458 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			TypeScript
		
	
	
	
	
	
			
		
		
	
	
			458 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			TypeScript
		
	
	
	
	
	
import * as plugins from './plugins.js';
 | 
						|
import * as paths from './paths.js';
 | 
						|
import { Readable } from 'stream';
 | 
						|
 | 
						|
// Custom type definition for chat completion messages
 | 
						|
export type TChatCompletionRequestMessage = { 
 | 
						|
  role: "system" | "user" | "assistant"; 
 | 
						|
  content: string; 
 | 
						|
};
 | 
						|
 | 
						|
import { MultiModalModel } from './abstract.classes.multimodal.js';
 | 
						|
import type {
 | 
						|
  ResearchOptions,
 | 
						|
  ResearchResponse,
 | 
						|
  ImageGenerateOptions,
 | 
						|
  ImageEditOptions,
 | 
						|
  ImageResponse
 | 
						|
} from './abstract.classes.multimodal.js';
 | 
						|
 | 
						|
export interface IOpenaiProviderOptions {
 | 
						|
  openaiToken: string;
 | 
						|
  chatModel?: string;
 | 
						|
  audioModel?: string;
 | 
						|
  visionModel?: string;
 | 
						|
  researchModel?: string;
 | 
						|
  imageModel?: string;
 | 
						|
  enableWebSearch?: boolean;
 | 
						|
}
 | 
						|
 | 
						|
export class OpenAiProvider extends MultiModalModel {
 | 
						|
  private options: IOpenaiProviderOptions;
 | 
						|
  public openAiApiClient: plugins.openai.default;
 | 
						|
 | 
						|
  constructor(optionsArg: IOpenaiProviderOptions) {
 | 
						|
    super();
 | 
						|
    this.options = optionsArg;
 | 
						|
  }
 | 
						|
 | 
						|
  public async start() {
 | 
						|
    await super.start();
 | 
						|
    this.openAiApiClient = new plugins.openai.default({
 | 
						|
      apiKey: this.options.openaiToken,
 | 
						|
      dangerouslyAllowBrowser: true,
 | 
						|
    });
 | 
						|
  }
 | 
						|
 | 
						|
  public async stop() {
 | 
						|
    await super.stop();
 | 
						|
  }
 | 
						|
 | 
						|
  public async chatStream(input: ReadableStream<Uint8Array>): Promise<ReadableStream<string>> {
 | 
						|
    // Create a TextDecoder to handle incoming chunks
 | 
						|
    const decoder = new TextDecoder();
 | 
						|
    let buffer = '';
 | 
						|
    let currentMessage: { 
 | 
						|
      role: "function" | "user" | "system" | "assistant" | "tool" | "developer"; 
 | 
						|
      content: string; 
 | 
						|
    } | null = null;
 | 
						|
 | 
						|
    // Create a TransformStream to process the input
 | 
						|
    const transform = new TransformStream<Uint8Array, string>({
 | 
						|
      transform: async (chunk, controller) => {
 | 
						|
        buffer += decoder.decode(chunk, { stream: true });
 | 
						|
 | 
						|
        // Try to parse complete JSON messages from the buffer
 | 
						|
        while (true) {
 | 
						|
          const newlineIndex = buffer.indexOf('\n');
 | 
						|
          if (newlineIndex === -1) break;
 | 
						|
 | 
						|
          const line = buffer.slice(0, newlineIndex);
 | 
						|
          buffer = buffer.slice(newlineIndex + 1);
 | 
						|
 | 
						|
          if (line.trim()) {
 | 
						|
            try {
 | 
						|
              const message = JSON.parse(line);
 | 
						|
              currentMessage = {
 | 
						|
                role: (message.role || 'user') as "function" | "user" | "system" | "assistant" | "tool" | "developer",
 | 
						|
                content: message.content || '',
 | 
						|
              };
 | 
						|
            } catch (e) {
 | 
						|
              console.error('Failed to parse message:', e);
 | 
						|
            }
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
        // If we have a complete message, send it to OpenAI
 | 
						|
        if (currentMessage) {
 | 
						|
          const messageToSend = { role: "user" as const, content: currentMessage.content };
 | 
						|
          const chatModel = this.options.chatModel ?? 'gpt-5-mini';
 | 
						|
          const requestParams: any = {
 | 
						|
            model: chatModel,
 | 
						|
            messages: [messageToSend],
 | 
						|
            stream: true,
 | 
						|
          };
 | 
						|
          // Temperature is omitted since the model does not support it.
 | 
						|
          const stream = await this.openAiApiClient.chat.completions.create(requestParams);
 | 
						|
          // Explicitly cast the stream as an async iterable to satisfy TypeScript.
 | 
						|
          const streamAsyncIterable = stream as unknown as AsyncIterableIterator<any>;
 | 
						|
          // Process each chunk from OpenAI
 | 
						|
          for await (const chunk of streamAsyncIterable) {
 | 
						|
            const content = chunk.choices[0]?.delta?.content;
 | 
						|
            if (content) {
 | 
						|
              controller.enqueue(content);
 | 
						|
            }
 | 
						|
          }
 | 
						|
          currentMessage = null;
 | 
						|
        }
 | 
						|
      },
 | 
						|
 | 
						|
      flush(controller) {
 | 
						|
        if (buffer) {
 | 
						|
          try {
 | 
						|
            const message = JSON.parse(buffer);
 | 
						|
            controller.enqueue(message.content || '');
 | 
						|
          } catch (e) {
 | 
						|
            console.error('Failed to parse remaining buffer:', e);
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    });
 | 
						|
 | 
						|
    // Connect the input to our transform stream
 | 
						|
    return input.pipeThrough(transform);
 | 
						|
  }
 | 
						|
 | 
						|
  // Implementing the synchronous chat interaction
 | 
						|
  public async chat(optionsArg: {
 | 
						|
    systemMessage: string;
 | 
						|
    userMessage: string;
 | 
						|
    messageHistory: {
 | 
						|
      role: 'assistant' | 'user';
 | 
						|
      content: string;
 | 
						|
    }[];
 | 
						|
  }) {
 | 
						|
    const chatModel = this.options.chatModel ?? 'gpt-5-mini';
 | 
						|
    const requestParams: any = {
 | 
						|
      model: chatModel,
 | 
						|
      messages: [
 | 
						|
        { role: 'system', content: optionsArg.systemMessage },
 | 
						|
        ...optionsArg.messageHistory,
 | 
						|
        { role: 'user', content: optionsArg.userMessage },
 | 
						|
      ],
 | 
						|
    };
 | 
						|
    // Temperature parameter removed to avoid unsupported error.
 | 
						|
    const result = await this.openAiApiClient.chat.completions.create(requestParams);
 | 
						|
    return {
 | 
						|
      role: result.choices[0].message.role as 'assistant',
 | 
						|
      message: result.choices[0].message.content,
 | 
						|
    };
 | 
						|
  }
 | 
						|
 | 
						|
  public async audio(optionsArg: { message: string }): Promise<NodeJS.ReadableStream> {
 | 
						|
    const done = plugins.smartpromise.defer<NodeJS.ReadableStream>();
 | 
						|
    const result = await this.openAiApiClient.audio.speech.create({
 | 
						|
      model: this.options.audioModel ?? 'tts-1-hd',
 | 
						|
      input: optionsArg.message,
 | 
						|
      voice: 'nova',
 | 
						|
      response_format: 'mp3',
 | 
						|
      speed: 1,
 | 
						|
    });
 | 
						|
    const stream = result.body;
 | 
						|
    const nodeStream = Readable.fromWeb(stream as any);
 | 
						|
    done.resolve(nodeStream);
 | 
						|
    return done.promise;
 | 
						|
  }
 | 
						|
 | 
						|
  public async document(optionsArg: {
 | 
						|
    systemMessage: string;
 | 
						|
    userMessage: string;
 | 
						|
    pdfDocuments: Uint8Array[];
 | 
						|
    messageHistory: {
 | 
						|
      role: 'assistant' | 'user';
 | 
						|
      content: any;
 | 
						|
    }[];
 | 
						|
  }) {
 | 
						|
    // Ensure SmartPdf is initialized before processing documents
 | 
						|
    await this.ensureSmartpdfReady();
 | 
						|
 | 
						|
    let pdfDocumentImageBytesArray: Uint8Array[] = [];
 | 
						|
 | 
						|
    // Convert each PDF into one or more image byte arrays.
 | 
						|
    for (const pdfDocument of optionsArg.pdfDocuments) {
 | 
						|
      const documentImageArray = await this.smartpdfInstance!.convertPDFToPngBytes(pdfDocument);
 | 
						|
      pdfDocumentImageBytesArray = pdfDocumentImageBytesArray.concat(documentImageArray);
 | 
						|
    }
 | 
						|
 | 
						|
    console.log(`image smartfile array`);
 | 
						|
    console.log(pdfDocumentImageBytesArray.map((smartfile) => smartfile.length));
 | 
						|
 | 
						|
    // Filter out any empty buffers to avoid sending invalid image URLs.
 | 
						|
    const validImageBytesArray = pdfDocumentImageBytesArray.filter(imageBytes => imageBytes && imageBytes.length > 0);
 | 
						|
    const imageAttachments = validImageBytesArray.map(imageBytes => ({
 | 
						|
      type: 'image_url',
 | 
						|
      image_url: {
 | 
						|
        url: 'data:image/png;base64,' + Buffer.from(imageBytes).toString('base64'),
 | 
						|
      },
 | 
						|
    }));
 | 
						|
 | 
						|
    const chatModel = this.options.chatModel ?? 'gpt-5-mini';
 | 
						|
    const requestParams: any = {
 | 
						|
      model: chatModel,
 | 
						|
      messages: [
 | 
						|
        { role: 'system', content: optionsArg.systemMessage },
 | 
						|
        ...optionsArg.messageHistory,
 | 
						|
        {
 | 
						|
          role: 'user',
 | 
						|
          content: [
 | 
						|
            { type: 'text', text: optionsArg.userMessage },
 | 
						|
            ...imageAttachments,
 | 
						|
          ],
 | 
						|
        },
 | 
						|
      ],
 | 
						|
    };
 | 
						|
    // Temperature parameter removed.
 | 
						|
    const result = await this.openAiApiClient.chat.completions.create(requestParams);
 | 
						|
    return {
 | 
						|
      message: result.choices[0].message,
 | 
						|
    };
 | 
						|
  }
 | 
						|
 | 
						|
  public async vision(optionsArg: { image: Buffer; prompt: string }): Promise<string> {
 | 
						|
    const visionModel = this.options.visionModel ?? '04-mini';
 | 
						|
    const requestParams: any = {
 | 
						|
      model: visionModel,
 | 
						|
      messages: [
 | 
						|
        {
 | 
						|
          role: 'user',
 | 
						|
          content: [
 | 
						|
            { type: 'text', text: optionsArg.prompt },
 | 
						|
            {
 | 
						|
              type: 'image_url',
 | 
						|
              image_url: {
 | 
						|
                url: `data:image/jpeg;base64,${optionsArg.image.toString('base64')}`
 | 
						|
              }
 | 
						|
            }
 | 
						|
          ]
 | 
						|
        }
 | 
						|
      ],
 | 
						|
      max_tokens: 300
 | 
						|
    };
 | 
						|
    const result = await this.openAiApiClient.chat.completions.create(requestParams);
 | 
						|
    return result.choices[0].message.content || '';
 | 
						|
  }
 | 
						|
 | 
						|
  public async research(optionsArg: ResearchOptions): Promise<ResearchResponse> {
 | 
						|
    // Determine which model to use - Deep Research API requires specific models
 | 
						|
    let model: string;
 | 
						|
    if (optionsArg.searchDepth === 'deep') {
 | 
						|
      model = this.options.researchModel || 'o4-mini-deep-research-2025-06-26';
 | 
						|
    } else {
 | 
						|
      // For basic/advanced, still use deep research models if web search is needed
 | 
						|
      if (optionsArg.includeWebSearch) {
 | 
						|
        model = this.options.researchModel || 'o4-mini-deep-research-2025-06-26';
 | 
						|
      } else {
 | 
						|
        model = this.options.chatModel || 'gpt-5-mini';
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    const systemMessage = 'You are a research assistant. Provide comprehensive answers with citations and sources when available.';
 | 
						|
 | 
						|
    // Prepare request parameters using Deep Research API format
 | 
						|
    const requestParams: any = {
 | 
						|
      model,
 | 
						|
      instructions: systemMessage,
 | 
						|
      input: optionsArg.query
 | 
						|
    };
 | 
						|
 | 
						|
    // Add web search tool if requested
 | 
						|
    if (optionsArg.includeWebSearch || optionsArg.searchDepth === 'deep') {
 | 
						|
      requestParams.tools = [
 | 
						|
        {
 | 
						|
          type: 'web_search_preview',
 | 
						|
          search_context_size: optionsArg.searchDepth === 'deep' ? 'high' :
 | 
						|
                              optionsArg.searchDepth === 'advanced' ? 'medium' : 'low'
 | 
						|
        }
 | 
						|
      ];
 | 
						|
    }
 | 
						|
 | 
						|
    // Add background flag for deep research
 | 
						|
    if (optionsArg.background && optionsArg.searchDepth === 'deep') {
 | 
						|
      requestParams.background = true;
 | 
						|
    }
 | 
						|
 | 
						|
    try {
 | 
						|
      // Execute the research request using Deep Research API
 | 
						|
      const result = await this.openAiApiClient.responses.create(requestParams);
 | 
						|
 | 
						|
      // Extract the answer from output items
 | 
						|
      let answer = '';
 | 
						|
      const sources: Array<{ url: string; title: string; snippet: string }> = [];
 | 
						|
      const searchQueries: string[] = [];
 | 
						|
 | 
						|
      // Process output items
 | 
						|
      for (const item of result.output || []) {
 | 
						|
        // Extract message content
 | 
						|
        if (item.type === 'message' && 'content' in item) {
 | 
						|
          const messageItem = item as any;
 | 
						|
          for (const contentItem of messageItem.content || []) {
 | 
						|
            if (contentItem.type === 'output_text' && 'text' in contentItem) {
 | 
						|
              answer += contentItem.text;
 | 
						|
            }
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
        // Extract web search queries
 | 
						|
        if (item.type === 'web_search_call' && 'action' in item) {
 | 
						|
          const searchItem = item as any;
 | 
						|
          if (searchItem.action && searchItem.action.type === 'search' && 'query' in searchItem.action) {
 | 
						|
            searchQueries.push(searchItem.action.query);
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // Parse sources from markdown links in the answer
 | 
						|
      const urlRegex = /\[([^\]]+)\]\(([^)]+)\)/g;
 | 
						|
      let match: RegExpExecArray | null;
 | 
						|
 | 
						|
      while ((match = urlRegex.exec(answer)) !== null) {
 | 
						|
        sources.push({
 | 
						|
          title: match[1],
 | 
						|
          url: match[2],
 | 
						|
          snippet: ''
 | 
						|
        });
 | 
						|
      }
 | 
						|
 | 
						|
      return {
 | 
						|
        answer,
 | 
						|
        sources,
 | 
						|
        searchQueries: searchQueries.length > 0 ? searchQueries : undefined,
 | 
						|
        metadata: {
 | 
						|
          model,
 | 
						|
          searchDepth: optionsArg.searchDepth || 'basic',
 | 
						|
          tokensUsed: result.usage?.total_tokens
 | 
						|
        }
 | 
						|
      };
 | 
						|
    } catch (error) {
 | 
						|
      console.error('Research API error:', error);
 | 
						|
      throw new Error(`Failed to perform research: ${error.message}`);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Image generation using OpenAI's gpt-image-1 or DALL-E models
 | 
						|
   */
 | 
						|
  public async imageGenerate(optionsArg: ImageGenerateOptions): Promise<ImageResponse> {
 | 
						|
    const model = optionsArg.model || this.options.imageModel || 'gpt-image-1';
 | 
						|
 | 
						|
    try {
 | 
						|
      const requestParams: any = {
 | 
						|
        model,
 | 
						|
        prompt: optionsArg.prompt,
 | 
						|
        n: optionsArg.n || 1,
 | 
						|
      };
 | 
						|
 | 
						|
      // Add gpt-image-1 specific parameters
 | 
						|
      if (model === 'gpt-image-1') {
 | 
						|
        if (optionsArg.quality) requestParams.quality = optionsArg.quality;
 | 
						|
        if (optionsArg.size) requestParams.size = optionsArg.size;
 | 
						|
        if (optionsArg.background) requestParams.background = optionsArg.background;
 | 
						|
        if (optionsArg.outputFormat) requestParams.output_format = optionsArg.outputFormat;
 | 
						|
        if (optionsArg.outputCompression !== undefined) requestParams.output_compression = optionsArg.outputCompression;
 | 
						|
        if (optionsArg.moderation) requestParams.moderation = optionsArg.moderation;
 | 
						|
        if (optionsArg.stream !== undefined) requestParams.stream = optionsArg.stream;
 | 
						|
        if (optionsArg.partialImages !== undefined) requestParams.partial_images = optionsArg.partialImages;
 | 
						|
      } else if (model === 'dall-e-3') {
 | 
						|
        // DALL-E 3 specific parameters
 | 
						|
        if (optionsArg.quality) requestParams.quality = optionsArg.quality;
 | 
						|
        if (optionsArg.size) requestParams.size = optionsArg.size;
 | 
						|
        if (optionsArg.style) requestParams.style = optionsArg.style;
 | 
						|
        requestParams.response_format = 'b64_json'; // Always use base64 for consistency
 | 
						|
      } else if (model === 'dall-e-2') {
 | 
						|
        // DALL-E 2 specific parameters
 | 
						|
        if (optionsArg.size) requestParams.size = optionsArg.size;
 | 
						|
        requestParams.response_format = 'b64_json';
 | 
						|
      }
 | 
						|
 | 
						|
      const result = await this.openAiApiClient.images.generate(requestParams);
 | 
						|
 | 
						|
      const images = (result.data || []).map(img => ({
 | 
						|
        b64_json: img.b64_json,
 | 
						|
        url: img.url,
 | 
						|
        revisedPrompt: img.revised_prompt
 | 
						|
      }));
 | 
						|
 | 
						|
      return {
 | 
						|
        images,
 | 
						|
        metadata: {
 | 
						|
          model,
 | 
						|
          quality: result.quality,
 | 
						|
          size: result.size,
 | 
						|
          outputFormat: result.output_format,
 | 
						|
          tokensUsed: result.usage?.total_tokens
 | 
						|
        }
 | 
						|
      };
 | 
						|
    } catch (error) {
 | 
						|
      console.error('Image generation error:', error);
 | 
						|
      throw new Error(`Failed to generate image: ${error.message}`);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Image editing using OpenAI's gpt-image-1 or DALL-E 2 models
 | 
						|
   */
 | 
						|
  public async imageEdit(optionsArg: ImageEditOptions): Promise<ImageResponse> {
 | 
						|
    const model = optionsArg.model || this.options.imageModel || 'gpt-image-1';
 | 
						|
 | 
						|
    try {
 | 
						|
      const requestParams: any = {
 | 
						|
        model,
 | 
						|
        image: optionsArg.image,
 | 
						|
        prompt: optionsArg.prompt,
 | 
						|
        n: optionsArg.n || 1,
 | 
						|
      };
 | 
						|
 | 
						|
      // Add mask if provided
 | 
						|
      if (optionsArg.mask) {
 | 
						|
        requestParams.mask = optionsArg.mask;
 | 
						|
      }
 | 
						|
 | 
						|
      // Add gpt-image-1 specific parameters
 | 
						|
      if (model === 'gpt-image-1') {
 | 
						|
        if (optionsArg.quality) requestParams.quality = optionsArg.quality;
 | 
						|
        if (optionsArg.size) requestParams.size = optionsArg.size;
 | 
						|
        if (optionsArg.background) requestParams.background = optionsArg.background;
 | 
						|
        if (optionsArg.outputFormat) requestParams.output_format = optionsArg.outputFormat;
 | 
						|
        if (optionsArg.outputCompression !== undefined) requestParams.output_compression = optionsArg.outputCompression;
 | 
						|
        if (optionsArg.stream !== undefined) requestParams.stream = optionsArg.stream;
 | 
						|
        if (optionsArg.partialImages !== undefined) requestParams.partial_images = optionsArg.partialImages;
 | 
						|
      } else if (model === 'dall-e-2') {
 | 
						|
        // DALL-E 2 specific parameters
 | 
						|
        if (optionsArg.size) requestParams.size = optionsArg.size;
 | 
						|
        requestParams.response_format = 'b64_json';
 | 
						|
      }
 | 
						|
 | 
						|
      const result = await this.openAiApiClient.images.edit(requestParams);
 | 
						|
 | 
						|
      const images = (result.data || []).map(img => ({
 | 
						|
        b64_json: img.b64_json,
 | 
						|
        url: img.url,
 | 
						|
        revisedPrompt: img.revised_prompt
 | 
						|
      }));
 | 
						|
 | 
						|
      return {
 | 
						|
        images,
 | 
						|
        metadata: {
 | 
						|
          model,
 | 
						|
          quality: result.quality,
 | 
						|
          size: result.size,
 | 
						|
          outputFormat: result.output_format,
 | 
						|
          tokensUsed: result.usage?.total_tokens
 | 
						|
        }
 | 
						|
      };
 | 
						|
    } catch (error) {
 | 
						|
      console.error('Image edit error:', error);
 | 
						|
      throw new Error(`Failed to edit image: ${error.message}`);
 | 
						|
    }
 | 
						|
  }
 | 
						|
} |