2 Commits

Author SHA1 Message Date
Juergen Kunz
0b2a058550 fix(core): improve SmartPdf lifecycle management and update dependencies
Some checks failed
Default (tags) / security (push) Failing after 19s
Default (tags) / test (push) Failing after 16s
Default (tags) / release (push) Has been skipped
Default (tags) / metadata (push) Has been skipped
2025-08-01 18:25:46 +00:00
Juergen Kunz
88d15c89e5 0.5.6
Some checks failed
Default (tags) / security (push) Failing after 24s
Default (tags) / test (push) Failing after 13s
Default (tags) / release (push) Has been skipped
Default (tags) / metadata (push) Has been skipped
2025-07-26 16:17:11 +00:00
11 changed files with 875 additions and 436 deletions

View File

@@ -1,5 +1,20 @@
# Changelog
## 2025-08-01 - 0.5.8 - fix(core)
Fix SmartPdf lifecycle management and update dependencies
- Moved SmartPdf instance management to the MultiModalModel base class for better resource sharing
- Fixed memory leaks by properly implementing cleanup in the base class stop() method
- Updated SmartAi class to properly stop all providers on shutdown
- Updated @push.rocks/smartrequest from v2.1.0 to v4.2.1 with migration to new API
- Enhanced readme with professional documentation and feature matrix
## 2025-07-26 - 0.5.7 - fix(provider.openai)
Fix stream type mismatch in audio method
- Fixed type error where OpenAI SDK returns a web ReadableStream but the audio method needs to return a Node.js ReadableStream
- Added conversion using Node.js's built-in Readable.fromWeb() method
## 2025-07-25 - 0.5.5 - feat(documentation)
Comprehensive documentation enhancement and test improvements

View File

@@ -1,6 +1,6 @@
{
"name": "@push.rocks/smartai",
"version": "0.5.5",
"version": "0.5.8",
"private": false,
"description": "SmartAi is a versatile TypeScript library designed to facilitate integration and interaction with various AI models, offering functionalities for chat, audio generation, document processing, and vision tasks.",
"main": "dist_ts/index.js",
@@ -26,12 +26,12 @@
"@anthropic-ai/sdk": "^0.57.0",
"@push.rocks/smartarray": "^1.1.0",
"@push.rocks/smartfile": "^11.2.5",
"@push.rocks/smartpath": "^5.0.18",
"@push.rocks/smartpdf": "^3.2.2",
"@push.rocks/smartpath": "^6.0.0",
"@push.rocks/smartpdf": "^3.3.0",
"@push.rocks/smartpromise": "^4.2.3",
"@push.rocks/smartrequest": "^2.1.0",
"@push.rocks/smartrequest": "^4.2.1",
"@push.rocks/webstream": "^1.0.10",
"openai": "^5.10.2"
"openai": "^5.11.0"
},
"repository": {
"type": "git",

505
pnpm-lock.yaml generated

File diff suppressed because it is too large Load Diff

693
readme.md
View File

@@ -1,393 +1,476 @@
# @push.rocks/smartai
**One API to rule them all** 🚀
SmartAi is a powerful TypeScript library that provides a unified interface for integrating with multiple AI providers including OpenAI, Anthropic, Perplexity, Ollama, Groq, XAI, and Exo. It offers comprehensive support for chat interactions, streaming conversations, text-to-speech, document analysis, and vision processing.
[![npm version](https://img.shields.io/npm/v/@push.rocks/smartai.svg)](https://www.npmjs.com/package/@push.rocks/smartai)
[![TypeScript](https://img.shields.io/badge/TypeScript-5.x-blue.svg)](https://www.typescriptlang.org/)
[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
## Install
SmartAI unifies the world's leading AI providers - OpenAI, Anthropic, Perplexity, Ollama, Groq, XAI, and Exo - under a single, elegant TypeScript interface. Build AI applications at lightning speed without vendor lock-in.
To install SmartAi into your project, use pnpm:
## 🎯 Why SmartAI?
- **🔌 Universal Interface**: Write once, run with any AI provider. Switch between GPT-4, Claude, Llama, or Grok with a single line change.
- **🛡️ Type-Safe**: Full TypeScript support with comprehensive type definitions for all operations
- **🌊 Streaming First**: Built for real-time applications with native streaming support
- **🎨 Multi-Modal**: Seamlessly work with text, images, audio, and documents
- **🏠 Local & Cloud**: Support for both cloud providers and local models via Ollama
- **⚡ Zero Lock-In**: Your code remains portable across all AI providers
## 🚀 Quick Start
```bash
pnpm install @push.rocks/smartai
npm install @push.rocks/smartai
```
## Usage
SmartAi provides a clean, consistent API across all supported AI providers. This documentation covers all features with practical examples for each provider and capability.
### Initialization
First, initialize SmartAi with the API tokens and configuration for the providers you want to use:
```typescript
import { SmartAi } from '@push.rocks/smartai';
const smartAi = new SmartAi({
// OpenAI - for GPT models, DALL-E, and TTS
openaiToken: 'your-openai-api-key',
// Anthropic - for Claude models
anthropicToken: 'your-anthropic-api-key',
// Perplexity - for research-focused AI
perplexityToken: 'your-perplexity-api-key',
// Groq - for fast inference
groqToken: 'your-groq-api-key',
// XAI - for Grok models
xaiToken: 'your-xai-api-key',
// Ollama - for local models
ollama: {
baseUrl: 'http://localhost:11434',
model: 'llama2', // default model for chat
visionModel: 'llava' // default model for vision
},
// Exo - for distributed inference
exo: {
baseUrl: 'http://localhost:8080/v1',
apiKey: 'your-exo-api-key'
}
// Initialize with your favorite providers
const ai = new SmartAi({
openaiToken: 'sk-...',
anthropicToken: 'sk-ant-...'
});
// Start the SmartAi instance
await smartAi.start();
```
await ai.start();
## Supported Providers
SmartAi supports the following AI providers:
| Provider | Use Case | Key Features |
|----------|----------|--------------|
| **OpenAI** | General purpose, GPT models | Chat, streaming, TTS, vision, documents |
| **Anthropic** | Claude models, safety-focused | Chat, streaming, vision, documents |
| **Perplexity** | Research and factual queries | Chat, streaming, documents |
| **Groq** | Fast inference | Chat, streaming |
| **XAI** | Grok models | Chat, streaming |
| **Ollama** | Local models | Chat, streaming, vision |
| **Exo** | Distributed inference | Chat, streaming |
## Core Features
### 1. Chat Interactions
SmartAi provides both synchronous and streaming chat capabilities across all supported providers.
#### Synchronous Chat
Simple request-response interactions with any provider:
```typescript
// OpenAI Example
const openAiResponse = await smartAi.openaiProvider.chat({
// Same API, multiple providers
const response = await ai.openaiProvider.chat({
systemMessage: 'You are a helpful assistant.',
userMessage: 'What is the capital of France?',
userMessage: 'Explain quantum computing in simple terms',
messageHistory: []
});
console.log(openAiResponse.message); // "The capital of France is Paris."
// Anthropic Example
const anthropicResponse = await smartAi.anthropicProvider.chat({
systemMessage: 'You are a knowledgeable historian.',
userMessage: 'Tell me about the French Revolution',
messageHistory: []
});
console.log(anthropicResponse.message);
// Using message history for context
const contextualResponse = await smartAi.openaiProvider.chat({
systemMessage: 'You are a math tutor.',
userMessage: 'What about multiplication?',
messageHistory: [
{ role: 'user', content: 'Can you teach me math?' },
{ role: 'assistant', content: 'Of course! What would you like to learn?' }
]
});
```
#### Streaming Chat
## 📊 Provider Capabilities Matrix
For real-time, token-by-token responses:
Choose the right provider for your use case:
| Provider | Chat | Streaming | TTS | Vision | Documents | Highlights |
|----------|:----:|:---------:|:---:|:------:|:---------:|------------|
| **OpenAI** | ✅ | ✅ | ✅ | ✅ | ✅ | • GPT-4, DALL-E 3<br>• Industry standard<br>• Most features |
| **Anthropic** | ✅ | ✅ | ❌ | ✅ | ✅ | • Claude 3 Opus<br>• Superior reasoning<br>• 200k context |
| **Ollama** | ✅ | ✅ | ❌ | ✅ | ✅ | • 100% local<br>• Privacy-first<br>• No API costs |
| **XAI** | ✅ | ✅ | ❌ | ❌ | ✅ | • Grok models<br>• Real-time data<br>• Uncensored |
| **Perplexity** | ✅ | ✅ | ❌ | ❌ | ❌ | • Web-aware<br>• Research-focused<br>• Citations |
| **Groq** | ✅ | ✅ | ❌ | ❌ | ❌ | • 10x faster<br>• LPU inference<br>• Low latency |
| **Exo** | ✅ | ✅ | ❌ | ❌ | ❌ | • Distributed<br>• P2P compute<br>• Decentralized |
## 🎮 Core Features
### 💬 Universal Chat Interface
Works identically across all providers:
```typescript
// Create a readable stream for input
const { readable, writable } = new TransformStream();
const writer = writable.getWriter();
// Use GPT-4 for complex reasoning
const gptResponse = await ai.openaiProvider.chat({
systemMessage: 'You are a expert physicist.',
userMessage: 'Explain the implications of quantum entanglement',
messageHistory: []
});
// Send a message
const encoder = new TextEncoder();
await writer.write(encoder.encode(JSON.stringify({
role: 'user',
content: 'Write a haiku about programming'
})));
await writer.close();
// Use Claude for safety-critical applications
const claudeResponse = await ai.anthropicProvider.chat({
systemMessage: 'You are a medical advisor.',
userMessage: 'Review this patient data for concerns',
messageHistory: []
});
// Get streaming response
const responseStream = await smartAi.openaiProvider.chatStream(readable);
const reader = responseStream.getReader();
const decoder = new TextDecoder();
// Use Groq for lightning-fast responses
const groqResponse = await ai.groqProvider.chat({
systemMessage: 'You are a code reviewer.',
userMessage: 'Quick! Find the bug in this code: ...',
messageHistory: []
});
```
// Read the stream
### 🌊 Real-Time Streaming
Build responsive chat interfaces with token-by-token streaming:
```typescript
// Create a chat stream
const stream = await ai.openaiProvider.chatStream(inputStream);
const reader = stream.getReader();
// Display responses as they arrive
while (true) {
const { done, value } = await reader.read();
if (done) break;
process.stdout.write(value); // Print each chunk as it arrives
// Update UI in real-time
process.stdout.write(value);
}
```
### 2. Text-to-Speech (Audio Generation)
### 🎙️ Text-to-Speech
Convert text to natural-sounding speech (currently supported by OpenAI):
Generate natural voices with OpenAI:
```typescript
import * as fs from 'fs';
// Generate speech from text
const audioStream = await smartAi.openaiProvider.audio({
message: 'Hello world! This is a test of the text-to-speech system.'
const audioStream = await ai.openaiProvider.audio({
message: 'Welcome to the future of AI development!'
});
// Save to file
const writeStream = fs.createWriteStream('output.mp3');
audioStream.pipe(writeStream);
// Stream directly to speakers
audioStream.pipe(speakerOutput);
// Or use in your application directly
audioStream.on('data', (chunk) => {
// Process audio chunks
// Or save to file
audioStream.pipe(fs.createWriteStream('welcome.mp3'));
```
### 👁️ Vision Analysis
Understand images with multiple providers:
```typescript
const image = fs.readFileSync('product-photo.jpg');
// OpenAI: General purpose vision
const gptVision = await ai.openaiProvider.vision({
image,
prompt: 'Describe this product and suggest marketing angles'
});
// Anthropic: Detailed analysis
const claudeVision = await ai.anthropicProvider.vision({
image,
prompt: 'Identify any safety concerns or defects'
});
// Ollama: Private, local analysis
const ollamaVision = await ai.ollamaProvider.vision({
image,
prompt: 'Extract all text and categorize the content'
});
```
### 3. Vision Processing
### 📄 Document Intelligence
Analyze images and get detailed descriptions:
Extract insights from PDFs with AI:
```typescript
import * as fs from 'fs';
const contract = fs.readFileSync('contract.pdf');
const invoice = fs.readFileSync('invoice.pdf');
// Read an image file
const imageBuffer = fs.readFileSync('image.jpg');
// OpenAI Vision
const openAiVision = await smartAi.openaiProvider.vision({
image: imageBuffer,
prompt: 'What is in this image? Describe in detail.'
});
console.log('OpenAI:', openAiVision);
// Anthropic Vision
const anthropicVision = await smartAi.anthropicProvider.vision({
image: imageBuffer,
prompt: 'Analyze this image and identify any text or objects.'
});
console.log('Anthropic:', anthropicVision);
// Ollama Vision (using local model)
const ollamaVision = await smartAi.ollamaProvider.vision({
image: imageBuffer,
prompt: 'Describe the colors and composition of this image.'
});
console.log('Ollama:', ollamaVision);
```
### 4. Document Analysis
Process and analyze PDF documents with AI:
```typescript
import * as fs from 'fs';
// Read PDF documents
const pdfBuffer = fs.readFileSync('document.pdf');
// Analyze with OpenAI
const openAiAnalysis = await smartAi.openaiProvider.document({
systemMessage: 'You are a document analyst. Extract key information.',
userMessage: 'Summarize this document and list the main points.',
messageHistory: [],
pdfDocuments: [pdfBuffer]
});
console.log('OpenAI Analysis:', openAiAnalysis.message);
// Analyze with Anthropic
const anthropicAnalysis = await smartAi.anthropicProvider.document({
// Analyze documents
const analysis = await ai.openaiProvider.document({
systemMessage: 'You are a legal expert.',
userMessage: 'Identify any legal terms or implications in this document.',
userMessage: 'Compare these documents and highlight key differences',
messageHistory: [],
pdfDocuments: [pdfBuffer]
pdfDocuments: [contract, invoice]
});
console.log('Anthropic Analysis:', anthropicAnalysis.message);
// Process multiple documents
const doc1 = fs.readFileSync('contract1.pdf');
const doc2 = fs.readFileSync('contract2.pdf');
const comparison = await smartAi.openaiProvider.document({
systemMessage: 'You are a contract analyst.',
userMessage: 'Compare these two contracts and highlight the differences.',
// Multi-document analysis
const taxDocs = [form1099, w2, receipts];
const taxAnalysis = await ai.anthropicProvider.document({
systemMessage: 'You are a tax advisor.',
userMessage: 'Prepare a tax summary from these documents',
messageHistory: [],
pdfDocuments: [doc1, doc2]
pdfDocuments: taxDocs
});
console.log('Comparison:', comparison.message);
```
### 5. Conversation Management
### 🔄 Persistent Conversations
Create persistent conversation sessions with any provider:
Maintain context across interactions:
```typescript
// Create a conversation with OpenAI
const conversation = smartAi.createConversation('openai');
// Create a coding assistant conversation
const assistant = ai.createConversation('openai');
await assistant.setSystemMessage('You are an expert TypeScript developer.');
// Set the system message
await conversation.setSystemMessage('You are a helpful coding assistant.');
// Get input and output streams
const inputWriter = conversation.getInputStreamWriter();
const outputStream = conversation.getOutputStream();
// Set up output reader
const reader = outputStream.getReader();
const decoder = new TextDecoder();
// Send messages
await inputWriter.write('How do I create a REST API in Node.js?');
// Read responses
while (true) {
const { done, value } = await reader.read();
if (done) break;
console.log('Assistant:', decoder.decode(value));
}
// First question
const inputWriter = assistant.getInputStreamWriter();
await inputWriter.write('How do I implement a singleton pattern?');
// Continue the conversation
await inputWriter.write('Can you show me an example with Express?');
await inputWriter.write('Now show me how to make it thread-safe');
// Create conversations with different providers
const anthropicConversation = smartAi.createConversation('anthropic');
const groqConversation = smartAi.createConversation('groq');
// The assistant remembers the entire context
```
## Advanced Usage
## 🚀 Real-World Examples
### Error Handling
Always wrap AI operations in try-catch blocks for robust error handling:
### Build a Customer Support Bot
```typescript
try {
const response = await smartAi.openaiProvider.chat({
systemMessage: 'You are an assistant.',
userMessage: 'Hello!',
const supportBot = new SmartAi({
anthropicToken: process.env.ANTHROPIC_KEY // Claude for empathetic responses
});
async function handleCustomerQuery(query: string, history: ChatMessage[]) {
try {
const response = await supportBot.anthropicProvider.chat({
systemMessage: `You are a helpful customer support agent.
Be empathetic, professional, and solution-oriented.`,
userMessage: query,
messageHistory: history
});
return response.message;
} catch (error) {
// Fallback to another provider if needed
return await supportBot.openaiProvider.chat({...});
}
}
```
### Create a Code Review Assistant
```typescript
const codeReviewer = new SmartAi({
groqToken: process.env.GROQ_KEY // Groq for speed
});
async function reviewCode(code: string, language: string) {
const startTime = Date.now();
const review = await codeReviewer.groqProvider.chat({
systemMessage: `You are a ${language} expert. Review code for:
- Security vulnerabilities
- Performance issues
- Best practices
- Potential bugs`,
userMessage: `Review this code:\n\n${code}`,
messageHistory: []
});
console.log(response.message);
} catch (error) {
if (error.code === 'rate_limit_exceeded') {
console.error('Rate limit hit, please retry later');
} else if (error.code === 'invalid_api_key') {
console.error('Invalid API key provided');
} else {
console.error('Unexpected error:', error.message);
console.log(`Review completed in ${Date.now() - startTime}ms`);
return review.message;
}
```
### Build a Research Assistant
```typescript
const researcher = new SmartAi({
perplexityToken: process.env.PERPLEXITY_KEY
});
async function research(topic: string) {
// Perplexity excels at web-aware research
const findings = await researcher.perplexityProvider.chat({
systemMessage: 'You are a research assistant. Provide factual, cited information.',
userMessage: `Research the latest developments in ${topic}`,
messageHistory: []
});
return findings.message;
}
```
### Local AI for Sensitive Data
```typescript
const localAI = new SmartAi({
ollama: {
baseUrl: 'http://localhost:11434',
model: 'llama2',
visionModel: 'llava'
}
});
// Process sensitive documents without leaving your infrastructure
async function analyzeSensitiveDoc(pdfBuffer: Buffer) {
const analysis = await localAI.ollamaProvider.document({
systemMessage: 'Extract and summarize key information.',
userMessage: 'Analyze this confidential document',
messageHistory: [],
pdfDocuments: [pdfBuffer]
});
// Data never leaves your servers
return analysis.message;
}
```
## ⚡ Performance Tips
### 1. Provider Selection Strategy
```typescript
class SmartAIRouter {
constructor(private ai: SmartAi) {}
async query(message: string, requirements: {
speed?: boolean;
accuracy?: boolean;
cost?: boolean;
privacy?: boolean;
}) {
if (requirements.privacy) {
return this.ai.ollamaProvider.chat({...}); // Local only
}
if (requirements.speed) {
return this.ai.groqProvider.chat({...}); // 10x faster
}
if (requirements.accuracy) {
return this.ai.anthropicProvider.chat({...}); // Best reasoning
}
// Default fallback
return this.ai.openaiProvider.chat({...});
}
}
```
### Streaming with Custom Processing
Implement custom transformations on streaming responses:
### 2. Streaming for Large Responses
```typescript
// Create a custom transform stream
const customTransform = new TransformStream({
transform(chunk, controller) {
// Example: Add timestamps to each chunk
const timestamp = new Date().toISOString();
controller.enqueue(`[${timestamp}] ${chunk}`);
// Don't wait for the entire response
async function streamResponse(userQuery: string) {
const stream = await ai.openaiProvider.chatStream(createInputStream(userQuery));
// Process tokens as they arrive
for await (const chunk of stream) {
updateUI(chunk); // Immediate feedback
await processChunk(chunk); // Parallel processing
}
});
// Apply to streaming chat
const inputStream = new ReadableStream({
start(controller) {
controller.enqueue(new TextEncoder().encode(JSON.stringify({
role: 'user',
content: 'Tell me a story'
})));
controller.close();
}
});
const responseStream = await smartAi.openaiProvider.chatStream(inputStream);
const processedStream = responseStream.pipeThrough(customTransform);
// Read processed stream
const reader = processedStream.getReader();
while (true) {
const { done, value } = await reader.read();
if (done) break;
console.log(value);
}
```
### Provider-Specific Features
Each provider may have unique capabilities. Here's how to leverage them:
### 3. Parallel Multi-Provider Queries
```typescript
// OpenAI - Use specific models
const gpt4Response = await smartAi.openaiProvider.chat({
systemMessage: 'You are a helpful assistant.',
userMessage: 'Explain quantum computing',
messageHistory: []
});
// Anthropic - Use Claude's strength in analysis
const codeReview = await smartAi.anthropicProvider.chat({
systemMessage: 'You are a code reviewer.',
userMessage: 'Review this code for security issues: ...',
messageHistory: []
});
// Perplexity - Best for research and current events
const research = await smartAi.perplexityProvider.chat({
systemMessage: 'You are a research assistant.',
userMessage: 'What are the latest developments in renewable energy?',
messageHistory: []
});
// Groq - Optimized for speed
const quickResponse = await smartAi.groqProvider.chat({
systemMessage: 'You are a quick helper.',
userMessage: 'Give me a one-line summary of photosynthesis',
messageHistory: []
});
// Get the best answer from multiple AIs
async function consensusQuery(question: string) {
const providers = [
ai.openaiProvider.chat({...}),
ai.anthropicProvider.chat({...}),
ai.perplexityProvider.chat({...})
];
const responses = await Promise.all(providers);
return synthesizeResponses(responses);
}
```
### Performance Optimization
## 🛠️ Advanced Features
Tips for optimal performance:
### Custom Streaming Transformations
```typescript
// 1. Reuse providers instead of creating new instances
const smartAi = new SmartAi({ /* config */ });
await smartAi.start(); // Initialize once
// Add real-time translation
const translationStream = new TransformStream({
async transform(chunk, controller) {
const translated = await translateChunk(chunk);
controller.enqueue(translated);
}
});
// 2. Use streaming for long responses
// Streaming reduces time-to-first-token and memory usage
// 3. Batch operations when possible
const promises = [
smartAi.openaiProvider.chat({ /* ... */ }),
smartAi.anthropicProvider.chat({ /* ... */ })
];
const results = await Promise.all(promises);
// 4. Clean up resources
await smartAi.stop(); // When done
const responseStream = await ai.openaiProvider.chatStream(input);
const translatedStream = responseStream.pipeThrough(translationStream);
```
### Error Handling & Fallbacks
```typescript
class ResilientAI {
private providers = ['openai', 'anthropic', 'groq'];
async query(opts: ChatOptions): Promise<ChatResponse> {
for (const provider of this.providers) {
try {
return await this.ai[`${provider}Provider`].chat(opts);
} catch (error) {
console.warn(`${provider} failed, trying next...`);
continue;
}
}
throw new Error('All providers failed');
}
}
```
### Token Counting & Cost Management
```typescript
// Track usage across providers
class UsageTracker {
async trackedChat(provider: string, options: ChatOptions) {
const start = Date.now();
const response = await ai[`${provider}Provider`].chat(options);
const usage = {
provider,
duration: Date.now() - start,
inputTokens: estimateTokens(options),
outputTokens: estimateTokens(response.message)
};
await this.logUsage(usage);
return response;
}
}
```
## 📦 Installation & Setup
### Prerequisites
- Node.js 16+
- TypeScript 4.5+
- API keys for your chosen providers
### Environment Setup
```bash
# Install
npm install @push.rocks/smartai
# Set up environment variables
export OPENAI_API_KEY=sk-...
export ANTHROPIC_API_KEY=sk-ant-...
export PERPLEXITY_API_KEY=pplx-...
# ... etc
```
### TypeScript Configuration
```json
{
"compilerOptions": {
"target": "ES2022",
"module": "NodeNext",
"lib": ["ES2022"],
"strict": true,
"esModuleInterop": true,
"skipLibCheck": true
}
}
```
## 🎯 Choosing the Right Provider
| Use Case | Recommended Provider | Why |
|----------|---------------------|-----|
| **General Purpose** | OpenAI | Most features, stable, well-documented |
| **Complex Reasoning** | Anthropic | Superior logical thinking, safer outputs |
| **Research & Facts** | Perplexity | Web-aware, provides citations |
| **Speed Critical** | Groq | 10x faster inference, sub-second responses |
| **Privacy Critical** | Ollama | 100% local, no data leaves your servers |
| **Real-time Data** | XAI | Access to current information |
| **Cost Sensitive** | Ollama/Exo | Free (local) or distributed compute |
## 🤝 Contributing
SmartAI is open source and welcomes contributions! Visit our [GitHub repository](https://code.foss.global/push.rocks/smartai) to:
- Report issues
- Submit pull requests
- Request features
- Join discussions
## 📈 Roadmap
- [ ] Streaming function calls
- [ ] Image generation support
- [ ] Voice input processing
- [ ] Fine-tuning integration
- [ ] Embedding support
- [ ] Agent framework
- [ ] More providers (Cohere, AI21, etc.)
## License and Legal Information
This repository contains open-source code that is licensed under the MIT License. A copy of the MIT License can be found in the [license](license) file within this repository.
@@ -405,4 +488,4 @@ Registered at District court Bremen HRB 35230 HB, Germany
For any legal inquiries or if you require further information, please contact us via email at hello@task.vc.
By using this repository, you acknowledge that you have read this section, agree to comply with its terms, and understand that the licensing of the code does not imply endorsement by Task Venture Capital GmbH of any derivative works.
By using this repository, you acknowledge that you have read this section, agree to comply with its terms, and understand that the licensing of the code does not imply endorsement by Task Venture Capital GmbH of any derivative works.

View File

@@ -29,12 +29,14 @@ tap.test('should create chat response with openai', async () => {
tap.test('should document a pdf', async () => {
const pdfUrl = 'https://www.w3.org/WAI/ER/tests/xhtml/testfiles/resources/pdf/dummy.pdf';
const pdfResponse = await smartrequest.getBinary(pdfUrl);
const pdfResponse = await smartrequest.SmartRequest.create()
.url(pdfUrl)
.get();
const result = await testSmartai.openaiProvider.document({
systemMessage: 'Classify the document. Only the following answers are allowed: "invoice", "bank account statement", "contract", "other". The answer should only contain the keyword for machine use.',
userMessage: "Classify the document.",
messageHistory: [],
pdfDocuments: [pdfResponse.body],
pdfDocuments: [Buffer.from(await pdfResponse.arrayBuffer())],
});
console.log(result);
});

View File

@@ -1,3 +1,5 @@
import * as plugins from './plugins.js';
/**
* Message format for chat interactions
*/
@@ -28,17 +30,30 @@ export interface ChatResponse {
* Provides a common interface for different AI providers (OpenAI, Anthropic, Perplexity, Ollama)
*/
export abstract class MultiModalModel {
/**
* SmartPdf instance for document processing
* Shared across all methods that need PDF functionality
*/
protected smartpdfInstance: plugins.smartpdf.SmartPdf;
/**
* Initializes the model and any necessary resources
* Should be called before using any other methods
*/
abstract start(): Promise<void>;
public async start(): Promise<void> {
this.smartpdfInstance = new plugins.smartpdf.SmartPdf();
await this.smartpdfInstance.start();
}
/**
* Cleans up any resources used by the model
* Should be called when the model is no longer needed
*/
abstract stop(): Promise<void>;
public async stop(): Promise<void> {
if (this.smartpdfInstance) {
await this.smartpdfInstance.stop();
}
}
/**
* Synchronous chat interaction with the model

View File

@@ -91,7 +91,29 @@ export class SmartAi {
}
}
public async stop() {}
public async stop() {
if (this.openaiProvider) {
await this.openaiProvider.stop();
}
if (this.anthropicProvider) {
await this.anthropicProvider.stop();
}
if (this.perplexityProvider) {
await this.perplexityProvider.stop();
}
if (this.groqProvider) {
await this.groqProvider.stop();
}
if (this.xaiProvider) {
await this.xaiProvider.stop();
}
if (this.ollamaProvider) {
await this.ollamaProvider.stop();
}
if (this.exoProvider) {
await this.exoProvider.stop();
}
}
/**
* create a new conversation

View File

@@ -20,12 +20,15 @@ export class AnthropicProvider extends MultiModalModel {
}
async start() {
await super.start();
this.anthropicApiClient = new plugins.anthropic.default({
apiKey: this.options.anthropicToken,
});
}
async stop() {}
async stop() {
await super.stop();
}
public async chatStream(input: ReadableStream<Uint8Array>): Promise<ReadableStream<string>> {
// Create a TextDecoder to handle incoming chunks
@@ -178,11 +181,10 @@ export class AnthropicProvider extends MultiModalModel {
messageHistory: ChatMessage[];
}): Promise<{ message: any }> {
// Convert PDF documents to images using SmartPDF
const smartpdfInstance = new plugins.smartpdf.SmartPdf();
let documentImageBytesArray: Uint8Array[] = [];
for (const pdfDocument of optionsArg.pdfDocuments) {
const documentImageArray = await smartpdfInstance.convertPDFToPngBytes(pdfDocument);
const documentImageArray = await this.smartpdfInstance.convertPDFToPngBytes(pdfDocument);
documentImageBytesArray = documentImageBytesArray.concat(documentImageArray);
}

View File

@@ -24,6 +24,7 @@ export class OllamaProvider extends MultiModalModel {
}
async start() {
await super.start();
// Verify Ollama is running
try {
const response = await fetch(`${this.baseUrl}/api/tags`);
@@ -35,7 +36,9 @@ export class OllamaProvider extends MultiModalModel {
}
}
async stop() {}
async stop() {
await super.stop();
}
public async chatStream(input: ReadableStream<Uint8Array>): Promise<ReadableStream<string>> {
// Create a TextDecoder to handle incoming chunks
@@ -205,11 +208,10 @@ export class OllamaProvider extends MultiModalModel {
messageHistory: ChatMessage[];
}): Promise<{ message: any }> {
// Convert PDF documents to images using SmartPDF
const smartpdfInstance = new plugins.smartpdf.SmartPdf();
let documentImageBytesArray: Uint8Array[] = [];
for (const pdfDocument of optionsArg.pdfDocuments) {
const documentImageArray = await smartpdfInstance.convertPDFToPngBytes(pdfDocument);
const documentImageArray = await this.smartpdfInstance.convertPDFToPngBytes(pdfDocument);
documentImageBytesArray = documentImageBytesArray.concat(documentImageArray);
}

View File

@@ -1,5 +1,6 @@
import * as plugins from './plugins.js';
import * as paths from './paths.js';
import { Readable } from 'stream';
// Custom type definition for chat completion messages
export type TChatCompletionRequestMessage = {
@@ -20,7 +21,6 @@ export interface IOpenaiProviderOptions {
export class OpenAiProvider extends MultiModalModel {
private options: IOpenaiProviderOptions;
public openAiApiClient: plugins.openai.default;
public smartpdfInstance: plugins.smartpdf.SmartPdf;
constructor(optionsArg: IOpenaiProviderOptions) {
super();
@@ -28,14 +28,16 @@ export class OpenAiProvider extends MultiModalModel {
}
public async start() {
await super.start();
this.openAiApiClient = new plugins.openai.default({
apiKey: this.options.openaiToken,
dangerouslyAllowBrowser: true,
});
this.smartpdfInstance = new plugins.smartpdf.SmartPdf();
}
public async stop() {}
public async stop() {
await super.stop();
}
public async chatStream(input: ReadableStream<Uint8Array>): Promise<ReadableStream<string>> {
// Create a TextDecoder to handle incoming chunks
@@ -148,7 +150,8 @@ export class OpenAiProvider extends MultiModalModel {
speed: 1,
});
const stream = result.body;
done.resolve(stream);
const nodeStream = Readable.fromWeb(stream as any);
done.resolve(nodeStream);
return done.promise;
}
@@ -164,13 +167,10 @@ export class OpenAiProvider extends MultiModalModel {
let pdfDocumentImageBytesArray: Uint8Array[] = [];
// Convert each PDF into one or more image byte arrays.
const smartpdfInstance = new plugins.smartpdf.SmartPdf();
await smartpdfInstance.start();
for (const pdfDocument of optionsArg.pdfDocuments) {
const documentImageArray = await smartpdfInstance.convertPDFToPngBytes(pdfDocument);
const documentImageArray = await this.smartpdfInstance.convertPDFToPngBytes(pdfDocument);
pdfDocumentImageBytesArray = pdfDocumentImageBytesArray.concat(documentImageArray);
}
await smartpdfInstance.stop();
console.log(`image smartfile array`);
console.log(pdfDocumentImageBytesArray.map((smartfile) => smartfile.length));

View File

@@ -11,7 +11,6 @@ export interface IXAIProviderOptions {
export class XAIProvider extends MultiModalModel {
private options: IXAIProviderOptions;
public openAiApiClient: plugins.openai.default;
public smartpdfInstance: plugins.smartpdf.SmartPdf;
constructor(optionsArg: IXAIProviderOptions) {
super();
@@ -19,14 +18,16 @@ export class XAIProvider extends MultiModalModel {
}
public async start() {
await super.start();
this.openAiApiClient = new plugins.openai.default({
apiKey: this.options.xaiToken,
baseURL: 'https://api.x.ai/v1',
});
this.smartpdfInstance = new plugins.smartpdf.SmartPdf();
}
public async stop() {}
public async stop() {
await super.stop();
}
public async chatStream(input: ReadableStream<Uint8Array>): Promise<ReadableStream<string>> {
// Create a TextDecoder to handle incoming chunks