
||||
|
||||
// Execute the research request
|
||||
const result = await this.anthropicApiClient.messages.create(requestParams);
|
||||
|
||||
// Extract the answer from content blocks
|
||||
let answer = '';
|
||||
const sources: Array<{ url: string; title: string; snippet: string }> = [];
|
||||
const searchQueries: string[] = [];
|
||||
|
||||
// Process content blocks
|
||||
for (const block of result.content) {
|
||||
if ('text' in block) {
|
||||
answer += block.text;
|
||||
}
|
||||
}
|
||||
|
||||
// Parse sources from the answer (Claude includes citations in various formats)
|
||||
const urlRegex = /\[([^\]]+)\]\(([^)]+)\)/g;
|
||||
let match: RegExpExecArray | null;
|
||||
|
||||
while ((match = urlRegex.exec(answer)) !== null) {
|
||||
sources.push({
|
||||
title: match[1],
|
||||
url: match[2],
|
||||
snippet: ''
|
||||
});
|
||||
}
|
||||
|
||||
// Also look for plain URLs
|
||||
const plainUrlRegex = /https?:\/\/[^\s\)]+/g;
|
||||
const plainUrls = answer.match(plainUrlRegex) || [];
|
||||
|
||||
for (const url of plainUrls) {
|
||||
// Check if this URL is already in sources
|
||||
if (!sources.some(s => s.url === url)) {
|
||||
sources.push({
|
||||
title: new URL(url).hostname,
|
||||
url: url,
|
||||
snippet: ''
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
// Extract tool use information if available
|
||||
if ('tool_use' in result && Array.isArray(result.tool_use)) {
|
||||
for (const toolUse of result.tool_use) {
|
||||
if (toolUse.name === 'web_search' && toolUse.input?.query) {
|
||||
searchQueries.push(toolUse.input.query);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return {
|
||||
answer,
|
||||
sources,
|
||||
searchQueries: searchQueries.length > 0 ? searchQueries : undefined,
|
||||
metadata: {
|
||||
model: 'claude-3-opus-20240229',
|
||||
searchDepth: optionsArg.searchDepth || 'basic',
|
||||
tokensUsed: result.usage?.output_tokens
|
||||
}
|
||||
};
|
||||
} catch (error) {
|
||||
console.error('Anthropic research error:', error);
|
||||
throw new Error(`Failed to perform research: ${error.message}`);
|
||||
}
|
||||
}
|
||||
}
|
132
ts/provider.exo.ts
Normal file
132
ts/provider.exo.ts
Normal file
@@ -0,0 +1,132 @@
|
||||
import * as plugins from './plugins.js';
|
||||
import * as paths from './paths.js';
|
||||
import { MultiModalModel } from './abstract.classes.multimodal.js';
|
||||
import type { ChatOptions, ChatResponse, ChatMessage, ResearchOptions, ResearchResponse } from './abstract.classes.multimodal.js';
|
||||
import type { ChatCompletionMessageParam } from 'openai/resources/chat/completions';
|
||||
|
||||
export interface IExoProviderOptions {
|
||||
exoBaseUrl?: string;
|
||||
apiKey?: string;
|
||||
}
|
||||
|
||||
export class ExoProvider extends MultiModalModel {
|
||||
private options: IExoProviderOptions;
|
||||
public openAiApiClient: plugins.openai.default;
|
||||
|
||||
constructor(optionsArg: IExoProviderOptions = {}) {
|
||||
super();
|
||||
this.options = {
|
||||
exoBaseUrl: 'http://localhost:8080/v1', // Default Exo API endpoint
|
||||
...optionsArg
|
||||
};
|
||||
}
|
||||
|
||||
public async start() {
|
||||
this.openAiApiClient = new plugins.openai.default({
|
||||
apiKey: this.options.apiKey || 'not-needed', // Exo might not require an API key for local deployment
|
||||
baseURL: this.options.exoBaseUrl,
|
||||
});
|
||||
}
|
||||
|
||||
public async stop() {}
|
||||
|
||||
public async chatStream(input: ReadableStream<Uint8Array>): Promise<ReadableStream<string>> {
|
||||
// Create a TextDecoder to handle incoming chunks
|
||||
const decoder = new TextDecoder();
|
||||
let buffer = '';
|
||||
let currentMessage: { role: string; content: string; } | null = null;
|
||||
|
||||
// Create a TransformStream to process the input
|
||||
const transform = new TransformStream<Uint8Array, string>({
|
||||
transform: async (chunk, controller) => {
|
||||
buffer += decoder.decode(chunk, { stream: true });
|
||||
|
||||
// Try to parse complete JSON messages from the buffer
|
||||
while (true) {
|
||||
const newlineIndex = buffer.indexOf('\n');
|
||||
if (newlineIndex === -1) break;
|
||||
|
||||
const line = buffer.slice(0, newlineIndex);
|
||||
buffer = buffer.slice(newlineIndex + 1);
|
||||
|
||||
if (line.trim()) {
|
||||
try {
|
||||
const message = JSON.parse(line);
|
||||
currentMessage = message;
|
||||
|
||||
// Process the message based on its type
|
||||
if (message.type === 'message') {
|
||||
const response = await this.chat({
|
||||
systemMessage: '',
|
||||
userMessage: message.content,
|
||||
messageHistory: [{ role: message.role as 'user' | 'assistant' | 'system', content: message.content }]
|
||||
});
|
||||
|
||||
controller.enqueue(JSON.stringify(response) + '\n');
|
||||
}
|
||||
} catch (error) {
|
||||
console.error('Error processing message:', error);
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
flush(controller) {
|
||||
if (buffer) {
|
||||
try {
|
||||
const message = JSON.parse(buffer);
|
||||
currentMessage = message;
|
||||
} catch (error) {
|
||||
console.error('Error processing remaining buffer:', error);
|
||||
}
|
||||
}
|
||||
}
|
||||
});
|
||||
|
||||
return input.pipeThrough(transform);
|
||||
}
|
||||
|
||||
public async chat(options: ChatOptions): Promise<ChatResponse> {
|
||||
const messages: ChatCompletionMessageParam[] = [
|
||||
{ role: 'system', content: options.systemMessage },
|
||||
...options.messageHistory,
|
||||
{ role: 'user', content: options.userMessage }
|
||||
];
|
||||
|
||||
try {
|
||||
const response = await this.openAiApiClient.chat.completions.create({
|
||||
model: 'local-model', // Exo uses local models
|
||||
messages: messages,
|
||||
stream: false
|
||||
});
|
||||
|
||||
return {
|
||||
role: 'assistant',
|
||||
message: response.choices[0]?.message?.content || ''
|
||||
};
|
||||
} catch (error) {
|
||||
console.error('Error in chat completion:', error);
|
||||
throw error;
|
||||
}
|
||||
}
|
||||
|
||||
public async audio(optionsArg: { message: string }): Promise<NodeJS.ReadableStream> {
|
||||
throw new Error('Audio generation is not supported by Exo provider');
|
||||
}
|
||||
|
||||
public async vision(optionsArg: { image: Buffer; prompt: string }): Promise<string> {
|
||||
throw new Error('Vision processing is not supported by Exo provider');
|
||||
}
|
||||
|
||||
public async document(optionsArg: {
|
||||
systemMessage: string;
|
||||
userMessage: string;
|
||||
pdfDocuments: Uint8Array[];
|
||||
messageHistory: ChatMessage[];
|
||||
}): Promise<{ message: any }> {
|
||||
throw new Error('Document processing is not supported by Exo provider');
|
||||
}
|
||||
|
||||
public async research(optionsArg: ResearchOptions): Promise<ResearchResponse> {
|
||||
throw new Error('Research capabilities are not yet supported by Exo provider.');
|
||||
}
|
||||
}
|
@@ -1,7 +1,7 @@
|
||||
import * as plugins from './plugins.js';
|
||||
import * as paths from './paths.js';
|
||||
import { MultiModalModel } from './abstract.classes.multimodal.js';
|
||||
import type { ChatOptions, ChatResponse, ChatMessage } from './abstract.classes.multimodal.js';
|
||||
import type { ChatOptions, ChatResponse, ChatMessage, ResearchOptions, ResearchResponse } from './abstract.classes.multimodal.js';
|
||||
|
||||
export interface IGroqProviderOptions {
|
||||
groqToken: string;
|
||||
@@ -32,7 +32,7 @@ export class GroqProvider extends MultiModalModel {
|
||||
|
||||
// Create a TransformStream to process the input
|
||||
const transform = new TransformStream<Uint8Array, string>({
|
||||
async transform(chunk, controller) {
|
||||
transform: async (chunk, controller) => {
|
||||
buffer += decoder.decode(chunk, { stream: true });
|
||||
|
||||
// Try to parse complete JSON messages from the buffer
|
||||
@@ -189,4 +189,8 @@ export class GroqProvider extends MultiModalModel {
|
||||
}): Promise<{ message: any }> {
|
||||
throw new Error('Document processing is not yet supported by Groq.');
|
||||
}
|
||||
|
||||
public async research(optionsArg: ResearchOptions): Promise<ResearchResponse> {
|
||||
throw new Error('Research capabilities are not yet supported by Groq provider.');
|
||||
}
|
||||
}
|
@@ -1,7 +1,7 @@
|
||||
import * as plugins from './plugins.js';
|
||||
import * as paths from './paths.js';
|
||||
import { MultiModalModel } from './abstract.classes.multimodal.js';
|
||||
import type { ChatOptions, ChatResponse, ChatMessage } from './abstract.classes.multimodal.js';
|
||||
import type { ChatOptions, ChatResponse, ChatMessage, ResearchOptions, ResearchResponse } from './abstract.classes.multimodal.js';
|
||||
|
||||
export interface IOllamaProviderOptions {
|
||||
baseUrl?: string;
|
||||
@@ -24,6 +24,7 @@ export class OllamaProvider extends MultiModalModel {
|
||||
}
|
||||
|
||||
async start() {
|
||||
await super.start();
|
||||
// Verify Ollama is running
|
||||
try {
|
||||
const response = await fetch(`${this.baseUrl}/api/tags`);
|
||||
@@ -35,7 +36,9 @@ export class OllamaProvider extends MultiModalModel {
|
||||
}
|
||||
}
|
||||
|
||||
async stop() {}
|
||||
async stop() {
|
||||
await super.stop();
|
||||
}
|
||||
|
||||
public async chatStream(input: ReadableStream<Uint8Array>): Promise<ReadableStream<string>> {
|
||||
// Create a TextDecoder to handle incoming chunks
|
||||
@@ -45,7 +48,7 @@ export class OllamaProvider extends MultiModalModel {
|
||||
|
||||
// Create a TransformStream to process the input
|
||||
const transform = new TransformStream<Uint8Array, string>({
|
||||
async transform(chunk, controller) {
|
||||
transform: async (chunk, controller) => {
|
||||
buffer += decoder.decode(chunk, { stream: true });
|
||||
|
||||
// Try to parse complete JSON messages from the buffer
|
||||
@@ -205,11 +208,10 @@ export class OllamaProvider extends MultiModalModel {
|
||||
messageHistory: ChatMessage[];
|
||||
}): Promise<{ message: any }> {
|
||||
// Convert PDF documents to images using SmartPDF
|
||||
const smartpdfInstance = new plugins.smartpdf.SmartPdf();
|
||||
let documentImageBytesArray: Uint8Array[] = [];
|
||||
|
||||
for (const pdfDocument of optionsArg.pdfDocuments) {
|
||||
const documentImageArray = await smartpdfInstance.convertPDFToPngBytes(pdfDocument);
|
||||
const documentImageArray = await this.smartpdfInstance.convertPDFToPngBytes(pdfDocument);
|
||||
documentImageBytesArray = documentImageBytesArray.concat(documentImageArray);
|
||||
}
|
||||
|
||||
@@ -249,4 +251,8 @@ export class OllamaProvider extends MultiModalModel {
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
public async research(optionsArg: ResearchOptions): Promise<ResearchResponse> {
|
||||
throw new Error('Research capabilities are not yet supported by Ollama provider.');
|
||||
}
|
||||
}
|
@@ -1,16 +1,28 @@
|
||||
import * as plugins from './plugins.js';
|
||||
import * as paths from './paths.js';
|
||||
import { Readable } from 'stream';
|
||||
|
||||
// Custom type definition for chat completion messages
|
||||
export type TChatCompletionRequestMessage = {
|
||||
role: "system" | "user" | "assistant";
|
||||
content: string;
|
||||
};
|
||||
|
||||
import { MultiModalModel } from './abstract.classes.multimodal.js';
|
||||
import type { ResearchOptions, ResearchResponse } from './abstract.classes.multimodal.js';
|
||||
|
||||
export interface IOpenaiProviderOptions {
|
||||
openaiToken: string;
|
||||
chatModel?: string;
|
||||
audioModel?: string;
|
||||
visionModel?: string;
|
||||
researchModel?: string;
|
||||
enableWebSearch?: boolean;
|
||||
}
|
||||
|
||||
export class OpenAiProvider extends MultiModalModel {
|
||||
private options: IOpenaiProviderOptions;
|
||||
public openAiApiClient: plugins.openai.default;
|
||||
public smartpdfInstance: plugins.smartpdf.SmartPdf;
|
||||
|
||||
constructor(optionsArg: IOpenaiProviderOptions) {
|
||||
super();
|
||||
@@ -18,24 +30,29 @@ export class OpenAiProvider extends MultiModalModel {
|
||||
}
|
||||
|
||||
public async start() {
|
||||
await super.start();
|
||||
this.openAiApiClient = new plugins.openai.default({
|
||||
apiKey: this.options.openaiToken,
|
||||
dangerouslyAllowBrowser: true,
|
||||
});
|
||||
this.smartpdfInstance = new plugins.smartpdf.SmartPdf();
|
||||
}
|
||||
|
||||
public async stop() {}
|
||||
public async stop() {
|
||||
await super.stop();
|
||||
}
|
||||
|
||||
public async chatStream(input: ReadableStream<Uint8Array>): Promise<ReadableStream<string>> {
|
||||
// Create a TextDecoder to handle incoming chunks
|
||||
const decoder = new TextDecoder();
|
||||
let buffer = '';
|
||||
let currentMessage: { role: string; content: string; } | null = null;
|
||||
let currentMessage: {
|
||||
role: "function" | "user" | "system" | "assistant" | "tool" | "developer";
|
||||
content: string;
|
||||
} | null = null;
|
||||
|
||||
// Create a TransformStream to process the input
|
||||
const transform = new TransformStream<Uint8Array, string>({
|
||||
async transform(chunk, controller) {
|
||||
transform: async (chunk, controller) => {
|
||||
buffer += decoder.decode(chunk, { stream: true });
|
||||
|
||||
// Try to parse complete JSON messages from the buffer
|
||||
@@ -50,7 +67,7 @@ export class OpenAiProvider extends MultiModalModel {
|
||||
try {
|
||||
const message = JSON.parse(line);
|
||||
currentMessage = {
|
||||
role: message.role || 'user',
|
||||
role: (message.role || 'user') as "function" | "user" | "system" | "assistant" | "tool" | "developer",
|
||||
content: message.content || '',
|
||||
};
|
||||
} catch (e) {
|
||||
@@ -61,20 +78,24 @@ export class OpenAiProvider extends MultiModalModel {
|
||||
|
||||
// If we have a complete message, send it to OpenAI
|
||||
if (currentMessage) {
|
||||
const stream = await this.openAiApiClient.chat.completions.create({
|
||||
model: 'gpt-4',
|
||||
messages: [{ role: currentMessage.role, content: currentMessage.content }],
|
||||
const messageToSend = { role: "user" as const, content: currentMessage.content };
|
||||
const chatModel = this.options.chatModel ?? 'gpt-5-mini';
|
||||
const requestParams: any = {
|
||||
model: chatModel,
|
||||
messages: [messageToSend],
|
||||
stream: true,
|
||||
});
|
||||
|
||||
};
|
||||
// Temperature is omitted since the model does not support it.
|
||||
const stream = await this.openAiApiClient.chat.completions.create(requestParams);
|
||||
// Explicitly cast the stream as an async iterable to satisfy TypeScript.
|
||||
const streamAsyncIterable = stream as unknown as AsyncIterableIterator<any>;
|
||||
// Process each chunk from OpenAI
|
||||
for await (const chunk of stream) {
|
||||
for await (const chunk of streamAsyncIterable) {
|
||||
const content = chunk.choices[0]?.delta?.content;
|
||||
if (content) {
|
||||
controller.enqueue(content);
|
||||
}
|
||||
}
|
||||
|
||||
currentMessage = null;
|
||||
}
|
||||
},
|
||||
@@ -104,15 +125,17 @@ export class OpenAiProvider extends MultiModalModel {
|
||||
content: string;
|
||||
}[];
|
||||
}) {
|
||||
const result = await this.openAiApiClient.chat.completions.create({
|
||||
model: 'gpt-4o',
|
||||
|
||||
const chatModel = this.options.chatModel ?? 'gpt-5-mini';
|
||||
const requestParams: any = {
|
||||
model: chatModel,
|
||||
messages: [
|
||||
{ role: 'system', content: optionsArg.systemMessage },
|
||||
...optionsArg.messageHistory,
|
||||
{ role: 'user', content: optionsArg.userMessage },
|
||||
],
|
||||
});
|
||||
};
|
||||
// Temperature parameter removed to avoid unsupported error.
|
||||
const result = await this.openAiApiClient.chat.completions.create(requestParams);
|
||||
return {
|
||||
role: result.choices[0].message.role as 'assistant',
|
||||
message: result.choices[0].message.content,
|
||||
@@ -122,14 +145,15 @@ export class OpenAiProvider extends MultiModalModel {
|
||||
public async audio(optionsArg: { message: string }): Promise<NodeJS.ReadableStream> {
|
||||
const done = plugins.smartpromise.defer<NodeJS.ReadableStream>();
|
||||
const result = await this.openAiApiClient.audio.speech.create({
|
||||
model: 'tts-1-hd',
|
||||
model: this.options.audioModel ?? 'tts-1-hd',
|
||||
input: optionsArg.message,
|
||||
voice: 'nova',
|
||||
response_format: 'mp3',
|
||||
speed: 1,
|
||||
});
|
||||
const stream = result.body;
|
||||
done.resolve(stream);
|
||||
const nodeStream = Readable.fromWeb(stream as any);
|
||||
done.resolve(nodeStream);
|
||||
return done.promise;
|
||||
}
|
||||
|
||||
@@ -144,6 +168,7 @@ export class OpenAiProvider extends MultiModalModel {
|
||||
}) {
|
||||
let pdfDocumentImageBytesArray: Uint8Array[] = [];
|
||||
|
||||
// Convert each PDF into one or more image byte arrays.
|
||||
for (const pdfDocument of optionsArg.pdfDocuments) {
|
||||
const documentImageArray = await this.smartpdfInstance.convertPDFToPngBytes(pdfDocument);
|
||||
pdfDocumentImageBytesArray = pdfDocumentImageBytesArray.concat(documentImageArray);
|
||||
@@ -152,19 +177,18 @@ export class OpenAiProvider extends MultiModalModel {
|
||||
console.log(`image smartfile array`);
|
||||
console.log(pdfDocumentImageBytesArray.map((smartfile) => smartfile.length));
|
||||
|
||||
const smartfileArray = await plugins.smartarray.map(
|
||||
pdfDocumentImageBytesArray,
|
||||
async (pdfDocumentImageBytes) => {
|
||||
return plugins.smartfile.SmartFile.fromBuffer(
|
||||
'pdfDocumentImage.jpg',
|
||||
Buffer.from(pdfDocumentImageBytes)
|
||||
);
|
||||
}
|
||||
);
|
||||
// Filter out any empty buffers to avoid sending invalid image URLs.
|
||||
const validImageBytesArray = pdfDocumentImageBytesArray.filter(imageBytes => imageBytes && imageBytes.length > 0);
|
||||
const imageAttachments = validImageBytesArray.map(imageBytes => ({
|
||||
type: 'image_url',
|
||||
image_url: {
|
||||
url: 'data:image/png;base64,' + Buffer.from(imageBytes).toString('base64'),
|
||||
},
|
||||
}));
|
||||
|
||||
const result = await this.openAiApiClient.chat.completions.create({
|
||||
model: 'gpt-4o',
|
||||
// response_format: { type: "json_object" }, // not supported for now
|
||||
const chatModel = this.options.chatModel ?? 'gpt-5-mini';
|
||||
const requestParams: any = {
|
||||
model: chatModel,
|
||||
messages: [
|
||||
{ role: 'system', content: optionsArg.systemMessage },
|
||||
...optionsArg.messageHistory,
|
||||
@@ -172,30 +196,22 @@ export class OpenAiProvider extends MultiModalModel {
|
||||
role: 'user',
|
||||
content: [
|
||||
{ type: 'text', text: optionsArg.userMessage },
|
||||
...(() => {
|
||||
const returnArray = [];
|
||||
for (const imageBytes of pdfDocumentImageBytesArray) {
|
||||
returnArray.push({
|
||||
type: 'image_url',
|
||||
image_url: {
|
||||
url: 'data:image/png;base64,' + Buffer.from(imageBytes).toString('base64'),
|
||||
},
|
||||
});
|
||||
}
|
||||
return returnArray;
|
||||
})(),
|
||||
...imageAttachments,
|
||||
],
|
||||
},
|
||||
],
|
||||
});
|
||||
};
|
||||
// Temperature parameter removed.
|
||||
const result = await this.openAiApiClient.chat.completions.create(requestParams);
|
||||
return {
|
||||
message: result.choices[0].message,
|
||||
};
|
||||
}
|
||||
|
||||
public async vision(optionsArg: { image: Buffer; prompt: string }): Promise<string> {
|
||||
const result = await this.openAiApiClient.chat.completions.create({
|
||||
model: 'gpt-4-vision-preview',
|
||||
const visionModel = this.options.visionModel ?? '04-mini';
|
||||
const requestParams: any = {
|
||||
model: visionModel,
|
||||
messages: [
|
||||
{
|
||||
role: 'user',
|
||||
@@ -211,8 +227,115 @@ export class OpenAiProvider extends MultiModalModel {
|
||||
}
|
||||
],
|
||||
max_tokens: 300
|
||||
});
|
||||
|
||||
};
|
||||
const result = await this.openAiApiClient.chat.completions.create(requestParams);
|
||||
return result.choices[0].message.content || '';
|
||||
}
|
||||
|
||||
public async research(optionsArg: ResearchOptions): Promise<ResearchResponse> {
|
||||
// Determine which model to use based on search depth
|
||||
let model: string;
|
||||
if (optionsArg.searchDepth === 'deep') {
|
||||
model = this.options.researchModel || 'o4-mini-deep-research-2025-06-26';
|
||||
} else {
|
||||
model = this.options.chatModel || 'gpt-5-mini';
|
||||
}
|
||||
|
||||
// Prepare the request parameters
|
||||
const requestParams: any = {
|
||||
model,
|
||||
messages: [
|
||||
{
|
||||
role: 'system',
|
||||
content: 'You are a research assistant. Provide comprehensive answers with citations and sources when available.'
|
||||
},
|
||||
{
|
||||
role: 'user',
|
||||
content: optionsArg.query
|
||||
}
|
||||
],
|
||||
temperature: 0.7
|
||||
};
|
||||
|
||||
// Add web search tools if requested
|
||||
if (optionsArg.includeWebSearch || optionsArg.searchDepth === 'deep') {
|
||||
requestParams.tools = [
|
||||
{
|
||||
type: 'function',
|
||||
function: {
|
||||
name: 'web_search',
|
||||
description: 'Search the web for information',
|
||||
parameters: {
|
||||
type: 'object',
|
||||
properties: {
|
||||
query: {
|
||||
type: 'string',
|
||||
description: 'The search query'
|
||||
}
|
||||
},
|
||||
required: ['query']
|
||||
}
|
||||
}
|
||||
}
|
||||
];
|
||||
requestParams.tool_choice = 'auto';
|
||||
}
|
||||
|
||||
// Add background flag for deep research
|
||||
if (optionsArg.background && optionsArg.searchDepth === 'deep') {
|
||||
requestParams.background = true;
|
||||
}
|
||||
|
||||
try {
|
||||
// Execute the research request
|
||||
const result = await this.openAiApiClient.chat.completions.create(requestParams);
|
||||
|
||||
// Extract the answer
|
||||
const answer = result.choices[0].message.content || '';
|
||||
|
||||
// Parse sources from the response (OpenAI often includes URLs in markdown format)
|
||||
const sources: Array<{ url: string; title: string; snippet: string }> = [];
|
||||
const urlRegex = /\[([^\]]+)\]\(([^)]+)\)/g;
|
||||
let match: RegExpExecArray | null;
|
||||
|
||||
while ((match = urlRegex.exec(answer)) !== null) {
|
||||
sources.push({
|
||||
title: match[1],
|
||||
url: match[2],
|
||||
snippet: '' // OpenAI doesn't provide snippets in standard responses
|
||||
});
|
||||
}
|
||||
|
||||
// Extract search queries if tools were used
|
||||
const searchQueries: string[] = [];
|
||||
if (result.choices[0].message.tool_calls) {
|
||||
for (const toolCall of result.choices[0].message.tool_calls) {
|
||||
if ('function' in toolCall && toolCall.function.name === 'web_search') {
|
||||
try {
|
||||
const args = JSON.parse(toolCall.function.arguments);
|
||||
if (args.query) {
|
||||
searchQueries.push(args.query);
|
||||
}
|
||||
} catch (e) {
|
||||
// Ignore parsing errors
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return {
|
||||
answer,
|
||||
sources,
|
||||
searchQueries: searchQueries.length > 0 ? searchQueries : undefined,
|
||||
metadata: {
|
||||
model,
|
||||
searchDepth: optionsArg.searchDepth || 'basic',
|
||||
tokensUsed: result.usage?.total_tokens
|
||||
}
|
||||
};
|
||||
} catch (error) {
|
||||
console.error('Research API error:', error);
|
||||
throw new Error(`Failed to perform research: ${error.message}`);
|
||||
}
|
||||
}
|
||||
}
|
@@ -1,7 +1,7 @@
|
||||
import * as plugins from './plugins.js';
|
||||
import * as paths from './paths.js';
|
||||
import { MultiModalModel } from './abstract.classes.multimodal.js';
|
||||
import type { ChatOptions, ChatResponse, ChatMessage } from './abstract.classes.multimodal.js';
|
||||
import type { ChatOptions, ChatResponse, ChatMessage, ResearchOptions, ResearchResponse } from './abstract.classes.multimodal.js';
|
||||
|
||||
export interface IPerplexityProviderOptions {
|
||||
perplexityToken: string;
|
||||
@@ -168,4 +168,69 @@ export class PerplexityProvider extends MultiModalModel {
|
||||
}): Promise<{ message: any }> {
|
||||
throw new Error('Document processing is not supported by Perplexity.');
|
||||
}
|
||||
|
||||
public async research(optionsArg: ResearchOptions): Promise<ResearchResponse> {
|
||||
// Perplexity has Sonar models that are optimized for search
|
||||
// sonar models: sonar, sonar-pro
|
||||
const model = optionsArg.searchDepth === 'deep' ? 'sonar-pro' : 'sonar';
|
||||
|
||||
try {
|
||||
const response = await fetch('https://api.perplexity.ai/chat/completions', {
|
||||
method: 'POST',
|
||||
headers: {
|
||||
'Authorization': `Bearer ${this.options.perplexityToken}`,
|
||||
'Content-Type': 'application/json',
|
||||
},
|
||||
body: JSON.stringify({
|
||||
model,
|
||||
messages: [
|
||||
{
|
||||
role: 'system',
|
||||
content: 'You are a helpful research assistant. Provide accurate information with sources.'
|
||||
},
|
||||
{
|
||||
role: 'user',
|
||||
content: optionsArg.query
|
||||
}
|
||||
],
|
||||
temperature: 0.7,
|
||||
max_tokens: 4000
|
||||
}),
|
||||
});
|
||||
|
||||
if (!response.ok) {
|
||||
throw new Error(`Perplexity API error: ${response.statusText}`);
|
||||
}
|
||||
|
||||
const result = await response.json();
|
||||
const answer = result.choices[0].message.content;
|
||||
|
||||
// Parse citations from the response
|
||||
const sources: Array<{ url: string; title: string; snippet: string }> = [];
|
||||
|
||||
// Perplexity includes citations in the format [1], [2], etc. with sources listed
|
||||
// This is a simplified parser - could be enhanced based on actual Perplexity response format
|
||||
if (result.citations) {
|
||||
for (const citation of result.citations) {
|
||||
sources.push({
|
||||
url: citation.url || '',
|
||||
title: citation.title || '',
|
||||
snippet: citation.snippet || ''
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
return {
|
||||
answer,
|
||||
sources,
|
||||
metadata: {
|
||||
model,
|
||||
searchDepth: optionsArg.searchDepth || 'basic'
|
||||
}
|
||||
};
|
||||
} catch (error) {
|
||||
console.error('Perplexity research error:', error);
|
||||
throw new Error(`Failed to perform research: ${error.message}`);
|
||||
}
|
||||
}
|
||||
}
|
@@ -1,7 +1,7 @@
|
||||
import * as plugins from './plugins.js';
|
||||
import * as paths from './paths.js';
|
||||
import { MultiModalModel } from './abstract.classes.multimodal.js';
|
||||
import type { ChatOptions, ChatResponse, ChatMessage } from './abstract.classes.multimodal.js';
|
||||
import type { ChatOptions, ChatResponse, ChatMessage, ResearchOptions, ResearchResponse } from './abstract.classes.multimodal.js';
|
||||
import type { ChatCompletionMessageParam } from 'openai/resources/chat/completions';
|
||||
|
||||
export interface IXAIProviderOptions {
|
||||
@@ -11,7 +11,6 @@ export interface IXAIProviderOptions {
|
||||
export class XAIProvider extends MultiModalModel {
|
||||
private options: IXAIProviderOptions;
|
||||
public openAiApiClient: plugins.openai.default;
|
||||
public smartpdfInstance: plugins.smartpdf.SmartPdf;
|
||||
|
||||
constructor(optionsArg: IXAIProviderOptions) {
|
||||
super();
|
||||
@@ -19,14 +18,16 @@ export class XAIProvider extends MultiModalModel {
|
||||
}
|
||||
|
||||
public async start() {
|
||||
await super.start();
|
||||
this.openAiApiClient = new plugins.openai.default({
|
||||
apiKey: this.options.xaiToken,
|
||||
baseURL: 'https://api.x.ai/v1',
|
||||
});
|
||||
this.smartpdfInstance = new plugins.smartpdf.SmartPdf();
|
||||
}
|
||||
|
||||
public async stop() {}
|
||||
public async stop() {
|
||||
await super.stop();
|
||||
}
|
||||
|
||||
public async chatStream(input: ReadableStream<Uint8Array>): Promise<ReadableStream<string>> {
|
||||
// Create a TextDecoder to handle incoming chunks
|
||||
@@ -180,4 +181,8 @@ export class XAIProvider extends MultiModalModel {
|
||||
message: completion.choices[0]?.message?.content || ''
|
||||
};
|
||||
}
|
||||
|
||||
public async research(optionsArg: ResearchOptions): Promise<ResearchResponse> {
|
||||
throw new Error('Research capabilities are not yet supported by xAI provider.');
|
||||
}
|
||||
}
|
||||
|
Reference in New Issue
Block a user